15c4dc5a |
1 | //----------------------------------------------------------------------------- |
15c4dc5a |
2 | // Gerhard de Koning Gans - May 2008 |
bd20f8f4 |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
15c4dc5a |
7 | //----------------------------------------------------------------------------- |
bd20f8f4 |
8 | // Routines to support ISO 14443 type A. |
9 | //----------------------------------------------------------------------------- |
10 | |
e30c654b |
11 | #include "proxmark3.h" |
15c4dc5a |
12 | #include "apps.h" |
f7e3ed82 |
13 | #include "util.h" |
9ab7a6c7 |
14 | #include "string.h" |
15 | |
15c4dc5a |
16 | #include "iso14443crc.h" |
17 | |
f7e3ed82 |
18 | static uint8_t *trace = (uint8_t *) BigBuf; |
15c4dc5a |
19 | static int traceLen = 0; |
20 | static int rsamples = 0; |
f7e3ed82 |
21 | static int tracing = TRUE; |
15c4dc5a |
22 | |
23 | typedef enum { |
24 | SEC_D = 1, |
25 | SEC_E = 2, |
26 | SEC_F = 3, |
27 | SEC_X = 4, |
28 | SEC_Y = 5, |
29 | SEC_Z = 6 |
30 | } SecType; |
31 | |
f7e3ed82 |
32 | static const uint8_t OddByteParity[256] = { |
15c4dc5a |
33 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
34 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
35 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
36 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
37 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
38 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
39 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
41 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
43 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
44 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
45 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
48 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
49 | }; |
50 | |
51 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT |
52 | #define RECV_CMD_OFFSET 3032 |
53 | #define RECV_RES_OFFSET 3096 |
54 | #define DMA_BUFFER_OFFSET 3160 |
55 | #define DMA_BUFFER_SIZE 4096 |
56 | #define TRACE_LENGTH 3000 |
57 | |
58 | //----------------------------------------------------------------------------- |
59 | // Generate the parity value for a byte sequence |
e30c654b |
60 | // |
15c4dc5a |
61 | //----------------------------------------------------------------------------- |
f7e3ed82 |
62 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) |
15c4dc5a |
63 | { |
64 | int i; |
f7e3ed82 |
65 | uint32_t dwPar = 0; |
ed82636b |
66 | |
15c4dc5a |
67 | // Generate the encrypted data |
68 | for (i = 0; i < iLen; i++) { |
69 | // Save the encrypted parity bit |
70 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); |
71 | } |
72 | return dwPar; |
73 | } |
74 | |
f7e3ed82 |
75 | static void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a |
76 | { |
77 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
78 | } |
79 | |
ed82636b |
80 | int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) |
15c4dc5a |
81 | { |
82 | // Return when trace is full |
83 | if (traceLen >= TRACE_LENGTH) return FALSE; |
e30c654b |
84 | |
15c4dc5a |
85 | // Trace the random, i'm curious |
86 | rsamples += iSamples; |
87 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
88 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
89 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
90 | trace[traceLen++] = ((rsamples >> 24) & 0xff); |
91 | if (!bReader) { |
92 | trace[traceLen - 1] |= 0x80; |
93 | } |
94 | trace[traceLen++] = ((dwParity >> 0) & 0xff); |
95 | trace[traceLen++] = ((dwParity >> 8) & 0xff); |
96 | trace[traceLen++] = ((dwParity >> 16) & 0xff); |
97 | trace[traceLen++] = ((dwParity >> 24) & 0xff); |
98 | trace[traceLen++] = iLen; |
99 | memcpy(trace + traceLen, btBytes, iLen); |
100 | traceLen += iLen; |
101 | return TRUE; |
102 | } |
103 | |
f7e3ed82 |
104 | int LogTraceInfo(byte_t* data, size_t len) |
15c4dc5a |
105 | { |
106 | return LogTrace(data,len,0,GetParity(data,len),TRUE); |
107 | } |
108 | |
109 | //----------------------------------------------------------------------------- |
110 | // The software UART that receives commands from the reader, and its state |
111 | // variables. |
112 | //----------------------------------------------------------------------------- |
113 | static struct { |
114 | enum { |
115 | STATE_UNSYNCD, |
116 | STATE_START_OF_COMMUNICATION, |
117 | STATE_MILLER_X, |
118 | STATE_MILLER_Y, |
119 | STATE_MILLER_Z, |
120 | STATE_ERROR_WAIT |
121 | } state; |
f7e3ed82 |
122 | uint16_t shiftReg; |
15c4dc5a |
123 | int bitCnt; |
124 | int byteCnt; |
125 | int byteCntMax; |
126 | int posCnt; |
127 | int syncBit; |
128 | int parityBits; |
129 | int samples; |
130 | int highCnt; |
131 | int bitBuffer; |
132 | enum { |
133 | DROP_NONE, |
134 | DROP_FIRST_HALF, |
135 | DROP_SECOND_HALF |
136 | } drop; |
f7e3ed82 |
137 | uint8_t *output; |
15c4dc5a |
138 | } Uart; |
139 | |
f7e3ed82 |
140 | static int MillerDecoding(int bit) |
15c4dc5a |
141 | { |
142 | int error = 0; |
143 | int bitright; |
144 | |
145 | if(!Uart.bitBuffer) { |
146 | Uart.bitBuffer = bit ^ 0xFF0; |
147 | return FALSE; |
148 | } |
149 | else { |
150 | Uart.bitBuffer <<= 4; |
151 | Uart.bitBuffer ^= bit; |
152 | } |
153 | |
f7e3ed82 |
154 | int EOC = FALSE; |
15c4dc5a |
155 | |
156 | if(Uart.state != STATE_UNSYNCD) { |
157 | Uart.posCnt++; |
158 | |
159 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { |
160 | bit = 0x00; |
161 | } |
162 | else { |
163 | bit = 0x01; |
164 | } |
165 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { |
166 | bitright = 0x00; |
167 | } |
168 | else { |
169 | bitright = 0x01; |
170 | } |
171 | if(bit != bitright) { bit = bitright; } |
172 | |
173 | if(Uart.posCnt == 1) { |
174 | // measurement first half bitperiod |
175 | if(!bit) { |
176 | Uart.drop = DROP_FIRST_HALF; |
177 | } |
178 | } |
179 | else { |
180 | // measurement second half bitperiod |
181 | if(!bit & (Uart.drop == DROP_NONE)) { |
182 | Uart.drop = DROP_SECOND_HALF; |
183 | } |
184 | else if(!bit) { |
185 | // measured a drop in first and second half |
186 | // which should not be possible |
187 | Uart.state = STATE_ERROR_WAIT; |
188 | error = 0x01; |
189 | } |
190 | |
191 | Uart.posCnt = 0; |
192 | |
193 | switch(Uart.state) { |
194 | case STATE_START_OF_COMMUNICATION: |
195 | Uart.shiftReg = 0; |
196 | if(Uart.drop == DROP_SECOND_HALF) { |
197 | // error, should not happen in SOC |
198 | Uart.state = STATE_ERROR_WAIT; |
199 | error = 0x02; |
200 | } |
201 | else { |
202 | // correct SOC |
203 | Uart.state = STATE_MILLER_Z; |
204 | } |
205 | break; |
206 | |
207 | case STATE_MILLER_Z: |
208 | Uart.bitCnt++; |
209 | Uart.shiftReg >>= 1; |
210 | if(Uart.drop == DROP_NONE) { |
211 | // logic '0' followed by sequence Y |
212 | // end of communication |
213 | Uart.state = STATE_UNSYNCD; |
214 | EOC = TRUE; |
215 | } |
216 | // if(Uart.drop == DROP_FIRST_HALF) { |
217 | // Uart.state = STATE_MILLER_Z; stay the same |
218 | // we see a logic '0' } |
219 | if(Uart.drop == DROP_SECOND_HALF) { |
220 | // we see a logic '1' |
221 | Uart.shiftReg |= 0x100; |
222 | Uart.state = STATE_MILLER_X; |
223 | } |
224 | break; |
225 | |
226 | case STATE_MILLER_X: |
227 | Uart.shiftReg >>= 1; |
228 | if(Uart.drop == DROP_NONE) { |
229 | // sequence Y, we see a '0' |
230 | Uart.state = STATE_MILLER_Y; |
231 | Uart.bitCnt++; |
232 | } |
233 | if(Uart.drop == DROP_FIRST_HALF) { |
234 | // Would be STATE_MILLER_Z |
235 | // but Z does not follow X, so error |
236 | Uart.state = STATE_ERROR_WAIT; |
