]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
FPGA changes (#803)
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
b8e461ff 13#include <stdarg.h>
14
902cb3c0 15#include "usb_cdc.h"
16#include "cmd.h"
e30c654b 17#include "proxmark3.h"
15c4dc5a 18#include "apps.h"
472345da 19#include "fpga.h"
f7e3ed82 20#include "util.h"
9ab7a6c7 21#include "printf.h"
22#include "string.h"
15c4dc5a 23#include "legicrf.h"
1b902aa0 24#include "legicrfsim.h"
b8e461ff 25#include "hitag2.h"
26#include "hitagS.h"
5ea2a248 27#include "iso14443b.h"
d9de20fa 28#include "iso15693.h"
31abe49f 29#include "lfsampling.h"
3000dc4e 30#include "BigBuf.h"
c89274cc 31#include "mifareutil.h"
d10e08ae 32#include "pcf7931.h"
050aa18b 33#include "i2c.h"
fc52fbd4 34#include "hfsnoop.h"
35#include "fpgaloader.h"
15c4dc5a 36#ifdef WITH_LCD
902cb3c0 37 #include "LCD.h"
15c4dc5a 38#endif
43591e64 39
a9104f7e 40static uint32_t hw_capabilities;
15c4dc5a 41
e46fe044 42// Craig Young - 14a stand-alone code
854fdf15 43#ifdef WITH_ISO14443a
e46fe044
CY
44 #include "iso14443a.h"
45#endif
46
15c4dc5a 47//=============================================================================
48// A buffer where we can queue things up to be sent through the FPGA, for
49// any purpose (fake tag, as reader, whatever). We go MSB first, since that
50// is the order in which they go out on the wire.
51//=============================================================================
52
6a1f2d82 53#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
54uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 55int ToSendMax;
56static int ToSendBit;
57struct common_area common_area __attribute__((section(".commonarea")));
58
15c4dc5a 59void ToSendReset(void)
60{
61 ToSendMax = -1;
62 ToSendBit = 8;
63}
64
65void ToSendStuffBit(int b)
66{
67 if(ToSendBit >= 8) {
68 ToSendMax++;
69 ToSend[ToSendMax] = 0;
70 ToSendBit = 0;
71 }
72
73 if(b) {
74 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
75 }
76
77 ToSendBit++;
78
6a1f2d82 79 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 80 ToSendBit = 0;
81 DbpString("ToSendStuffBit overflowed!");
82 }
83}
84
85//=============================================================================
86// Debug print functions, to go out over USB, to the usual PC-side client.
87//=============================================================================
88
89void DbpString(char *str)
90{
9440213d 91 byte_t len = strlen(str);
92 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 93}
94
95#if 0
96void DbpIntegers(int x1, int x2, int x3)
97{
902cb3c0 98 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 99}
100#endif
101
102void Dbprintf(const char *fmt, ...) {
103// should probably limit size here; oh well, let's just use a big buffer
104 char output_string[128];
105 va_list ap;
106
107 va_start(ap, fmt);
108 kvsprintf(fmt, output_string, 10, ap);
109 va_end(ap);
e30c654b 110
15c4dc5a 111 DbpString(output_string);
112}
113
9455b51c 114// prints HEX & ASCII
d19929cb 115void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 116 int l=0,i;
117 char ascii[9];
d19929cb 118
9455b51c 119 while (len>0) {
120 if (len>8) l=8;
121 else l=len;
122
123 memcpy(ascii,d,l);
d19929cb 124 ascii[l]=0;
9455b51c 125
126 // filter safe ascii
d19929cb 127 for (i=0;i<l;i++)
9455b51c 128 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 129
130 if (bAsci) {
131 Dbprintf("%-8s %*D",ascii,l,d," ");
132 } else {
133 Dbprintf("%*D",l,d," ");
134 }
135
9455b51c 136 len-=8;
137 d+=8;
138 }
139}
140
15c4dc5a 141//-----------------------------------------------------------------------------
142// Read an ADC channel and block till it completes, then return the result
143// in ADC units (0 to 1023). Also a routine to average 32 samples and
144// return that.
145//-----------------------------------------------------------------------------
146static int ReadAdc(int ch)
2d51da38 147{
3b692427 148 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
050aa18b 149 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
9b32625c 150 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
3b692427 151 //
152 // The maths are:
153 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
154 //
9b32625c 155 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
15c4dc5a 156
2d51da38
I
157 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
158 AT91C_BASE_ADC->ADC_MR =
9b32625c 159 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
160 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
161 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
3b692427 162
2d51da38
I
163 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
15c4dc5a 165
2d51da38
I
166 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
167
050aa18b 168 return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
15c4dc5a 169}
170
9ca155ba 171int AvgAdc(int ch) // was static - merlok
15c4dc5a 172{
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181}
182
050aa18b 183static int AvgAdc_Voltage_HF(void)
184{
185 int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
186
187 AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
188 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
189 if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
190 AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
191 if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
192 return AvgAdc_Voltage_High;
193 }
194 }
195 return AvgAdc_Voltage_Low;
196}
197
198static int AvgAdc_Voltage_LF(void)
199{
200 return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
201}
202
fdcfbdcc 203void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
15c4dc5a 204{
9b32625c 205 int i, adcval = 0, peak = 0;
15c4dc5a 206
207/*
208 * Sweeps the useful LF range of the proxmark from
209 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
210 * read the voltage in the antenna, the result left
211 * in the buffer is a graph which should clearly show
212 * the resonating frequency of your LF antenna
213 * ( hopefully around 95 if it is tuned to 125kHz!)
