]> git.zerfleddert.de Git - proxmark3-svn/blame - fpga/hi_read_rx_xcorr.v
Emv scan via contact interface (#789)
[proxmark3-svn] / fpga / hi_read_rx_xcorr.v
CommitLineData
ba06a4b6 1//-----------------------------------------------------------------------------
2//
3// Jonathan Westhues, April 2006
4//-----------------------------------------------------------------------------
5
6module hi_read_rx_xcorr(
7 pck0, ck_1356meg, ck_1356megb,
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
9 adc_d, adc_clk,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
11 cross_hi, cross_lo,
12 dbg,
d9de20fa 13 xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude
ba06a4b6 14);
15 input pck0, ck_1356meg, ck_1356megb;
16 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
17 input [7:0] adc_d;
18 output adc_clk;
19 input ssp_dout;
20 output ssp_frame, ssp_din, ssp_clk;
21 input cross_hi, cross_lo;
22 output dbg;
d9de20fa 23 input xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude;
ba06a4b6 24
25// Carrier is steady on through this, unless we're snooping.
26assign pwr_hi = ck_1356megb & (~snoop);
27assign pwr_oe1 = 1'b0;
ba06a4b6 28assign pwr_oe3 = 1'b0;
29assign pwr_oe4 = 1'b0;
315e18e6 30// Unused.
31assign pwr_lo = 1'b0;
32assign pwr_oe2 = 1'b0;
33
34assign adc_clk = ck_1356megb; // sample frequency is 13,56 MHz
ba06a4b6 35
ba06a4b6 36// When we're a reader, we just need to do the BPSK demod; but when we're an
37// eavesdropper, we also need to pick out the commands sent by the reader,
38// using AM. Do this the same way that we do it for the simulated tag.
51d4f6f1 39reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
ba06a4b6 40reg [11:0] has_been_low_for;
41always @(negedge adc_clk)
42begin
43 if(& adc_d[7:0]) after_hysteresis <= 1'b1;
44 else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
45
46 if(after_hysteresis)
47 begin
48 has_been_low_for <= 7'b0;
49 end
50 else
51 begin
52 if(has_been_low_for == 12'd4095)
53 begin
54 has_been_low_for <= 12'd0;
55 after_hysteresis <= 1'b1;
56 end
57 else
58 has_been_low_for <= has_been_low_for + 1;
59 end
60end
61
315e18e6 62
63// Let us report a correlation every 64 samples. I.e.
64// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
65// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
66// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
67// We need a 6-bit counter for the timing.
ba06a4b6 68reg [5:0] corr_i_cnt;
315e18e6 69always @(negedge adc_clk)
70begin
71 corr_i_cnt <= corr_i_cnt + 1;
72end
73
74// And a couple of registers in which to accumulate the correlations. From the 64 samples
75// we would add at most 32 times the difference between unmodulated and modulated signal. It should
d372569b 76// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
77// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
315e18e6 78// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
79// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits.
80// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
81reg signed [13:0] corr_i_accum;
82reg signed [13:0] corr_q_accum;
d372569b 83// we will report maximum 8 significant bits
ba06a4b6 84reg signed [7:0] corr_i_out;
85reg signed [7:0] corr_q_out;
d9de20fa 86
51d4f6f1 87// clock and frame signal for communication to ARM
88reg ssp_clk;
89reg ssp_frame;
90
91
d9de20fa 92
93// the amplitude of the subcarrier is sqrt(ci^2 + cq^2).
94// approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
95reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq, min_ci_cq;
96
97
98always @(corr_i_accum or corr_q_accum)
99begin
100 if (corr_i_accum[13] == 1'b0)
101 abs_ci <= corr_i_accum;
102 else
103 abs_ci <= -corr_i_accum;
104
105 if (corr_q_accum[13] == 1'b0)
106 abs_cq <= corr_q_accum;
107 else
108 abs_cq <= -corr_q_accum;
109
110 if (abs_ci > abs_cq)
111 begin
112 max_ci_cq <= abs_ci;
113 min_ci_cq <= abs_cq;
114 end
115 else
116 begin
117 max_ci_cq <= abs_cq;
118 min_ci_cq <= abs_ci;
119 end
120
121 corr_amplitude <= max_ci_cq + min_ci_cq/2;
122
123end
124
125
315e18e6 126// The subcarrier reference signals
127reg subcarrier_I;
128reg subcarrier_Q;
ba06a4b6 129
315e18e6 130always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq)
131begin
132 if (xcorr_is_848 & ~xcorr_quarter_freq) // 848 kHz
133 begin
134 subcarrier_I = ~corr_i_cnt[3];
135 subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
136 end
137 else if (xcorr_is_848 & xcorr_quarter_freq) // 212 kHz
138 begin
139 subcarrier_I = ~corr_i_cnt[5];
140 subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
141 end
142 else
143 begin // 424 kHz
144 subcarrier_I = ~corr_i_cnt[4];
145 subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
146 end
147end
d9de20fa 148
149
ba06a4b6 150// ADC data appears on the rising edge, so sample it on the falling edge
151always @(negedge adc_clk)
152begin
153 // These are the correlators: we correlate against in-phase and quadrature
d9de20fa 154 // versions of our reference signal, and keep the (signed) results or the
155 // resulting amplitude to send out later over the SSP.