237 | error = 0x03; |
238 | } |
239 | if(Uart.drop == DROP_SECOND_HALF) { |
240 | // We see a '1' and stay in state X |
241 | Uart.shiftReg |= 0x100; |
242 | Uart.bitCnt++; |
243 | } |
244 | break; |
245 | |
246 | case STATE_MILLER_Y: |
247 | Uart.bitCnt++; |
248 | Uart.shiftReg >>= 1; |
249 | if(Uart.drop == DROP_NONE) { |
250 | // logic '0' followed by sequence Y |
251 | // end of communication |
252 | Uart.state = STATE_UNSYNCD; |
253 | EOC = TRUE; |
254 | } |
255 | if(Uart.drop == DROP_FIRST_HALF) { |
256 | // we see a '0' |
257 | Uart.state = STATE_MILLER_Z; |
258 | } |
259 | if(Uart.drop == DROP_SECOND_HALF) { |
260 | // We see a '1' and go to state X |
261 | Uart.shiftReg |= 0x100; |
262 | Uart.state = STATE_MILLER_X; |
263 | } |
264 | break; |
265 | |
266 | case STATE_ERROR_WAIT: |
267 | // That went wrong. Now wait for at least two bit periods |
268 | // and try to sync again |
269 | if(Uart.drop == DROP_NONE) { |
270 | Uart.highCnt = 6; |
271 | Uart.state = STATE_UNSYNCD; |
272 | } |
273 | break; |
274 | |
275 | default: |
276 | Uart.state = STATE_UNSYNCD; |
277 | Uart.highCnt = 0; |
278 | break; |
279 | } |
280 | |
281 | Uart.drop = DROP_NONE; |
282 | |
283 | // should have received at least one whole byte... |
284 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { |
285 | return TRUE; |
286 | } |
287 | |
288 | if(Uart.bitCnt == 9) { |
289 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); |
290 | Uart.byteCnt++; |
291 | |
292 | Uart.parityBits <<= 1; |
293 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); |
294 | |
295 | if(EOC) { |
296 | // when End of Communication received and |
297 | // all data bits processed.. |
298 | return TRUE; |
299 | } |
300 | Uart.bitCnt = 0; |
301 | } |
302 | |
303 | /*if(error) { |
304 | Uart.output[Uart.byteCnt] = 0xAA; |
305 | Uart.byteCnt++; |
306 | Uart.output[Uart.byteCnt] = error & 0xFF; |
307 | Uart.byteCnt++; |
308 | Uart.output[Uart.byteCnt] = 0xAA; |
309 | Uart.byteCnt++; |
310 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; |
311 | Uart.byteCnt++; |
312 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
313 | Uart.byteCnt++; |
314 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; |
315 | Uart.byteCnt++; |
316 | Uart.output[Uart.byteCnt] = 0xAA; |
317 | Uart.byteCnt++; |
318 | return TRUE; |
319 | }*/ |
320 | } |
321 | |
322 | } |
323 | else { |
324 | bit = Uart.bitBuffer & 0xf0; |
325 | bit >>= 4; |
326 | bit ^= 0x0F; |
327 | if(bit) { |
328 | // should have been high or at least (4 * 128) / fc |
329 | // according to ISO this should be at least (9 * 128 + 20) / fc |
330 | if(Uart.highCnt == 8) { |
331 | // we went low, so this could be start of communication |
332 | // it turns out to be safer to choose a less significant |
333 | // syncbit... so we check whether the neighbour also represents the drop |
334 | Uart.posCnt = 1; // apparently we are busy with our first half bit period |
335 | Uart.syncBit = bit & 8; |
336 | Uart.samples = 3; |
337 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } |
338 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } |
339 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } |
340 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } |
341 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; |
342 | if(Uart.syncBit & (Uart.bitBuffer & 8)) { |
343 | Uart.syncBit = 8; |
344 | |
345 | // the first half bit period is expected in next sample |
346 | Uart.posCnt = 0; |
347 | Uart.samples = 3; |
348 | } |
349 | } |
350 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } |
351 | |
352 | Uart.syncBit <<= 4; |
353 | Uart.state = STATE_START_OF_COMMUNICATION; |
354 | Uart.drop = DROP_FIRST_HALF; |
355 | Uart.bitCnt = 0; |
356 | Uart.byteCnt = 0; |
357 | Uart.parityBits = 0; |
358 | error = 0; |
359 | } |
360 | else { |
361 | Uart.highCnt = 0; |
362 | } |
363 | } |
364 | else { |
365 | if(Uart.highCnt < 8) { |
366 | Uart.highCnt++; |
367 | } |
368 | } |
369 | } |
370 | |
371 | return FALSE; |
372 | } |
373 | |
374 | //============================================================================= |
375 | // ISO 14443 Type A - Manchester |
376 | //============================================================================= |
377 | |
378 | static struct { |
379 | enum { |
380 | DEMOD_UNSYNCD, |
381 | DEMOD_START_OF_COMMUNICATION, |
382 | DEMOD_MANCHESTER_D, |
383 | DEMOD_MANCHESTER_E, |
384 | DEMOD_MANCHESTER_F, |
385 | DEMOD_ERROR_WAIT |
386 | } state; |
387 | int bitCount; |
388 | int posCount; |
389 | int syncBit; |
390 | int parityBits; |
f7e3ed82 |
391 | uint16_t shiftReg; |
15c4dc5a |
392 | int buffer; |
393 | int buff; |
394 | int samples; |
395 | int len; |
396 | enum { |
397 | SUB_NONE, |
398 | SUB_FIRST_HALF, |
399 | SUB_SECOND_HALF |
400 | } sub; |
f7e3ed82 |
401 | uint8_t *output; |
15c4dc5a |
402 | } Demod; |
403 | |
f7e3ed82 |
404 | static int ManchesterDecoding(int v) |
15c4dc5a |
405 | { |
406 | int bit; |
407 | int modulation; |
408 | int error = 0; |
409 | |
410 | if(!Demod.buff) { |
411 | Demod.buff = 1; |
412 | Demod.buffer = v; |
413 | return FALSE; |
414 | } |
415 | else { |
416 | bit = Demod.buffer; |
417 | Demod.buffer = v; |
418 | } |
419 | |
420 | if(Demod.state==DEMOD_UNSYNCD) { |
421 | Demod.output[Demod.len] = 0xfa; |
422 | Demod.syncBit = 0; |
423 | //Demod.samples = 0; |
424 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part |
425 | if(bit & 0x08) { Demod.syncBit = 0x08; } |
426 | if(!Demod.syncBit) { |
427 | if(bit & 0x04) { Demod.syncBit = 0x04; } |
428 | } |
429 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } |
430 | if(!Demod.syncBit) { |
431 | if(bit & 0x02) { Demod.syncBit = 0x02; } |
432 | } |
433 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } |
434 | if(!Demod.syncBit) { |
435 | if(bit & 0x01) { Demod.syncBit = 0x01; } |
436 | |
437 | if(Demod.syncBit & (Demod.buffer & 0x08)) { |
438 | Demod.syncBit = 0x08; |
439 | |
440 | // The first half bitperiod is expected in next sample |
441 | Demod.posCount = 0; |
442 | Demod.output[Demod.len] = 0xfb; |
443 | } |
444 | } |
445 | else if(bit & 0x01) { Demod.syncBit = 0x01; } |
446 | |
447 | if(Demod.syncBit) { |
448 | Demod.len = 0; |
449 | Demod.state = DEMOD_START_OF_COMMUNICATION; |
450 | Demod.sub = SUB_FIRST_HALF; |
451 | Demod.bitCount = 0; |
452 | Demod.shiftReg = 0; |
453 | Demod.parityBits = 0; |
454 | Demod.samples = 0; |
455 | if(Demod.posCount) { |
456 | switch(Demod.syncBit) { |
457 | case 0x08: Demod.samples = 3; break; |
458 | case 0x04: Demod.samples = 2; break; |
459 | case 0x02: Demod.samples = 1; break; |
460 | case 0x01: Demod.samples = 0; break; |
461 | } |
462 | } |
463 | error = 0; |
464 | } |
465 | } |
466 | else { |
467 | //modulation = bit & Demod.syncBit; |
468 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
469 | |
470 | Demod.samples += 4; |
471 | |
472 | if(Demod.posCount==0) { |
473 | Demod.posCount = 1; |
474 | if(modulation) { |
475 | Demod.sub = SUB_FIRST_HALF; |
476 | } |
477 | else { |
478 | Demod.sub = SUB_NONE; |
479 | } |
480 | } |
481 | else { |
482 | Demod.posCount = 0; |
483 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { |
484 | if(Demod.state!=DEMOD_ERROR_WAIT) { |
485 | Demod.state = DEMOD_ERROR_WAIT; |
486 | Demod.output[Demod.len] = 0xaa; |
487 | error = 0x01; |
488 | } |
489 | } |
490 | else if(modulation) { |
491 | Demod.sub = SUB_SECOND_HALF; |
492 | } |
493 | |
494 | switch(Demod.state) { |
495 | case DEMOD_START_OF_COMMUNICATION: |
496 | if(Demod.sub == SUB_FIRST_HALF) { |