214 */
fdcfbdcc
RAB
215
216 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2d51da38
I
218 SpinDelay(50);
219
2bdd68c3 220 for (i=255; i>=19; i--) {
fdcfbdcc 221 WDT_HIT();
15c4dc5a 222 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
223 SpinDelay(20);
050aa18b 224 adcval = AvgAdc_Voltage_LF();
fdcfbdcc
RAB
225 if (i==95) *vLf125 = adcval; // voltage at 125Khz
226 if (i==89) *vLf134 = adcval; // voltage at 134Khz
15c4dc5a 227
2d51da38 228 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
2bdd68c3 229 if(LF_Results[i] > peak) {
fdcfbdcc 230 *peakv = adcval;
2bdd68c3 231 peak = LF_Results[i];
fdcfbdcc 232 *peakf = i;
9f693930 233 //ptr = i;
15c4dc5a 234 }
235 }
236
2bdd68c3 237 for (i=18; i >= 0; i--) LF_Results[i] = 0;
fdcfbdcc
RAB
238
239 return;
240}
241
242void MeasureAntennaTuningHfOnly(int *vHf)
243{
15c4dc5a 244 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
fdcfbdcc
RAB
245 LED_A_ON();
246 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
5ea2a248 247 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
15c4dc5a 248 SpinDelay(20);
050aa18b 249 *vHf = AvgAdc_Voltage_HF();
fdcfbdcc 250 LED_A_OFF();
fdcfbdcc
RAB
251 return;
252}
253
254void MeasureAntennaTuning(int mode)
255{
256 uint8_t LF_Results[256] = {0};
257 int peakv = 0, peakf = 0;
258 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
259
260 LED_B_ON();
261
262 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
263 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
264 MeasureAntennaTuningHfOnly(&vHf);
265 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
266 } else {
267 if (mode & FLAG_TUNE_LF) {
268 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
269 }
270 if (mode & FLAG_TUNE_HF) {
271 MeasureAntennaTuningHfOnly(&vHf);
272 }
273 }
15c4dc5a 274
d040cb90 275 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
d19929cb 276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 277 LED_B_OFF();
278 return;
15c4dc5a 279}
280
281void MeasureAntennaTuningHf(void)
282{
283 int vHf = 0; // in mV
284
285 DbpString("Measuring HF antenna, press button to exit");
286
3b692427 287 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
288 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
5ea2a248 289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
3b692427 290
15c4dc5a 291 for (;;) {
050aa18b 292 SpinDelay(500);
293 vHf = AvgAdc_Voltage_HF();
e30c654b 294
15c4dc5a 295 Dbprintf("%d mV",vHf);
296 if (BUTTON_PRESS()) break;
297 }
298 DbpString("cancelled");
3b692427 299
300 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
301
15c4dc5a 302}
303
304
15c4dc5a 305void ReadMem(int addr)
306{
f7e3ed82 307 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 308
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
311}
312
313/* osimage version information is linked in */
314extern struct version_information version_information;
315/* bootrom version information is pointed to from _bootphase1_version_pointer */
0fa01ec7 316extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
472345da 317
050aa18b 318
a9104f7e 319void set_hw_capabilities(void)
320{
321 if (I2C_is_available()) {
322 hw_capabilities |= HAS_SMARTCARD_SLOT;
323 }
324
325 if (false) { // TODO: implement a test
326 hw_capabilities |= HAS_EXTRA_FLASH_MEM;
327 }
328}
329
330
15c4dc5a 331void SendVersion(void)
332{
a9104f7e 333 set_hw_capabilities();
334
8e074056 335 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
336 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 337
338 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 339 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
340 * pointer, then use it.
341 */
342 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
343 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
8e074056 344 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 345 } else {
346 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
8e074056 347 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 348 }
e30c654b 349
15c4dc5a 350 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
8e074056 351 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 352
472345da 353 for (int i = 0; i < fpga_bitstream_num; i++) {
354 strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
050aa18b 355 strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
472345da 356 }
050aa18b 357
358 // test availability of SmartCard slot
359 if (I2C_is_available()) {
360 strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
361 } else {
362 strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
363 }
364
e6153040 365 // Send Chip ID and used flash memory
0fa01ec7 366 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
367 uint32_t compressed_data_section_size = common_area.arg1;
a9104f7e 368 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString));
15c4dc5a 369}
370
bfb01844 371// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
372// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
67b7d6fa 373void printUSBSpeed(void)
bfb01844 374{
375 Dbprintf("USB Speed:");
67b7d6fa 376 Dbprintf(" Sending USB packets to client...");
bfb01844 377
67b7d6fa 378 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
bfb01844 379 uint8_t *test_data = BigBuf_get_addr();
67b7d6fa 380 uint32_t end_time;
bfb01844 381
67b7d6fa 382 uint32_t start_time = end_time = GetTickCount();
383 uint32_t bytes_transferred = 0;
384
bfb01844 385 LED_B_ON();
67b7d6fa 386 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
387 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
388 end_time = GetTickCount();
389 bytes_transferred += USB_CMD_DATA_SIZE;
bfb01844 390 }
391 LED_B_OFF();
392
67b7d6fa 393 Dbprintf(" Time elapsed: %dms", end_time - start_time);
394 Dbprintf(" Bytes transferred: %d", bytes_transferred);
395 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
396 1000 * bytes_transferred / (end_time - start_time));
bfb01844 397
398}
399
c89274cc
CY
400/**
401 * Prints runtime information about the PM3.