705bfa10 156 if(corr_i_cnt == 6'd0)
ba06a4b6 157 begin
158 if(snoop)
159 begin
d9de20fa 160 if (hi_read_rx_xcorr_amplitude)
161 begin
162 // send amplitude plus 2 bits reader signal
163 corr_i_out <= corr_amplitude[13:6];
164 corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev};
165 end
166 else
167 begin
168 // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal
169 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
170 corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
171 else // truncate to maximum value
172 if (corr_i_accum[13] == 1'b0)
173 corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
174 else
175 corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
176 // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal
177 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
178 corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
179 else // truncate to maximum value
180 if (corr_q_accum[13] == 1'b0)
181 corr_q_out <= {7'b0111111, after_hysteresis_prev};
182 else
183 corr_q_out <= {7'b1000000, after_hysteresis_prev};
184 end
ba06a4b6 185 end
186 else
187 begin
d9de20fa 188 if (hi_read_rx_xcorr_amplitude)
189 begin
190 // send amplitude
191 corr_i_out <= {2'b00, corr_amplitude[13:8]};
192 corr_q_out <= corr_amplitude[7:0];
193 end
194 else
195 begin
196 // Send 8 bits of in phase tag signal
197 if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
198 corr_i_out <= corr_i_accum[11:4];
199 else // truncate to maximum value
200 if (corr_i_accum[13] == 1'b0)
201 corr_i_out <= 8'b01111111;
202 else
203 corr_i_out <= 8'b10000000;
204 // Send 8 bits of quadrature phase tag signal
205 if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
206 corr_q_out <= corr_q_accum[11:4];
207 else // truncate to maximum value
208 if (corr_q_accum[13] == 1'b0)
209 corr_q_out <= 8'b01111111;
210 else
211 corr_q_out <= 8'b10000000;
212 end
ba06a4b6 213 end
d9de20fa 214
215 // for each Q/I pair report two reader signal samples when sniffing. Store the 1st.
216 after_hysteresis_prev_prev <= after_hysteresis;
315e18e6 217 // Initialize next correlation.
218 // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
219 corr_i_accum <= $signed({1'b0,adc_d});
220 corr_q_accum <= $signed({1'b0,adc_d});
ba06a4b6 221 end
222 else
223 begin
315e18e6 224 if (subcarrier_I)
225 corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
ba06a4b6 226 else
315e18e6 227 corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
ba06a4b6 228
315e18e6 229 if (subcarrier_Q)
230 corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
51d4f6f1 231 else
315e18e6 232 corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
ba06a4b6 233 end
234
d9de20fa 235 // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd.
705bfa10 236 if(corr_i_cnt == 6'd32)
ba06a4b6 237 after_hysteresis_prev <= after_hysteresis;
238
239 // Then the result from last time is serialized and send out to the ARM.
240 // We get one report each cycle, and each report is 16 bits, so the
d9de20fa 241 // ssp_clk should be the adc_clk divided by 64/16 = 4.
242 // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz
ba06a4b6 243
244 if(corr_i_cnt[1:0] == 2'b10)
245 ssp_clk <= 1'b0;
246
247 if(corr_i_cnt[1:0] == 2'b00)
248 begin
249 ssp_clk <= 1'b1;
250 // Don't shift if we just loaded new data, obviously.
b535053a 251 if(corr_i_cnt != 6'd0)
ba06a4b6 252 begin
253 corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
254 corr_q_out[7:1] <= corr_q_out[6:0];
255 end
256 end
257
6a5d4e17 258 // set ssp_frame signal for corr_i_cnt = 0..3
259 // (send one frame with 16 Bits)
260 if(corr_i_cnt[5:2] == 4'b0000)
ba06a4b6 261 ssp_frame = 1'b1;
262 else
263 ssp_frame = 1'b0;
264
265end
266
267assign ssp_din = corr_i_out[7];
268
269assign dbg = corr_i_cnt[3];
270
ba06a4b6 271endmodule
Impressum, Datenschutz