497 | Demod.state = DEMOD_MANCHESTER_D; |
498 | } |
499 | else { |
500 | Demod.output[Demod.len] = 0xab; |
501 | Demod.state = DEMOD_ERROR_WAIT; |
502 | error = 0x02; |
503 | } |
504 | break; |
505 | |
506 | case DEMOD_MANCHESTER_D: |
507 | case DEMOD_MANCHESTER_E: |
508 | if(Demod.sub == SUB_FIRST_HALF) { |
509 | Demod.bitCount++; |
510 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; |
511 | Demod.state = DEMOD_MANCHESTER_D; |
512 | } |
513 | else if(Demod.sub == SUB_SECOND_HALF) { |
514 | Demod.bitCount++; |
515 | Demod.shiftReg >>= 1; |
516 | Demod.state = DEMOD_MANCHESTER_E; |
517 | } |
518 | else { |
519 | Demod.state = DEMOD_MANCHESTER_F; |
520 | } |
521 | break; |
522 | |
523 | case DEMOD_MANCHESTER_F: |
524 | // Tag response does not need to be a complete byte! |
525 | if(Demod.len > 0 || Demod.bitCount > 0) { |
526 | if(Demod.bitCount > 0) { |
527 | Demod.shiftReg >>= (9 - Demod.bitCount); |
528 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
529 | Demod.len++; |
530 | // No parity bit, so just shift a 0 |
531 | Demod.parityBits <<= 1; |
532 | } |
533 | |
534 | Demod.state = DEMOD_UNSYNCD; |
535 | return TRUE; |
536 | } |
537 | else { |
538 | Demod.output[Demod.len] = 0xad; |
539 | Demod.state = DEMOD_ERROR_WAIT; |
540 | error = 0x03; |
541 | } |
542 | break; |
543 | |
544 | case DEMOD_ERROR_WAIT: |
545 | Demod.state = DEMOD_UNSYNCD; |
546 | break; |
547 | |
548 | default: |
549 | Demod.output[Demod.len] = 0xdd; |
550 | Demod.state = DEMOD_UNSYNCD; |
551 | break; |
552 | } |
553 | |
554 | if(Demod.bitCount>=9) { |
555 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
556 | Demod.len++; |
557 | |
558 | Demod.parityBits <<= 1; |
559 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); |
560 | |
561 | Demod.bitCount = 0; |
562 | Demod.shiftReg = 0; |
563 | } |
564 | |
565 | /*if(error) { |
566 | Demod.output[Demod.len] = 0xBB; |
567 | Demod.len++; |
568 | Demod.output[Demod.len] = error & 0xFF; |
569 | Demod.len++; |
570 | Demod.output[Demod.len] = 0xBB; |
571 | Demod.len++; |
572 | Demod.output[Demod.len] = bit & 0xFF; |
573 | Demod.len++; |
574 | Demod.output[Demod.len] = Demod.buffer & 0xFF; |
575 | Demod.len++; |
576 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
577 | Demod.len++; |
578 | Demod.output[Demod.len] = 0xBB; |
579 | Demod.len++; |
580 | return TRUE; |
581 | }*/ |
582 | |
583 | } |
584 | |
585 | } // end (state != UNSYNCED) |
586 | |
587 | return FALSE; |
588 | } |
589 | |
590 | //============================================================================= |
591 | // Finally, a `sniffer' for ISO 14443 Type A |
592 | // Both sides of communication! |
593 | //============================================================================= |
594 | |
595 | //----------------------------------------------------------------------------- |
596 | // Record the sequence of commands sent by the reader to the tag, with |
597 | // triggering so that we start recording at the point that the tag is moved |
598 | // near the reader. |
599 | //----------------------------------------------------------------------------- |
600 | void SnoopIso14443a(void) |
601 | { |
602 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values |
603 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values |
604 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values |
605 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values |
606 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values |
607 | |
608 | // We won't start recording the frames that we acquire until we trigger; |
609 | // a good trigger condition to get started is probably when we see a |
610 | // response from the tag. |
f7e3ed82 |
611 | int triggered = TRUE; // FALSE to wait first for card |
15c4dc5a |
612 | |
613 | // The command (reader -> tag) that we're receiving. |
614 | // The length of a received command will in most cases be no more than 18 bytes. |
615 | // So 32 should be enough! |
f7e3ed82 |
616 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
15c4dc5a |
617 | // The response (tag -> reader) that we're receiving. |
f7e3ed82 |
618 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); |
15c4dc5a |
619 | |
620 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
621 | // into trace, along with its length and other annotations. |
f7e3ed82 |
622 | //uint8_t *trace = (uint8_t *)BigBuf; |
15c4dc5a |
623 | //int traceLen = 0; |
624 | |
625 | // The DMA buffer, used to stream samples from the FPGA |
f7e3ed82 |
626 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
15c4dc5a |
627 | int lastRxCounter; |
f7e3ed82 |
628 | int8_t *upTo; |
15c4dc5a |
629 | int smpl; |
630 | int maxBehindBy = 0; |
631 | |
632 | // Count of samples received so far, so that we can include timing |
633 | // information in the trace buffer. |
634 | int samples = 0; |
635 | int rsamples = 0; |
636 | |
637 | memset(trace, 0x44, RECV_CMD_OFFSET); |
638 | |
639 | // Set up the demodulator for tag -> reader responses. |
640 | Demod.output = receivedResponse; |
641 | Demod.len = 0; |
642 | Demod.state = DEMOD_UNSYNCD; |
643 | |
644 | // And the reader -> tag commands |
645 | memset(&Uart, 0, sizeof(Uart)); |
646 | Uart.output = receivedCmd; |
647 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// |
648 | Uart.state = STATE_UNSYNCD; |
649 | |
650 | // And put the FPGA in the appropriate mode |
651 | // Signal field is off with the appropriate LED |
652 | LED_D_OFF(); |
653 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); |
654 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
655 | |
656 | // Setup for the DMA. |
657 | FpgaSetupSsc(); |
658 | upTo = dmaBuf; |
659 | lastRxCounter = DMA_BUFFER_SIZE; |
f7e3ed82 |
660 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
15c4dc5a |
661 | |
662 | LED_A_ON(); |
663 | |
664 | // And now we loop, receiving samples. |
665 | for(;;) { |
666 | WDT_HIT(); |
667 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
668 | (DMA_BUFFER_SIZE-1); |
669 | if(behindBy > maxBehindBy) { |
670 | maxBehindBy = behindBy; |
671 | if(behindBy > 400) { |
672 | DbpString("blew circular buffer!"); |
673 | goto done; |
674 | } |
675 | } |
676 | if(behindBy < 1) continue; |
677 | |
678 | smpl = upTo[0]; |
679 | upTo++; |
680 | lastRxCounter -= 1; |
681 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { |
682 | upTo -= DMA_BUFFER_SIZE; |
683 | lastRxCounter += DMA_BUFFER_SIZE; |
f7e3ed82 |
684 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
15c4dc5a |
685 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
686 | } |
687 | |
688 | samples += 4; |
689 | #define HANDLE_BIT_IF_BODY \ |
690 | LED_C_ON(); \ |
691 | if(triggered) { \ |
692 | trace[traceLen++] = ((rsamples >> 0) & 0xff); \ |
693 | trace[traceLen++] = ((rsamples >> 8) & 0xff); \ |
694 | trace[traceLen++] = ((rsamples >> 16) & 0xff); \ |
695 | trace[traceLen++] = ((rsamples >> 24) & 0xff); \ |
696 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ |
697 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ |
698 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ |
699 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ |
700 | trace[traceLen++] = Uart.byteCnt; \ |
701 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ |
702 | traceLen += Uart.byteCnt; \ |
703 | if(traceLen > TRACE_LENGTH) break; \ |
704 | } \ |
705 | /* And ready to receive another command. */ \ |
706 | Uart.state = STATE_UNSYNCD; \ |
707 | /* And also reset the demod code, which might have been */ \ |