402**/
67b7d6fa 403void SendStatus(void)
c89274cc
CY
404{
405 BigBuf_print_status();
406 Fpga_print_status();
43591e64 407#ifdef WITH_SMARTCARD
408 I2C_print_status();
409#endif
c89274cc 410 printConfig(); //LF Sampling config
67b7d6fa 411 printUSBSpeed();
c89274cc 412 Dbprintf("Various");
43591e64 413 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
414 Dbprintf(" ToSendMax..........%d", ToSendMax);
415 Dbprintf(" ToSendBit..........%d", ToSendBit);
bfb01844 416
417 cmd_send(CMD_ACK,1,0,0,0,0);
c89274cc 418}
15c4dc5a 419
a2937cea 420#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
15c4dc5a 421
15c4dc5a 422#define OPTS 2
423
86a83668
MHS
424void StandAloneMode()
425{
426 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 427 // Oooh pretty -- notify user we're in elite samy mode now
428 LED(LED_RED, 200);
429 LED(LED_ORANGE, 200);
430 LED(LED_GREEN, 200);
431 LED(LED_ORANGE, 200);
432 LED(LED_RED, 200);
433 LED(LED_ORANGE, 200);
434 LED(LED_GREEN, 200);
435 LED(LED_ORANGE, 200);
436 LED(LED_RED, 200);
437
86a83668
MHS
438}
439
440#endif
441
442
443
444#ifdef WITH_ISO14443a_StandAlone
445void StandAloneMode14a()
446{
447 StandAloneMode();
448 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
449
15c4dc5a 450 int selected = 0;
44964fd1 451 bool playing = false, GotoRecord = false, GotoClone = false;
452 bool cardRead[OPTS] = {false};
86a83668
MHS
453 uint8_t readUID[10] = {0};
454 uint32_t uid_1st[OPTS]={0};
455 uint32_t uid_2nd[OPTS]={0};
c89274cc
CY
456 uint32_t uid_tmp1 = 0;
457 uint32_t uid_tmp2 = 0;
458 iso14a_card_select_t hi14a_card[OPTS];
15c4dc5a 459
15c4dc5a 460 LED(selected + 1, 0);
461
462 for (;;)
463 {
6e82300d 464 usb_poll();
86a83668 465 WDT_HIT();
15c4dc5a 466 SpinDelay(300);
467
44964fd1 468 if (GotoRecord || !cardRead[selected])
15c4dc5a 469 {
44964fd1 470 GotoRecord = false;
15c4dc5a 471 LEDsoff();
472 LED(selected + 1, 0);
473 LED(LED_RED2, 0);
474
475 // record
86a83668 476 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
15c4dc5a 477 /* need this delay to prevent catching some weird data */
478 SpinDelay(500);
86a83668
MHS
479 /* Code for reading from 14a tag */
480 uint8_t uid[10] ={0};
481 uint32_t cuid;
482 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
15c4dc5a 483
86a83668
MHS
484 for ( ; ; )
485 {
486 WDT_HIT();
c89274cc
CY
487 if (BUTTON_PRESS()) {
488 if (cardRead[selected]) {
489 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
490 break;
491 }
492 else if (cardRead[(selected+1)%OPTS]) {
493 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
494 selected = (selected+1)%OPTS;
44964fd1 495 break;
c89274cc
CY
496 }
497 else {
498 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
499 SpinDelay(300);
500 }
501 }
c04a4b60 502 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
86a83668
MHS
503 continue;
504 else
505 {
506 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
507 memcpy(readUID,uid,10*sizeof(uint8_t));
c89274cc 508 uint8_t *dst = (uint8_t *)&uid_tmp1;
86a83668
MHS
509 // Set UID byte order
510 for (int i=0; i<4; i++)
511 dst[i] = uid[3-i];
c89274cc 512 dst = (uint8_t *)&uid_tmp2;
86a83668
MHS
513 for (int i=0; i<4; i++)
514 dst[i] = uid[7-i];
c89274cc
CY
515 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
516 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
517 }
518 else {
519 if (uid_tmp2) {
520 Dbprintf("Bank[%d] received a 7-byte UID",selected);
521 uid_1st[selected] = (uid_tmp1)>>8;
522 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
523 }
524 else {
525 Dbprintf("Bank[%d] received a 4-byte UID",selected);
526 uid_1st[selected] = uid_tmp1;
527 uid_2nd[selected] = uid_tmp2;
528 }
529 break;
530 }
86a83668
MHS
531 }
532 }
c89274cc
CY
533 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
534 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
86a83668
MHS
535 LEDsoff();
536 LED(LED_GREEN, 200);
537 LED(LED_ORANGE, 200);
538 LED(LED_GREEN, 200);
539 LED(LED_ORANGE, 200);
15c4dc5a 540
541 LEDsoff();
542 LED(selected + 1, 0);
15c4dc5a 543
c89274cc 544 // Next state is replay:
44964fd1 545 playing = true;
3fe4ff4f 546
44964fd1 547 cardRead[selected] = true;
86a83668 548 }
c89274cc 549 /* MF Classic UID clone */
44964fd1 550 else if (GotoClone)
3fe4ff4f 551 {
44964fd1 552 GotoClone=false;
c89274cc
CY
553 LEDsoff();
554 LED(selected + 1, 0);
555 LED(LED_ORANGE, 250);
3fe4ff4f 556
3fe4ff4f 557
c89274cc
CY
558 // record
559 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
3fe4ff4f 560
c89274cc
CY
561 // wait for button to be released
562 while(BUTTON_PRESS())
563 {
564 // Delay cloning until card is in place
565 WDT_HIT();
566 }
567 Dbprintf("Starting clone. [Bank: %u]", selected);
568 // need this delay to prevent catching some weird data
569 SpinDelay(500);
570 // Begin clone function here:
571 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
572 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
573 memcpy(c.d.asBytes, data, 16);
574 SendCommand(&c);
575
576 Block read is similar:
577 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
578 We need to imitate that call with blockNo 0 to set a uid.
579
580 The get and set commands are handled in this file:
581 // Work with "magic Chinese" card
582 case CMD_MIFARE_CSETBLOCK:
583 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
584 break;
585 case CMD_MIFARE_CGETBLOCK:
586 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
587 break;
588
589 mfCSetUID provides example logic for UID set workflow:
590 -Read block0 from card in field with MifareCGetBlock()
591 -Configure new values without replacing reserved bytes
592 memcpy(block0, uid, 4); // Copy UID bytes from byte array
593 // Mifare UID BCC
594 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
595 Bytes 5-7 are reserved SAK and ATQA for mifare classic
596 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
597 */
598 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
599 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
600 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
601 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
602 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
44964fd1 603 playing = true;
c89274cc
CY
604 }
605 else {
606 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
607 memcpy(newBlock0,oldBlock0,16);
608 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
609
610 newBlock0[0] = uid_1st[selected]>>24;
611 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
612 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
613 newBlock0[3] = 0xFF & (uid_1st[selected]);
614 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
615 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
616 MifareCSetBlock(0, 0xFF,0, newBlock0);
617 MifareCGetBlock(0x3F, 1, 0, testBlock0);
618 if (memcmp(testBlock0,newBlock0,16)==0)
619 {
620 DbpString("Cloned successfull!");
44964fd1 621 cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
622 playing = false;
623 GotoRecord = true;
c89274cc
CY
624 selected = (selected+1) % OPTS;
625 }
626 else {
627 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
44964fd1 628 playing = true;
c89274cc
CY
629 }
630 }
631 LEDsoff();
632 LED(selected + 1, 0);
15c4dc5a 633
86a83668 634 }
15c4dc5a 635 // Change where to record (or begin playing)
44964fd1 636 else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
15c4dc5a 637 {
15c4dc5a 638 LEDsoff();
639 LED(selected + 1, 0);
640
641 // Begin transmitting
44964fd1 642 LED(LED_GREEN, 0);
643 DbpString("Playing");
644 for ( ; ; ) {
645 WDT_HIT();
646 int button_action = BUTTON_HELD(1000);
647 if (button_action == 0) { // No button action, proceed with sim
648 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
649 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
650 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
651 DbpString("Mifare Classic");
652 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
c89274cc 653 }
44964fd1 654 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
655 DbpString("Mifare Ultralight");
656 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
15c4dc5a 657 }
44964fd1 658 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
659 DbpString("Mifare DESFire");
660 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
661 }
662 else {
663 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
664 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
c89274cc 665 }
c89274cc 666 }
44964fd1 667 else if (button_action == BUTTON_SINGLE_CLICK) {
668 selected = (selected + 1) % OPTS;
669 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
670 GotoRecord = true;
671 break;
672 }
673 else if (button_action == BUTTON_HOLD) {
674 Dbprintf("Playtime over. Begin cloning...");
675 GotoClone = true;
676 break;
677 }
678 WDT_HIT();
15c4dc5a 679 }
44964fd1 680
681 /* We pressed a button so ignore it here with a delay */
682 SpinDelay(300);
683 LEDsoff();
684 LED(selected + 1, 0);
15c4dc5a 685 }
686 }
687}
a2937cea 688#elif WITH_LF_StandAlone
86a83668
MHS
689// samy's sniff and repeat routine
690void SamyRun()
e46fe044 691{
86a83668
MHS
692 StandAloneMode();
693 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
e46fe044 694
53e2f2fa 695 int tops[OPTS], high[OPTS], low[OPTS];
15c4dc5a 696 int selected = 0;
697 int playing = 0;
3fe4ff4f 698 int cardRead = 0;
15c4dc5a 699
700 // Turn on selected LED
701 LED(selected + 1, 0);
702
703 for (;;)
704 {
6e82300d 705 usb_poll();
86a83668 706 WDT_HIT();
15c4dc5a 707
708 // Was our button held down or pressed?
709 int button_pressed = BUTTON_HELD(1000);
710 SpinDelay(300);
711
712 // Button was held for a second, begin recording
3fe4ff4f 713 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 714 {
715 LEDsoff();
716 LED(selected + 1, 0);
717 LED(LED_RED2, 0);
718
719 // record
720 DbpString("Starting recording");
721
722 // wait for button to be released
723 while(BUTTON_PRESS())
724 WDT_HIT();
725
726 /* need this delay to prevent catching some weird data */
727 SpinDelay(500);
728
53e2f2fa 729 CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
730 if (tops[selected] > 0)
731 Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
732 else
733 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
15c4dc5a 734
735 LEDsoff();
736 LED(selected + 1, 0);
737 // Finished recording
738
739 // If we were previously playing, set playing off
740 // so next button push begins playing what we recorded
741 playing = 0;
3fe4ff4f 742
743 cardRead = 1;
744
745 }
746
747 else if (button_pressed > 0 && cardRead == 1)
748 {
749 LEDsoff();
750 LED(selected + 1, 0);
751 LED(LED_ORANGE, 0);
752
753 // record
53e2f2fa 754 if (tops[selected] > 0)
755 Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
756 else
757 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 758
759 // wait for button to be released
760 while(BUTTON_PRESS())
761 WDT_HIT();
762
763 /* need this delay to prevent catching some weird data */
764 SpinDelay(500);
765
5f84531b 766 CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
53e2f2fa 767 if (tops[selected] > 0)
768 Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
769 else
770 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
3fe4ff4f 771
772 LEDsoff();
773 LED(selected + 1, 0);
774 // Finished recording
775
776 // If we were previously playing, set playing off
777 // so next button push begins playing what we recorded
778 playing = 0;
779
780 cardRead = 0;
781
15c4dc5a 782 }
783
784 // Change where to record (or begin playing)
785 else if (button_pressed)
786 {
787 // Next option if we were previously playing
788 if (playing)
789 selected = (selected + 1) % OPTS;
790 playing = !playing;
791
792 LEDsoff();
793 LED(selected + 1, 0);
794
795 // Begin transmitting
796 if (playing)
797 {
798 LED(LED_GREEN, 0);
799 DbpString("Playing");
800 // wait for button to be released
801 while(BUTTON_PRESS())
802 WDT_HIT();
53e2f2fa 803 if (tops[selected] > 0)
804 Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
805 else
806 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
807
808 CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
15c4dc5a 809 DbpString("Done playing");
810 if (BUTTON_HELD(1000) > 0)
811 {
812 DbpString("Exiting");
813 LEDsoff();
814 return;
815 }
816
817 /* We pressed a button so ignore it here with a delay */
818 SpinDelay(300);
819
820 // when done, we're done playing, move to next option
821 selected = (selected + 1) % OPTS;
822 playing = !playing;
823 LEDsoff();
824 LED(selected + 1, 0);
825 }
826 else
827 while(BUTTON_PRESS())
828 WDT_HIT();
829 }
830 }
831}
15c4dc5a 832
e46fe044 833#endif
15c4dc5a 834/*
835OBJECTIVE
836Listen and detect an external reader. Determine the best location
837for the antenna.