708 | /* false-triggered by the commands from the reader. */ \ |
709 | Demod.state = DEMOD_UNSYNCD; \ |
710 | LED_B_OFF(); \ |
711 | |
712 | if(MillerDecoding((smpl & 0xF0) >> 4)) { |
713 | rsamples = samples - Uart.samples; |
714 | HANDLE_BIT_IF_BODY |
715 | } |
716 | if(ManchesterDecoding(smpl & 0x0F)) { |
717 | rsamples = samples - Demod.samples; |
718 | LED_B_ON(); |
719 | |
720 | // timestamp, as a count of samples |
721 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
722 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
723 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
724 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); |
725 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); |
726 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); |
727 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); |
728 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); |
729 | // length |
730 | trace[traceLen++] = Demod.len; |
731 | memcpy(trace+traceLen, receivedResponse, Demod.len); |
732 | traceLen += Demod.len; |
733 | if(traceLen > TRACE_LENGTH) break; |
734 | |
735 | triggered = TRUE; |
736 | |
737 | // And ready to receive another response. |
738 | memset(&Demod, 0, sizeof(Demod)); |
739 | Demod.output = receivedResponse; |
740 | Demod.state = DEMOD_UNSYNCD; |
741 | LED_C_OFF(); |
742 | } |
743 | |
744 | if(BUTTON_PRESS()) { |
745 | DbpString("cancelled_a"); |
746 | goto done; |
747 | } |
748 | } |
749 | |
750 | DbpString("COMMAND FINISHED"); |
751 | |
752 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
753 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
754 | |
755 | done: |
756 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
757 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
758 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
759 | LED_A_OFF(); |
760 | LED_B_OFF(); |
761 | LED_C_OFF(); |
762 | LED_D_OFF(); |
763 | } |
764 | |
765 | // Prepare communication bits to send to FPGA |
766 | void Sequence(SecType seq) |
767 | { |
768 | ToSendMax++; |
769 | switch(seq) { |
770 | // CARD TO READER |
771 | case SEC_D: |
772 | // Sequence D: 11110000 |
773 | // modulation with subcarrier during first half |
774 | ToSend[ToSendMax] = 0xf0; |
775 | break; |
776 | case SEC_E: |
777 | // Sequence E: 00001111 |
778 | // modulation with subcarrier during second half |
779 | ToSend[ToSendMax] = 0x0f; |
780 | break; |
781 | case SEC_F: |
782 | // Sequence F: 00000000 |
783 | // no modulation with subcarrier |
784 | ToSend[ToSendMax] = 0x00; |
785 | break; |
786 | // READER TO CARD |
787 | case SEC_X: |
788 | // Sequence X: 00001100 |
789 | // drop after half a period |
790 | ToSend[ToSendMax] = 0x0c; |
791 | break; |
792 | case SEC_Y: |
793 | default: |
794 | // Sequence Y: 00000000 |
795 | // no drop |
796 | ToSend[ToSendMax] = 0x00; |
797 | break; |
798 | case SEC_Z: |
799 | // Sequence Z: 11000000 |
800 | // drop at start |
801 | ToSend[ToSendMax] = 0xc0; |
802 | break; |
803 | } |
804 | } |
805 | |
806 | //----------------------------------------------------------------------------- |
807 | // Prepare tag messages |
808 | //----------------------------------------------------------------------------- |
f7e3ed82 |
809 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len) |
15c4dc5a |
810 | { |
811 | int i; |
812 | int oddparity; |
813 | |
814 | ToSendReset(); |
815 | |
816 | // Correction bit, might be removed when not needed |
817 | ToSendStuffBit(0); |
818 | ToSendStuffBit(0); |
819 | ToSendStuffBit(0); |
820 | ToSendStuffBit(0); |
821 | ToSendStuffBit(1); // 1 |
822 | ToSendStuffBit(0); |
823 | ToSendStuffBit(0); |
824 | ToSendStuffBit(0); |
825 | |
826 | // Send startbit |
827 | Sequence(SEC_D); |
828 | |
829 | for(i = 0; i < len; i++) { |
830 | int j; |
f7e3ed82 |
831 | uint8_t b = cmd[i]; |
15c4dc5a |
832 | |
833 | // Data bits |
834 | oddparity = 0x01; |
835 | for(j = 0; j < 8; j++) { |
836 | oddparity ^= (b & 1); |
837 | if(b & 1) { |
838 | Sequence(SEC_D); |
839 | } else { |
840 | Sequence(SEC_E); |
841 | } |
842 | b >>= 1; |
843 | } |
844 | |
845 | // Parity bit |
846 | if(oddparity) { |
847 | Sequence(SEC_D); |
848 | } else { |
849 | Sequence(SEC_E); |
850 | } |
851 | } |
852 | |
853 | // Send stopbit |
854 | Sequence(SEC_F); |
855 | |
856 | // Flush the buffer in FPGA!! |
857 | for(i = 0; i < 5; i++) { |
858 | Sequence(SEC_F); |
859 | } |
860 | |
861 | // Convert from last byte pos to length |
862 | ToSendMax++; |
863 | |
864 | // Add a few more for slop |
865 | ToSend[ToSendMax++] = 0x00; |
866 | ToSend[ToSendMax++] = 0x00; |
867 | //ToSendMax += 2; |
868 | } |
869 | |
870 | //----------------------------------------------------------------------------- |
871 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 |
872 | //----------------------------------------------------------------------------- |
873 | static void CodeStrangeAnswer() |
874 | { |
875 | int i; |
876 | |
877 | ToSendReset(); |
878 | |
879 | // Correction bit, might be removed when not needed |
880 | ToSendStuffBit(0); |
881 | ToSendStuffBit(0); |
882 | ToSendStuffBit(0); |
883 | ToSendStuffBit(0); |
884 | ToSendStuffBit(1); // 1 |
885 | ToSendStuffBit(0); |
886 | ToSendStuffBit(0); |
887 | ToSendStuffBit(0); |
888 | |
889 | // Send startbit |
890 | Sequence(SEC_D); |
891 | |
892 | // 0 |
893 | Sequence(SEC_E); |
894 | |
895 | // 0 |
896 | Sequence(SEC_E); |
897 | |
898 | // 1 |
899 | Sequence(SEC_D); |
900 | |
901 | // Send stopbit |
902 | Sequence(SEC_F); |
903 | |
904 | // Flush the buffer in FPGA!! |
905 | for(i = 0; i < 5; i++) { |
906 | Sequence(SEC_F); |
907 | } |
908 | |
909 | // Convert from last byte pos to length |
910 | ToSendMax++; |
911 | |
912 | // Add a few more for slop |
913 | ToSend[ToSendMax++] = 0x00; |
914 | ToSend[ToSendMax++] = 0x00; |
915 | //ToSendMax += 2; |
916 | } |
917 | |
918 | //----------------------------------------------------------------------------- |
919 | // Wait for commands from reader |
920 | // Stop when button is pressed |
921 | // Or return TRUE when command is captured |
922 | //----------------------------------------------------------------------------- |
f7e3ed82 |
923 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) |
15c4dc5a |
924 | { |
925 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
926 | // only, since we are receiving, not transmitting). |
927 | // Signal field is off with the appropriate LED |
928 | LED_D_OFF(); |
929 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
930 | |
931 | // Now run a `software UART' on the stream of incoming samples. |
932 | Uart.output = received; |
933 | Uart.byteCntMax = maxLen; |
934 | Uart.state = STATE_UNSYNCD; |
935 | |
936 | for(;;) { |
937 | WDT_HIT(); |
938 | |
939 | if(BUTTON_PRESS()) return FALSE; |
940 | |
941 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
942 | AT91C_BASE_SSC->SSC_THR = 0x00; |
943 | } |
944 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
945 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
946 | if(MillerDecoding((b & 0xf0) >> 4)) { |
947 | *len = Uart.byteCnt; |
948 | return TRUE; |
949 | } |
950 | if(MillerDecoding(b & 0x0f)) { |
951 | *len = Uart.byteCnt; |
952 | return TRUE; |
953 | } |
954 | } |
955 | } |
956 | } |
957 | |
958 | //----------------------------------------------------------------------------- |
959 | // Main loop of simulated tag: receive commands from reader, decide what |
960 | // response to send, and send it. |