838
839INSTRUCTIONS:
840Inside the ListenReaderField() function, there is two mode.
841By default, when you call the function, you will enter mode 1.
842If you press the PM3 button one time, you will enter mode 2.
843If you press the PM3 button a second time, you will exit the function.
844
845DESCRIPTION OF MODE 1:
846This mode just listens for an external reader field and lights up green
847for HF and/or red for LF. This is the original mode of the detectreader
848function.
849
850DESCRIPTION OF MODE 2:
851This mode will visually represent, using the LEDs, the actual strength of the
852current compared to the maximum current detected. Basically, once you know
853what kind of external reader is present, it will help you spot the best location to place
854your antenna. You will probably not get some good results if there is a LF and a HF reader
855at the same place! :-)
856
857LIGHT SCHEME USED:
858*/
859static const char LIGHT_SCHEME[] = {
860 0x0, /* ---- | No field detected */
861 0x1, /* X--- | 14% of maximum current detected */
862 0x2, /* -X-- | 29% of maximum current detected */
863 0x4, /* --X- | 43% of maximum current detected */
864 0x8, /* ---X | 57% of maximum current detected */
865 0xC, /* --XX | 71% of maximum current detected */
866 0xE, /* -XXX | 86% of maximum current detected */
867 0xF, /* XXXX | 100% of maximum current detected */
868};
869static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
870
871void ListenReaderField(int limit)
872{
050aa18b 873 int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
874 int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
15c4dc5a 875 int mode=1, display_val, display_max, i;
876
050aa18b 877#define LF_ONLY 1
878#define HF_ONLY 2
879#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
880#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
881#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
3b692427 882
883
884 // switch off FPGA - we don't want to measure our own signal
885 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
886 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 887
888 LEDsoff();
889
050aa18b 890 lf_av = lf_max = AvgAdc_Voltage_LF();
15c4dc5a 891
892 if(limit != HF_ONLY) {
050aa18b 893 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
15c4dc5a 894 lf_baseline = lf_av;
895 }
896
050aa18b 897 hf_av = hf_max = AvgAdc_Voltage_HF();
898
15c4dc5a 899 if (limit != LF_ONLY) {
050aa18b 900 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
15c4dc5a 901 hf_baseline = hf_av;
902 }
903
904 for(;;) {
050aa18b 905 SpinDelay(500);
15c4dc5a 906 if (BUTTON_PRESS()) {
15c4dc5a 907 switch (mode) {
908 case 1:
909 mode=2;
910 DbpString("Signal Strength Mode");
911 break;
912 case 2:
913 default:
914 DbpString("Stopped");
915 LEDsoff();
916 return;
917 break;
918 }
050aa18b 919 while (BUTTON_PRESS());
15c4dc5a 920 }
921 WDT_HIT();
922
923 if (limit != HF_ONLY) {
3b692427 924 if(mode == 1) {
050aa18b 925 if (lf_av - lf_baseline > MIN_LF_FIELD)
3b692427 926 LED_D_ON();
927 else
928 LED_D_OFF();
15c4dc5a 929 }
e30c654b 930
050aa18b 931 lf_av_new = AvgAdc_Voltage_LF();
15c4dc5a 932 // see if there's a significant change
050aa18b 933 if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
934 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
15c4dc5a 935 lf_av = lf_av_new;
936 if (lf_av > lf_max)
937 lf_max = lf_av;
15c4dc5a 938 }
939 }
940
941 if (limit != LF_ONLY) {
942 if (mode == 1){
050aa18b 943 if (hf_av - hf_baseline > MIN_HF_FIELD)
3b692427 944 LED_B_ON();
945 else
946 LED_B_OFF();
15c4dc5a 947 }
e30c654b 948
050aa18b 949 hf_av_new = AvgAdc_Voltage_HF();
950
15c4dc5a 951 // see if there's a significant change
050aa18b 952 if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
953 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
15c4dc5a 954 hf_av = hf_av_new;
955 if (hf_av > hf_max)
956 hf_max = hf_av;
15c4dc5a 957 }
958 }
e30c654b 959
15c4dc5a 960 if(mode == 2) {
961 if (limit == LF_ONLY) {
962 display_val = lf_av;
963 display_max = lf_max;
964 } else if (limit == HF_ONLY) {
965 display_val = hf_av;
966 display_max = hf_max;
967 } else { /* Pick one at random */
968 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
969 display_val = hf_av;
970 display_max = hf_max;
971 } else {
972 display_val = lf_av;
973 display_max = lf_max;
974 }
975 }
976 for (i=0; i<LIGHT_LEN; i++) {
977 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
978 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
979 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
980 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
981 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
982 break;
983 }
984 }
985 }
986 }
987}
988
f7e3ed82 989void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 990{
991 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 992
902cb3c0 993// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
994
15c4dc5a 995 switch(c->cmd) {
996#ifdef WITH_LF
31abe49f
MHS
997 case CMD_SET_LF_SAMPLING_CONFIG:
998 setSamplingConfig((sample_config *) c->d.asBytes);
999 break;
15c4dc5a 1000 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
b9957414 1001 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
15c4dc5a 1002 break;
15c4dc5a 1003 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
1004 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1005 break;
b014c96d 1006 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 1007 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 1008 break;
7e67e42f 1009 case CMD_HID_DEMOD_FSK:
be59094d 1010 CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
7e67e42f 1011 break;
1012 case CMD_HID_SIM_TAG:
be59094d 1013 CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
7e67e42f 1014 break;
abd6112f 1015 case CMD_FSK_SIM_TAG:
1016 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1017 break;
1018 case CMD_ASK_SIM_TAG:
1019 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1020 break;
872e3d4d 1021 case CMD_PSK_SIM_TAG:
1022 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1023 break;
1024 case CMD_HID_CLONE_TAG:
5f84531b
SS
1025 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
1026 break;
1027 case CMD_PARADOX_CLONE_TAG:
1028 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1029 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
7e67e42f 1030 break;
a1f3bb12 1031 case CMD_IO_DEMOD_FSK:
3fe4ff4f 1032 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 1033 break;
3fe4ff4f 1034 case CMD_IO_CLONE_TAG:
9f669cb2 1035 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 1036 break;
66707a3b 1037 case CMD_EM410X_DEMOD:
1038 CmdEM410xdemod(c->arg[0], 0, 0, 1);
1039 break;
2d4eae76 1040 case CMD_EM410X_WRITE_TAG:
1041 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
1042 break;
7e67e42f 1043 case CMD_READ_TI_TYPE:
1044 ReadTItag();
1045 break;
1046 case CMD_WRITE_TI_TYPE:
1047 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
1048 break;
1049 case CMD_SIMULATE_TAG_125K:
31d1caa5 1050 LED_A_ON();
7e67e42f 1051 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 1052 LED_A_OFF();
7e67e42f 1053 break;
1054 case CMD_LF_SIMULATE_BIDIR:
1055 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
1056 break;
3fe4ff4f 1057 case CMD_INDALA_CLONE_TAG:
2414f978 1058 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
1059 break;
3fe4ff4f 1060 case CMD_INDALA_CLONE_TAG_L:
2414f978 1061 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
1062 break;
1c611bbd 1063 case CMD_T55XX_READ_BLOCK:
8e99ec25 1064 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 1065 break;
1066 case CMD_T55XX_WRITE_BLOCK:
1067 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1068 break;
be2d41b7 1069 case CMD_T55XX_WAKEUP:
1070 T55xxWakeUp(c->arg[0]);
1c611bbd 1071 break;
66837a03 1072 case CMD_T55XX_RESET_READ:
1073 T55xxResetRead();
1074 break;
3fe4ff4f 1075 case CMD_PCF7931_READ:
1c611bbd 1076 ReadPCF7931();
1c611bbd 1077 break;
dc4300ba 1078 case CMD_PCF7931_WRITE:
d10e08ae 1079 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
dc4300ba 1080 break;
818e15b0
S
1081 case CMD_PCF7931_BRUTEFORCE:
1082 BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
1083 break;
1c611bbd 1084 case CMD_EM4X_READ_WORD:
7666f460 1085 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1c611bbd 1086 break;
1087 case CMD_EM4X_WRITE_WORD:
7666f460 1088 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 1089 break;
dbf6e824
CY
1090 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1091 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
7cfc777b 1092 break;
709665b5 1093 case CMD_VIKING_CLONE_TAG:
1094 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1095 break;
e04475c4 1096 case CMD_COTAG:
1097 Cotag(c->arg[0]);
1098 break;
15c4dc5a 1099#endif
1100
d19929cb 1101#ifdef WITH_HITAG
1102 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1103 SnoopHitag(c->arg[0]);
1104 break;
1105 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1106 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1107 break;
1108 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1109 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1110 break;
4e12287d
RS
1111 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1112 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1113 break;
1114 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
7b6e3205 1115 check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
4e12287d
RS
1116 break;
1117 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
7b6e3205 1118 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
1119 break;
1120 case CMD_READ_HITAG_S_BLK:
1121 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
4e12287d
RS
1122 break;
1123 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
52244230
HJ
1124 if ((hitag_function)c->arg[0] < 10) {
1125 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1126 }
1127 else if ((hitag_function)c->arg[0] >= 10) {
1128 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1129 }
4e12287d 1130 break;
d19929cb 1131#endif
f168b263 1132
15c4dc5a 1133#ifdef WITH_ISO15693
1134 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1135 AcquireRawAdcSamplesIso15693();
1136 break;
d9de20fa 1137
1138 case CMD_SNOOP_ISO_15693:
1139 SnoopIso15693();
9455b51c 1140 break;
1141
1142 case CMD_ISO_15693_COMMAND:
1143 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1144 break;
1145
1146 case CMD_ISO_15693_FIND_AFI:
1147 BruteforceIso15693Afi(c->arg[0]);
1148 break;
1149
1150 case CMD_ISO_15693_DEBUG:
1151 SetDebugIso15693(c->arg[0]);
1152 break;
15c4dc5a 1153
15c4dc5a 1154 case CMD_READER_ISO_15693:
1155 ReaderIso15693(c->arg[0]);
1156 break;
7e67e42f 1157 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 1158 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1159 break;
15c4dc5a 1160#endif
1161
7e67e42f 1162#ifdef WITH_LEGICRF
1163 case CMD_SIMULATE_TAG_LEGIC_RF:
1b902aa0 1164 LegicRfSimulate(c->arg[0]);
7e67e42f 1165 break;
3612a8a8 1166
7e67e42f 1167 case CMD_WRITER_LEGIC_RF:
1168 LegicRfWriter(c->arg[1], c->arg[0]);
1169 break;
3612a8a8 1170
15c4dc5a 1171 case CMD_READER_LEGIC_RF:
1172 LegicRfReader(c->arg[0], c->arg[1]);
1173 break;
15c4dc5a 1174#endif
1175
1176#ifdef WITH_ISO14443b
15c4dc5a 1177 case CMD_READ_SRI512_TAG:
51d4f6f1 1178 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1179 break;
7e67e42f 1180 case CMD_READ_SRIX4K_TAG:
51d4f6f1 1181 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1182 break;
132a0217 1183 case CMD_SNOOP_ISO_14443B:
51d4f6f1 1184 SnoopIso14443b();
7e67e42f 1185 break;
132a0217 1186 case CMD_SIMULATE_TAG_ISO_14443B:
51d4f6f1 1187 SimulateIso14443bTag();
7e67e42f 1188 break;
7cf3ef20 1189 case CMD_ISO_14443B_COMMAND:
1190 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1191 break;
15c4dc5a 1192#endif
1193
1194#ifdef WITH_ISO14443a
7e67e42f 1195 case CMD_SNOOP_ISO_14443a:
5cd9ec01 1196 SnoopIso14443a(c->arg[0]);
7e67e42f 1197 break;
15c4dc5a 1198 case CMD_READER_ISO_14443a:
902cb3c0 1199 ReaderIso14443a(c);
15c4dc5a 1200 break;
7e67e42f 1201 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 1202 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1203 break;
3fe4ff4f 1204
5acd09bd 1205 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1206 EPA_PACE_Collect_Nonce(c);
5acd09bd 1207 break;
3bb07d96
FM
1208 case CMD_EPA_PACE_REPLAY:
1209 EPA_PACE_Replay(c);
1210 break;
7e67e42f 1211
15c4dc5a 1212 case CMD_READER_MIFARE:
f168b263 1213 ReaderMifare(c->arg[0]);
15c4dc5a 1214 break;
20f9a2a1
M
1215 case CMD_MIFARE_READBL:
1216 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1217 break;
981bd429 1218 case CMD_MIFAREU_READBL:
f168b263 1219 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1220 break;
8258f409 1221 case CMD_MIFAREUC_AUTH:
1222 MifareUC_Auth(c->arg[0],c->d.asBytes);
a631936e 1223 break;
981bd429 1224 case CMD_MIFAREU_READCARD:
75377d29 1225 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1226 break;
f168b263 1227 case CMD_MIFAREUC_SETPWD:
1228 MifareUSetPwd(c->arg[0], c->d.asBytes);
1229 break;
20f9a2a1
M
1230 case CMD_MIFARE_READSC:
1231 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1232 break;
1233 case CMD_MIFARE_WRITEBL:
1234 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1235 break;
4973f23d 1236 //case CMD_MIFAREU_WRITEBL_COMPAT:
1237 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1238 //break;
981bd429 1239 case CMD_MIFAREU_WRITEBL:
4973f23d 1240 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
f168b263 1241 break;
c48c4d78 1242 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1243 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1244 break;
20f9a2a1
M
1245 case CMD_MIFARE_NESTED:
1246 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1247 break;
1248 case CMD_MIFARE_CHKKEYS:
1249 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1250 break;
1251 case CMD_SIMULATE_MIFARE_CARD:
1252 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1253 break;
8556b852
M
1254
1255 // emulator
1256 case CMD_MIFARE_SET_DBGMODE:
1257 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1258 break;
1259 case CMD_MIFARE_EML_MEMCLR:
1260 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1261 break;
1262 case CMD_MIFARE_EML_MEMSET:
1263 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1264 break;
1265 case CMD_MIFARE_EML_MEMGET:
1266 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1267 break;
1268 case CMD_MIFARE_EML_CARDLOAD:
1269 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1270 break;
1271
1272 // Work with "magic Chinese" card
3a05a1e7
OM
1273 case CMD_MIFARE_CWIPE:
1274 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1275 break;
3fe4ff4f 1276 case CMD_MIFARE_CSETBLOCK:
0675f200 1277 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 1278 break;
3fe4ff4f 1279 case CMD_MIFARE_CGETBLOCK:
545a1f38 1280 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 1281 break;
3fe4ff4f 1282 case CMD_MIFARE_CIDENT:
1283 MifareCIdent();
1284 break;
b62a5a84
M
1285
1286 // mifare sniffer
1287 case CMD_MIFARE_SNIFFER:
5cd9ec01 1288 SniffMifare(c->arg[0]);
b62a5a84 1289 break;
a631936e 1290
20f9a2a1
M
1291#endif
1292
7e67e42f 1293#ifdef WITH_ICLASS
cee5a30d 1294 // Makes use of ISO14443a FPGA Firmware
1295 case CMD_SNOOP_ICLASS:
1296 SnoopIClass();
1297 break;
1e262141 1298 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1299 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1300 break;
1301 case CMD_READER_ICLASS:
1302 ReaderIClass(c->arg[0]);
1303 break;
c3963755 1304 case CMD_READER_ICLASS_REPLAY:
aa53efc3 1305 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 1306 break;
aa53efc3 1307 case CMD_ICLASS_EML_MEMSET:
e80aeb96
MHS
1308 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1309 break;
aa53efc3 1310 case CMD_ICLASS_WRITEBLOCK:
3ac22ee1 1311 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1312 break;
1313 case CMD_ICLASS_READCHECK: // auth step 1
1314 iClass_ReadCheck(c->arg[0], c->arg[1]);
aa53efc3 1315 break;
1316 case CMD_ICLASS_READBLOCK:
3ac22ee1 1317 iClass_ReadBlk(c->arg[0]);
aa53efc3 1318 break;
3ac22ee1 1319 case CMD_ICLASS_AUTHENTICATION: //check
aa53efc3 1320 iClass_Authentication(c->d.asBytes);
1321 break;
1322 case CMD_ICLASS_DUMP:
3ac22ee1 1323 iClass_Dump(c->arg[0], c->arg[1]);
aa53efc3 1324 break;
1325 case CMD_ICLASS_CLONE:
3ac22ee1 1326 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
aa53efc3 1327 break;
cee5a30d 1328#endif
fc52fbd4 1329
0472d76d 1330#ifdef WITH_HFSNOOP
1331 case CMD_HF_SNIFFER:
1332 HfSnoop(c->arg[0], c->arg[1]);
1333 break;
fc52fbd4 1334 case CMD_HF_PLOT:
1335 HfPlot();
1336 break;
0472d76d 1337#endif
fc52fbd4 1338
43591e64 1339#ifdef WITH_SMARTCARD
1340 case CMD_SMART_ATR: {
1341 SmartCardAtr();
1342 break;
1343 }
1344 case CMD_SMART_SETCLOCK:{
1345 SmartCardSetClock(c->arg[0]);
1346 break;
1347 }
1348 case CMD_SMART_RAW: {
1349 SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
1350 break;
1351 }
1352 case CMD_SMART_UPLOAD: {
1353 // upload file from client
1354 uint8_t *mem = BigBuf_get_addr();
1355 memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1356 cmd_send(CMD_ACK,1,0,0,0,0);