961 | //----------------------------------------------------------------------------- |
962 | void SimulateIso14443aTag(int tagType, int TagUid) |
963 | { |
964 | // This function contains the tag emulation |
965 | |
966 | // Prepare protocol messages |
f7e3ed82 |
967 | // static const uint8_t cmd1[] = { 0x26 }; |
968 | // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg |
15c4dc5a |
969 | // |
f7e3ed82 |
970 | static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me |
971 | // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me |
15c4dc5a |
972 | |
973 | // UID response |
f7e3ed82 |
974 | // static const uint8_t cmd2[] = { 0x93, 0x20 }; |
975 | //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg |
15c4dc5a |
976 | |
977 | |
978 | |
979 | // my desfire |
f7e3ed82 |
980 | static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips |
15c4dc5a |
981 | |
982 | |
983 | // When reader selects us during cascade1 it will send cmd3 |
f7e3ed82 |
984 | //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) |
985 | uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) |
15c4dc5a |
986 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); |
987 | |
988 | // send cascade2 2nd half of UID |
f7e3ed82 |
989 | static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck |
15c4dc5a |
990 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID |
991 | |
992 | |
993 | // When reader selects us during cascade2 it will send cmd3a |
f7e3ed82 |
994 | //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) |
995 | uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) |
15c4dc5a |
996 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); |
997 | |
f7e3ed82 |
998 | static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
15c4dc5a |
999 | |
f7e3ed82 |
1000 | uint8_t *resp; |
15c4dc5a |
1001 | int respLen; |
1002 | |
1003 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes |
1004 | // This will need |
1005 | // 144 data bits (18 * 8) |
1006 | // 18 parity bits |
1007 | // 2 Start and stop |
1008 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) |
1009 | // 1 just for the case |
1010 | // ----------- + |
1011 | // 166 |
1012 | // |
1013 | // 166 bytes, since every bit that needs to be send costs us a byte |
1014 | // |
1015 | |
1016 | |
1017 | // Respond with card type |
f7e3ed82 |
1018 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); |
15c4dc5a |
1019 | int resp1Len; |
1020 | |
1021 | // Anticollision cascade1 - respond with uid |
f7e3ed82 |
1022 | uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); |
15c4dc5a |
1023 | int resp2Len; |
1024 | |
1025 | // Anticollision cascade2 - respond with 2nd half of uid if asked |
1026 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 |
f7e3ed82 |
1027 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); |
15c4dc5a |
1028 | int resp2aLen; |
1029 | |
1030 | // Acknowledge select - cascade 1 |
f7e3ed82 |
1031 | uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); |
15c4dc5a |
1032 | int resp3Len; |
1033 | |
1034 | // Acknowledge select - cascade 2 |
f7e3ed82 |
1035 | uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); |
15c4dc5a |
1036 | int resp3aLen; |
1037 | |
1038 | // Response to a read request - not implemented atm |
f7e3ed82 |
1039 | uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); |
15c4dc5a |
1040 | int resp4Len; |
1041 | |
1042 | // Authenticate response - nonce |
f7e3ed82 |
1043 | uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); |
15c4dc5a |
1044 | int resp5Len; |
1045 | |
f7e3ed82 |
1046 | uint8_t *receivedCmd = (uint8_t *)BigBuf; |
15c4dc5a |
1047 | int len; |
1048 | |
1049 | int i; |
1050 | int u; |
f7e3ed82 |
1051 | uint8_t b; |
15c4dc5a |
1052 | |
1053 | // To control where we are in the protocol |
1054 | int order = 0; |
1055 | int lastorder; |
1056 | |
1057 | // Just to allow some checks |
1058 | int happened = 0; |
1059 | int happened2 = 0; |
1060 | |
1061 | int cmdsRecvd = 0; |
1062 | |
f7e3ed82 |
1063 | int fdt_indicator; |
15c4dc5a |
1064 | |
1065 | memset(receivedCmd, 0x44, 400); |
1066 | |
1067 | // Prepare the responses of the anticollision phase |
1068 | // there will be not enough time to do this at the moment the reader sends it REQA |
1069 | |
1070 | // Answer to request |
1071 | CodeIso14443aAsTag(response1, sizeof(response1)); |
1072 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; |
1073 | |
1074 | // Send our UID (cascade 1) |
1075 | CodeIso14443aAsTag(response2, sizeof(response2)); |
1076 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; |
1077 | |
1078 | // Answer to select (cascade1) |
1079 | CodeIso14443aAsTag(response3, sizeof(response3)); |
1080 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; |
1081 | |
1082 | // Send the cascade 2 2nd part of the uid |
1083 | CodeIso14443aAsTag(response2a, sizeof(response2a)); |
1084 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; |
1085 | |
1086 | // Answer to select (cascade 2) |
1087 | CodeIso14443aAsTag(response3a, sizeof(response3a)); |
1088 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; |
1089 | |
1090 | // Strange answer is an example of rare message size (3 bits) |
1091 | CodeStrangeAnswer(); |
1092 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; |
1093 | |
1094 | // Authentication answer (random nonce) |
1095 | CodeIso14443aAsTag(response5, sizeof(response5)); |
1096 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; |
1097 | |
1098 | // We need to listen to the high-frequency, peak-detected path. |
1099 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1100 | FpgaSetupSsc(); |
1101 | |
1102 | cmdsRecvd = 0; |
1103 | |
1104 | LED_A_ON(); |
1105 | for(;;) { |
1106 | |
1107 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { |
1108 | DbpString("button press"); |
1109 | break; |
1110 | } |
1111 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated |
1112 | // Okay, look at the command now. |
1113 | lastorder = order; |
1114 | i = 1; // first byte transmitted |
1115 | if(receivedCmd[0] == 0x26) { |
1116 | // Received a REQUEST |
1117 | resp = resp1; respLen = resp1Len; order = 1; |
1118 | //DbpString("Hello request from reader:"); |
1119 | } else if(receivedCmd[0] == 0x52) { |
1120 | // Received a WAKEUP |
1121 | resp = resp1; respLen = resp1Len; order = 6; |
1122 | // //DbpString("Wakeup request from reader:"); |
1123 | |
1124 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision |
1125 | // Received request for UID (cascade 1) |
1126 | resp = resp2; respLen = resp2Len; order = 2; |
1127 | // DbpString("UID (cascade 1) request from reader:"); |
1128 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1129 | |
1130 | |
1131 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision |
1132 | // Received request for UID (cascade 2) |
1133 | resp = resp2a; respLen = resp2aLen; order = 20; |
1134 | // DbpString("UID (cascade 2) request from reader:"); |
1135 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1136 | |
1137 | |
1138 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select |
1139 | // Received a SELECT |
1140 | resp = resp3; respLen = resp3Len; order = 3; |
1141 | // DbpString("Select (cascade 1) request from reader:"); |
1142 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1143 | |
1144 | |
1145 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select |
1146 | // Received a SELECT |
1147 | resp = resp3a; respLen = resp3aLen; order = 30; |
1148 | // DbpString("Select (cascade 2) request from reader:"); |
1149 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1150 | |
1151 | |
1152 | } else if(receivedCmd[0] == 0x30) { |
1153 | // Received a READ |
1154 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing |
1155 | Dbprintf("Read request from reader: %x %x %x", |
1156 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1157 | |
1158 | |
1159 | } else if(receivedCmd[0] == 0x50) { |
1160 | // Received a HALT |
1161 | resp = resp1; respLen = 0; order = 5; // Do nothing |
1162 | DbpString("Reader requested we HALT!:"); |
1163 | |
1164 | } else if(receivedCmd[0] == 0x60) { |
1165 | // Received an authentication request |
1166 | resp = resp5; respLen = resp5Len; order = 7; |
1167 | Dbprintf("Authenticate request from reader: %x %x %x", |
1168 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1169 | |
1170 | } else if(receivedCmd[0] == 0xE0) { |
1171 | // Received a RATS request |
1172 | resp = resp1; respLen = 0;order = 70; |
1173 | Dbprintf("RATS request from reader: %x %x %x", |
1174 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1175 | } else { |
1176 | // Never seen this command before |
1177 | Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x", |
1178 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
1179 | receivedCmd[3], receivedCmd[3], receivedCmd[4], |
1180 | receivedCmd[5], receivedCmd[6], receivedCmd[7]); |
1181 | // Do not respond |
1182 | resp = resp1; respLen = 0; order = 0; |
1183 | } |
1184 | |
1185 | // Count number of wakeups received after a halt |
1186 | if(order == 6 && lastorder == 5) { happened++; } |
1187 | |
1188 | // Count number of other messages after a halt |
1189 | if(order != 6 && lastorder == 5) { happened2++; } |
1190 | |
1191 | // Look at last parity bit to determine timing of answer |
1192 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { |
1193 | // 1236, so correction bit needed |
1194 | i = 0; |
1195 | } |
1196 | |
1197 | memset(receivedCmd, 0x44, 32); |
1198 | |
1199 | if(cmdsRecvd > 999) { |
1200 | DbpString("1000 commands later..."); |
1201 | break; |
1202 | } |
1203 | else { |
1204 | cmdsRecvd++; |
1205 | } |
1206 | |
1207 | if(respLen <= 0) continue; |
1208 | |
1209 | // Modulate Manchester |
1210 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); |
1211 | AT91C_BASE_SSC->SSC_THR = 0x00; |
1212 | FpgaSetupSsc(); |
1213 | |
1214 | // ### Transmit the response ### |
1215 | u = 0; |
1216 | b = 0x00; |
1217 | fdt_indicator = FALSE; |
1218 | for(;;) { |
1219 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1220 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1221 | (void)b; |
1222 | } |
1223 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1224 | if(i > respLen) { |
1225 | b = 0x00; |
1226 | u++; |
1227 | } else { |
1228 | b = resp[i]; |
1229 | i++; |
1230 | } |
1231 | AT91C_BASE_SSC->SSC_THR = b; |
1232 | |
1233 | if(u > 4) { |
1234 | break; |
1235 | } |
1236 | } |
1237 | if(BUTTON_PRESS()) { |
1238 | break; |
1239 | } |
1240 | } |
1241 | |
1242 | } |
1243 | |
1244 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); |
1245 | LED_A_OFF(); |
1246 | } |
1247 | |
1248 | //----------------------------------------------------------------------------- |
1249 | // Transmit the command (to the tag) that was placed in ToSend[]. |
1250 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1251 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) |
15c4dc5a |
1252 | { |
1253 | int c; |
e30c654b |
1254 | |
15c4dc5a |
1255 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b |
1256 | |
15c4dc5a |
1257 | if (wait) |
1258 | if(*wait < 10) |
1259 | *wait = 10; |
e30c654b |
1260 | |
15c4dc5a |
1261 | for(c = 0; c < *wait;) { |
1262 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1263 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! |
1264 | c++; |
1265 | } |
1266 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1267 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1268 | (void)r; |
1269 | } |
1270 | WDT_HIT(); |
1271 | } |
e30c654b |
1272 | |
15c4dc5a |
1273 | c = 0; |
1274 | for(;;) { |
1275 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1276 | AT91C_BASE_SSC->SSC_THR = cmd[c]; |
1277 | c++; |
1278 | if(c >= len) { |
1279 | break; |
1280 | } |
1281 | } |
1282 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1283 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1284 | (void)r; |
1285 | } |
1286 | WDT_HIT(); |
1287 | } |
1288 | if (samples) *samples = (c + *wait) << 3; |
1289 | } |
1290 | |
1291 | //----------------------------------------------------------------------------- |
1292 | // To generate an arbitrary stream from reader |
1293 | // |
1294 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1295 | void ArbitraryFromReader(const uint8_t *cmd, int parity, int len) |
15c4dc5a |
1296 | { |
1297 | int i; |
1298 | int j; |
1299 | int last; |
f7e3ed82 |
1300 | uint8_t b; |
15c4dc5a |
1301 | |
1302 | ToSendReset(); |
1303 | |
1304 | // Start of Communication (Seq. Z) |
1305 | Sequence(SEC_Z); |
1306 | last = 0; |
1307 | |
1308 | for(i = 0; i < len; i++) { |
1309 | // Data bits |
1310 | b = cmd[i]; |
1311 | for(j = 0; j < 8; j++) { |
1312 | if(b & 1) { |
1313 | // Sequence X |
1314 | Sequence(SEC_X); |
1315 | last = 1; |
1316 | } else { |
1317 | if(last == 0) { |
1318 | // Sequence Z |
1319 | Sequence(SEC_Z); |
1320 | } |
1321 | else { |
1322 | // Sequence Y |
1323 | Sequence(SEC_Y); |
1324 | last = 0; |
1325 | } |
1326 | } |
1327 | b >>= 1; |
1328 | |
1329 | } |
1330 | |
1331 | // Predefined parity bit, the flipper flips when needed, because of flips in byte sent |
1332 | if(((parity >> (len - i - 1)) & 1)) { |
1333 | // Sequence X |
1334 | Sequence(SEC_X); |
1335 | last = 1; |
1336 | } else { |
1337 | if(last == 0) { |
1338 | // Sequence Z |
1339 | Sequence(SEC_Z); |
1340 | } |
1341 | else { |
1342 | // Sequence Y |
1343 | Sequence(SEC_Y); |
1344 | last = 0; |
1345 | } |
1346 | } |
1347 | } |
1348 | |
1349 | // End of Communication |
1350 | if(last == 0) { |
1351 | // Sequence Z |
1352 | Sequence(SEC_Z); |
1353 | } |
1354 | else { |
1355 | // Sequence Y |
1356 | Sequence(SEC_Y); |
1357 | last = 0; |
1358 | } |
1359 | // Sequence Y |
1360 | Sequence(SEC_Y); |
1361 | |
1362 | // Just to be sure! |
1363 | Sequence(SEC_Y); |
1364 | Sequence(SEC_Y); |
1365 | Sequence(SEC_Y); |
1366 | |
1367 | // Convert from last character reference to length |
1368 | ToSendMax++; |
1369 | } |
1370 | |
1371 | //----------------------------------------------------------------------------- |
1372 | // Code a 7-bit command without parity bit |
1373 | // This is especially for 0x26 and 0x52 (REQA and WUPA) |
1374 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1375 | void ShortFrameFromReader(const uint8_t bt) |
15c4dc5a |
1376 | { |
1377 | int j; |
1378 | int last; |
f7e3ed82 |
1379 | uint8_t b; |
15c4dc5a |
1380 | |
1381 | ToSendReset(); |
1382 | |
1383 | // Start of Communication (Seq. Z) |
1384 | Sequence(SEC_Z); |
1385 | last = 0; |
1386 | |
1387 | b = bt; |
1388 | for(j = 0; j < 7; j++) { |
1389 | if(b & 1) { |
1390 | // Sequence X |
1391 | Sequence(SEC_X); |
1392 | last = 1; |
1393 | } else { |
1394 | if(last == 0) { |
1395 | // Sequence Z |
1396 | Sequence(SEC_Z); |
1397 | } |
1398 | else { |
1399 | // Sequence Y |
1400 | Sequence(SEC_Y); |
1401 | last = 0; |
1402 | } |
1403 | } |
1404 | b >>= 1; |
1405 | } |
1406 | |
1407 | // End of Communication |
1408 | if(last == 0) { |
1409 | // Sequence Z |
1410 | Sequence(SEC_Z); |
1411 | } |
1412 | else { |
1413 | // Sequence Y |
1414 | Sequence(SEC_Y); |
1415 | last = 0; |
1416 | } |
1417 | // Sequence Y |
1418 | Sequence(SEC_Y); |
1419 | |
1420 | // Just to be sure! |
1421 | Sequence(SEC_Y); |
1422 | Sequence(SEC_Y); |
1423 | Sequence(SEC_Y); |
1424 | |
1425 | // Convert from last character reference to length |
1426 | ToSendMax++; |
1427 | } |
1428 | |
1429 | //----------------------------------------------------------------------------- |
1430 | // Prepare reader command to send to FPGA |
e30c654b |
1431 | // |
15c4dc5a |
1432 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1433 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) |
15c4dc5a |
1434 | { |
1435 | int i, j; |
1436 | int last; |
f7e3ed82 |
1437 | uint8_t b; |
e30c654b |
1438 | |
15c4dc5a |
1439 | ToSendReset(); |
e30c654b |
1440 | |
15c4dc5a |
1441 | // Start of Communication (Seq. Z) |
1442 | Sequence(SEC_Z); |
1443 | last = 0; |
e30c654b |
1444 | |
15c4dc5a |
1445 | // Generate send structure for the data bits |
1446 | for (i = 0; i < len; i++) { |
1447 | // Get the current byte to send |
1448 | b = cmd[i]; |
e30c654b |
1449 | |
15c4dc5a |
1450 | for (j = 0; j < 8; j++) { |
1451 | if (b & 1) { |
1452 | // Sequence X |
1453 | Sequence(SEC_X); |
1454 | last = 1; |
1455 | } else { |
1456 | if (last == 0) { |
1457 | // Sequence Z |
1458 | Sequence(SEC_Z); |
1459 | } else { |
1460 | // Sequence Y |
1461 | Sequence(SEC_Y); |
1462 | last = 0; |
1463 | } |
1464 | } |
1465 | b >>= 1; |
1466 | } |
e30c654b |
1467 | |
15c4dc5a |
1468 | // Get the parity bit |
1469 | if ((dwParity >> i) & 0x01) { |
1470 | // Sequence X |
1471 | Sequence(SEC_X); |
1472 | last = 1; |
1473 | } else { |
1474 | if (last == 0) { |
1475 | // Sequence Z |
1476 | Sequence(SEC_Z); |
1477 | } else { |
1478 | // Sequence Y |
1479 | Sequence(SEC_Y); |
1480 | last = 0; |
1481 | } |
1482 | } |
1483 | } |
e30c654b |
1484 | |
15c4dc5a |
1485 | // End of Communication |
1486 | if (last == 0) { |
1487 | // Sequence Z |
1488 | Sequence(SEC_Z); |
1489 | } else { |
1490 | // Sequence Y |
1491 | Sequence(SEC_Y); |
1492 | last = 0; |
1493 | } |
1494 | // Sequence Y |
1495 | Sequence(SEC_Y); |
e30c654b |
1496 | |
15c4dc5a |
1497 | // Just to be sure! |
1498 | Sequence(SEC_Y); |
1499 | Sequence(SEC_Y); |
1500 | Sequence(SEC_Y); |
e30c654b |
1501 | |
15c4dc5a |
1502 | // Convert from last character reference to length |
1503 | ToSendMax++; |
1504 | } |
1505 | |
1506 | //----------------------------------------------------------------------------- |
1507 | // Wait a certain time for tag response |
1508 | // If a response is captured return TRUE |
1509 | // If it takes to long return FALSE |
1510 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1511 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer |
15c4dc5a |
1512 | { |
1513 | // buffer needs to be 512 bytes |
1514 | int c; |
1515 | |
1516 | // Set FPGA mode to "reader listen mode", no modulation (listen |
1517 | // only, since we are receiving, not transmitting). |
1518 | // Signal field is on with the appropriate LED |
1519 | LED_D_ON(); |
1520 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); |
1521 | |
1522 | // Now get the answer from the card |
1523 | Demod.output = receivedResponse; |
1524 | Demod.len = 0; |
1525 | Demod.state = DEMOD_UNSYNCD; |
1526 | |
f7e3ed82 |
1527 | uint8_t b; |
15c4dc5a |
1528 | if (elapsed) *elapsed = 0; |
1529 | |
1530 | c = 0; |
1531 | for(;;) { |
1532 | WDT_HIT(); |
1533 | |
1534 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1535 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! |
1536 | if (elapsed) (*elapsed)++; |
1537 | } |
1538 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1539 | if(c < 512) { c++; } else { return FALSE; } |
f7e3ed82 |
1540 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1541 | if(ManchesterDecoding((b & 0xf0) >> 4)) { |
1542 | *samples = ((c - 1) << 3) + 4; |
1543 | return TRUE; |
1544 | } |
1545 | if(ManchesterDecoding(b & 0x0f)) { |
1546 | *samples = c << 3; |
1547 | return TRUE; |
1548 | } |
1549 | } |
1550 | } |
1551 | } |
1552 | |
f7e3ed82 |
1553 | void ReaderTransmitShort(const uint8_t* bt) |
15c4dc5a |
1554 | { |
1555 | int wait = 0; |
1556 | int samples = 0; |
1557 | |
1558 | ShortFrameFromReader(*bt); |
e30c654b |
1559 | |
15c4dc5a |
1560 | // Select the card |
e30c654b |
1561 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); |
1562 | |
15c4dc5a |
1563 | // Store reader command in buffer |
1564 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); |
1565 | } |
1566 | |
f7e3ed82 |
1567 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) |
15c4dc5a |
1568 | { |
1569 | int wait = 0; |
1570 | int samples = 0; |
e30c654b |
1571 | |
15c4dc5a |
1572 | // This is tied to other size changes |
f7e3ed82 |
1573 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; |
15c4dc5a |
1574 | CodeIso14443aAsReaderPar(frame,len,par); |
e30c654b |
1575 | |
15c4dc5a |
1576 | // Select the card |
e30c654b |
1577 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); |
1578 | |
15c4dc5a |
1579 | // Store reader command in buffer |
1580 | if (tracing) LogTrace(frame,len,0,par,TRUE); |
1581 | } |
1582 | |
1583 | |
f7e3ed82 |
1584 | void ReaderTransmit(uint8_t* frame, int len) |
15c4dc5a |
1585 | { |
1586 | // Generate parity and redirect |
1587 | ReaderTransmitPar(frame,len,GetParity(frame,len)); |
1588 | } |
1589 | |
f7e3ed82 |
1590 | int ReaderReceive(uint8_t* receivedAnswer) |
15c4dc5a |
1591 | { |
1592 | int samples = 0; |
1593 | if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; |
1594 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); |
1595 | return TRUE; |
1596 | } |
1597 | |
1598 | //----------------------------------------------------------------------------- |
1599 | // Read an ISO 14443a tag. Send out commands and store answers. |
1600 | // |
1601 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1602 | void ReaderIso14443a(uint32_t parameter) |
15c4dc5a |
1603 | { |
1604 | // Anticollision |
f7e3ed82 |
1605 | uint8_t wupa[] = { 0x52 }; |
1606 | uint8_t sel_all[] = { 0x93,0x20 }; |
1607 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
1608 | uint8_t sel_all_c2[] = { 0x95,0x20 }; |
1609 | uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
15c4dc5a |
1610 | |
1611 | // Mifare AUTH |
f7e3ed82 |
1612 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; |
1613 | // uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; |
e30c654b |
1614 | |
f7e3ed82 |
1615 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
15c4dc5a |
1616 | traceLen = 0; |
1617 | |
1618 | // Setup SSC |
1619 | FpgaSetupSsc(); |
1620 | |
1621 | // Start from off (no field generated) |
1622 | // Signal field is off with the appropriate LED |
1623 | LED_D_OFF(); |
1624 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1625 | SpinDelay(200); |
1626 | |
1627 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1628 | FpgaSetupSsc(); |
1629 | |
1630 | // Now give it time to spin up. |
1631 | // Signal field is on with the appropriate LED |
1632 | LED_D_ON(); |
1633 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
1634 | SpinDelay(200); |
1635 | |
1636 | LED_A_ON(); |
1637 | LED_B_OFF(); |
1638 | LED_C_OFF(); |
1639 | |
1640 | while(traceLen < TRACE_LENGTH) |
1641 | { |
1642 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
1643 | ReaderTransmitShort(wupa); |
e30c654b |
1644 | |
15c4dc5a |
1645 | // Test if the action was cancelled |
1646 | if(BUTTON_PRESS()) { |
1647 | break; |
1648 | } |
e30c654b |
1649 | |
15c4dc5a |
1650 | // Receive the ATQA |
1651 | if (!ReaderReceive(receivedAnswer)) continue; |
1652 | |
1653 | // Transmit SELECT_ALL |
1654 | ReaderTransmit(sel_all,sizeof(sel_all)); |
1655 | |
1656 | // Receive the UID |
1657 | if (!ReaderReceive(receivedAnswer)) continue; |
e30c654b |
1658 | |
15c4dc5a |
1659 | // Construct SELECT UID command |
1660 | // First copy the 5 bytes (Mifare Classic) after the 93 70 |
1661 | memcpy(sel_uid+2,receivedAnswer,5); |
1662 | // Secondly compute the two CRC bytes at the end |
1663 | AppendCrc14443a(sel_uid,7); |
1664 | |
1665 | // Transmit SELECT_UID |
1666 | ReaderTransmit(sel_uid,sizeof(sel_uid)); |
e30c654b |
1667 | |
15c4dc5a |
1668 | // Receive the SAK |
1669 | if (!ReaderReceive(receivedAnswer)) continue; |
1670 | |
1671 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in |
1672 | // which case we need to make a cascade 2 request and select - this is a long UID |
e30c654b |
1673 | // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. |
15c4dc5a |
1674 | if (receivedAnswer[0] &= 0x04) |
1675 | { |
1676 | // Transmit SELECT_ALL |
1677 | ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); |
e30c654b |
1678 | |
15c4dc5a |
1679 | // Receive the UID |
1680 | if (!ReaderReceive(receivedAnswer)) continue; |
e30c654b |
1681 | |
15c4dc5a |
1682 | // Construct SELECT UID command |
1683 | memcpy(sel_uid_c2+2,receivedAnswer,5); |
1684 | // Secondly compute the two CRC bytes at the end |
1685 | AppendCrc14443a(sel_uid_c2,7); |
e30c654b |
1686 | |
15c4dc5a |
1687 | // Transmit SELECT_UID |
1688 | ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); |
e30c654b |
1689 | |
15c4dc5a |
1690 | // Receive the SAK |
1691 | if (!ReaderReceive(receivedAnswer)) continue; |
1692 | } |
1693 | |
1694 | // Transmit MIFARE_CLASSIC_AUTH |
1695 | ReaderTransmit(mf_auth,sizeof(mf_auth)); |
1696 | |
1697 | // Receive the (16 bit) "random" nonce |
1698 | if (!ReaderReceive(receivedAnswer)) continue; |
1699 | } |
1700 | |
1701 | // Thats it... |
1702 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1703 | LEDsoff(); |
1704 | Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC); |
1705 | DbpString("ready.."); |
1706 | } |
1707 | |
1708 | //----------------------------------------------------------------------------- |
1709 | // Read an ISO 14443a tag. Send out commands and store answers. |
1710 | // |
1711 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1712 | void ReaderMifare(uint32_t parameter) |
15c4dc5a |
1713 | { |
e30c654b |
1714 | |
15c4dc5a |
1715 | // Anticollision |
f7e3ed82 |
1716 | uint8_t wupa[] = { 0x52 }; |
1717 | uint8_t sel_all[] = { 0x93,0x20 }; |
1718 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
e30c654b |
1719 | |
15c4dc5a |
1720 | // Mifare AUTH |
f7e3ed82 |
1721 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; |
1722 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
e30c654b |
1723 | |
f7e3ed82 |
1724 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
15c4dc5a |
1725 | traceLen = 0; |
1726 | tracing = false; |
e30c654b |
1727 | |
15c4dc5a |
1728 | // Setup SSC |
1729 | FpgaSetupSsc(); |
e30c654b |
1730 | |
15c4dc5a |
1731 | // Start from off (no field generated) |
1732 | // Signal field is off with the appropriate LED |
1733 | LED_D_OFF(); |
1734 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1735 | SpinDelay(200); |
e30c654b |
1736 | |
15c4dc5a |
1737 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1738 | FpgaSetupSsc(); |
e30c654b |
1739 | |
15c4dc5a |
1740 | // Now give it time to spin up. |
1741 | // Signal field is on with the appropriate LED |
1742 | LED_D_ON(); |
1743 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
1744 | SpinDelay(200); |
e30c654b |
1745 | |
15c4dc5a |
1746 | LED_A_ON(); |
1747 | LED_B_OFF(); |
1748 | LED_C_OFF(); |
e30c654b |
1749 | |
15c4dc5a |
1750 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
1751 | ReaderTransmitShort(wupa); |
1752 | // Receive the ATQA |
1753 | ReaderReceive(receivedAnswer); |
1754 | // Transmit SELECT_ALL |
1755 | ReaderTransmit(sel_all,sizeof(sel_all)); |
1756 | // Receive the UID |
1757 | ReaderReceive(receivedAnswer); |
1758 | // Construct SELECT UID command |
1759 | // First copy the 5 bytes (Mifare Classic) after the 93 70 |
1760 | memcpy(sel_uid+2,receivedAnswer,5); |
1761 | // Secondly compute the two CRC bytes at the end |
1762 | AppendCrc14443a(sel_uid,7); |
e30c654b |
1763 | |
15c4dc5a |
1764 | byte_t nt_diff = 0; |
1765 | LED_A_OFF(); |
1766 | byte_t par = 0; |
1767 | byte_t par_mask = 0xff; |
1768 | byte_t par_low = 0; |
f7e3ed82 |
1769 | int led_on = TRUE; |
e30c654b |
1770 | |
15c4dc5a |
1771 | tracing = FALSE; |
1772 | byte_t nt[4]; |
1773 | byte_t nt_attacked[4]; |
1774 | byte_t par_list[8]; |
1775 | byte_t ks_list[8]; |
1776 | num_to_bytes(parameter,4,nt_attacked); |
1777 | |
1778 | while(TRUE) |
1779 | { |
1780 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1781 | SpinDelay(200); |
1782 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b |
1783 | |
15c4dc5a |
1784 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
1785 | ReaderTransmitShort(wupa); |
e30c654b |
1786 | |
15c4dc5a |
1787 | // Test if the action was cancelled |
1788 | if(BUTTON_PRESS()) { |
1789 | break; |
1790 | } |
e30c654b |
1791 | |
15c4dc5a |
1792 | // Receive the ATQA |
1793 | if (!ReaderReceive(receivedAnswer)) continue; |
e30c654b |
1794 | |
15c4dc5a |
1795 | // Transmit SELECT_ALL |
1796 | ReaderTransmit(sel_all,sizeof(sel_all)); |
e30c654b |
1797 | |
15c4dc5a |
1798 | // Receive the UID |
1799 | if (!ReaderReceive(receivedAnswer)) continue; |
e30c654b |
1800 | |
15c4dc5a |
1801 | // Transmit SELECT_UID |
1802 | ReaderTransmit(sel_uid,sizeof(sel_uid)); |
e30c654b |
1803 | |
15c4dc5a |
1804 | // Receive the SAK |
1805 | if (!ReaderReceive(receivedAnswer)) continue; |
e30c654b |
1806 | |
15c4dc5a |
1807 | // Transmit MIFARE_CLASSIC_AUTH |
1808 | ReaderTransmit(mf_auth,sizeof(mf_auth)); |
e30c654b |
1809 | |
15c4dc5a |
1810 | // Receive the (16 bit) "random" nonce |
1811 | if (!ReaderReceive(receivedAnswer)) continue; |
1812 | memcpy(nt,receivedAnswer,4); |
1813 | |
1814 | // Transmit reader nonce and reader answer |
1815 | ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par); |
e30c654b |
1816 | |
15c4dc5a |
1817 | // Receive 4 bit answer |
1818 | if (ReaderReceive(receivedAnswer)) |
1819 | { |
e30c654b |
1820 | if (nt_diff == 0) |
15c4dc5a |
1821 | { |
1822 | LED_A_ON(); |
1823 | memcpy(nt_attacked,nt,4); |
1824 | par_mask = 0xf8; |
1825 | par_low = par & 0x07; |
1826 | } |
1827 | |
1828 | if (memcmp(nt,nt_attacked,4) != 0) continue; |
1829 | |
1830 | led_on = !led_on; |
1831 | if(led_on) LED_B_ON(); else LED_B_OFF(); |
1832 | par_list[nt_diff] = par; |
1833 | ks_list[nt_diff] = receivedAnswer[0]^0x05; |
e30c654b |
1834 | |
15c4dc5a |
1835 | // Test if the information is complete |
1836 | if (nt_diff == 0x07) break; |
e30c654b |
1837 | |
15c4dc5a |
1838 | nt_diff = (nt_diff+1) & 0x07; |
1839 | mf_nr_ar[3] = nt_diff << 5; |
1840 | par = par_low; |
1841 | } else { |
1842 | if (nt_diff == 0) |
1843 | { |
1844 | par++; |
1845 | } else { |
1846 | par = (((par>>3)+1) << 3) | par_low; |
1847 | } |
1848 | } |
1849 | } |
e30c654b |
1850 | |
15c4dc5a |
1851 | LogTraceInfo(sel_uid+2,4); |
1852 | LogTraceInfo(nt,4); |
1853 | LogTraceInfo(par_list,8); |
1854 | LogTraceInfo(ks_list,8); |
e30c654b |
1855 | |
15c4dc5a |
1856 | // Thats it... |
1857 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1858 | LEDsoff(); |
1859 | tracing = TRUE; |
1860 | } |