1357 break;
1358 }
1359 case CMD_SMART_UPGRADE: {
1360 SmartCardUpgrade(c->arg[0]);
1361 break;
1362 }
1363#endif
cee5a30d 1364
7e67e42f 1365 case CMD_BUFF_CLEAR:
117d9ec2 1366 BigBuf_Clear();
15c4dc5a 1367 break;
15c4dc5a 1368
1369 case CMD_MEASURE_ANTENNA_TUNING:
fdcfbdcc 1370 MeasureAntennaTuning(c->arg[0]);
15c4dc5a 1371 break;
1372
1373 case CMD_MEASURE_ANTENNA_TUNING_HF:
1374 MeasureAntennaTuningHf();
1375 break;
1376
1377 case CMD_LISTEN_READER_FIELD:
1378 ListenReaderField(c->arg[0]);
1379 break;
1380
15c4dc5a 1381 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1383 SpinDelay(200);
1384 LED_D_OFF(); // LED D indicates field ON or OFF
1385 break;
1386
1c611bbd 1387 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1c611bbd 1388 LED_B_ON();
117d9ec2 1389 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 1390 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1391 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1392 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1393 }
1394 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1395 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1396 LED_B_OFF();
1c611bbd 1397 break;
15c4dc5a 1398
1399 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
8c8317a5 1400 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1401 // to be able to use this one for uploading data to device
1402 // arg1 = 0 upload for LF usage
1403 // 1 upload for HF usage
1404 if (c->arg[1] == 0)
1405 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1406 else
1407 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1408
117d9ec2 1409 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 1410 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1411 cmd_send(CMD_ACK,0,0,0,0,0);
1412 break;
1413 }
15c4dc5a 1414 case CMD_READ_MEM:
1415 ReadMem(c->arg[0]);
1416 break;
1417
1418 case CMD_SET_LF_DIVISOR:
8c8317a5 1419 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1420 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1421 break;
1422
1423 case CMD_SET_ADC_MUX:
1424 switch(c->arg[0]) {
1425 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1426 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1427 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1428 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1429 }
1430 break;
1431
1432 case CMD_VERSION:
1433 SendVersion();
1434 break;
c89274cc 1435 case CMD_STATUS:
67b7d6fa 1436 SendStatus();
c89274cc
CY
1437 break;
1438 case CMD_PING:
1439 cmd_send(CMD_ACK,0,0,0,0,0);
1440 break;
15c4dc5a 1441#ifdef WITH_LCD
1442 case CMD_LCD_RESET:
1443 LCDReset();
1444 break;
1445 case CMD_LCD:
1446 LCDSend(c->arg[0]);
1447 break;
1448#endif
1449 case CMD_SETUP_WRITE:
1450 case CMD_FINISH_WRITE:
1c611bbd 1451 case CMD_HARDWARE_RESET:
1452 usb_disable();
15c4dc5a 1453 SpinDelay(1000);
1454 SpinDelay(1000);
1455 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1456 for(;;) {
1457 // We're going to reset, and the bootrom will take control.
1458 }
1c611bbd 1459 break;
15c4dc5a 1460
1c611bbd 1461 case CMD_START_FLASH:
15c4dc5a 1462 if(common_area.flags.bootrom_present) {
1463 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1464 }
1c611bbd 1465 usb_disable();
15c4dc5a 1466 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1467 for(;;);
1c611bbd 1468 break;
e30c654b 1469
15c4dc5a 1470 case CMD_DEVICE_INFO: {
902cb3c0 1471 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1472 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1473 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1474 break;
1475 }
1476 default:
15c4dc5a 1477 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1478 break;
15c4dc5a 1479 }
1480}
1481
1482void __attribute__((noreturn)) AppMain(void)
1483{
1484 SpinDelay(100);
9e8255d4 1485 clear_trace();
15c4dc5a 1486 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1487 /* Initialize common area */
1488 memset(&common_area, 0, sizeof(common_area));
1489 common_area.magic = COMMON_AREA_MAGIC;
1490 common_area.version = 1;
1491 }
1492 common_area.flags.osimage_present = 1;
1493
3d057cfb
SG
1494 LEDsoff();
1495
3fe4ff4f 1496 // Init USB device
050aa18b 1497 usb_enable();
15c4dc5a 1498
1499 // The FPGA gets its clock from us from PCK0 output, so set that up.
1500 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1501 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1502 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1503 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1504 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
0472d76d 1505 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1506 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1507
1508 // Reset SPI
1509 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1510 // Reset SSC
1511 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1512
1513 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1514 // (the HF version by default)
1515 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1516
9ca155ba 1517 StartTickCount();
902cb3c0 1518
15c4dc5a 1519#ifdef WITH_LCD
15c4dc5a 1520 LCDInit();
15c4dc5a 1521#endif
1522
902cb3c0 1523 byte_t rx[sizeof(UsbCommand)];
1524 size_t rx_len;
1525
15c4dc5a 1526 for(;;) {
902cb3c0 1527 if (usb_poll()) {
1528 rx_len = usb_read(rx,sizeof(UsbCommand));
1529 if (rx_len) {
1530 UsbPacketReceived(rx,rx_len);
1531 }
1532 }
15c4dc5a 1533 WDT_HIT();
1534
a2937cea 1535#ifdef WITH_LF_StandAlone
e46fe044 1536#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1537 if (BUTTON_HELD(1000) > 0)
1538 SamyRun();
e46fe044
CY
1539#endif
1540#endif
1541#ifdef WITH_ISO14443a
1542#ifdef WITH_ISO14443a_StandAlone
1543 if (BUTTON_HELD(1000) > 0)
1544 StandAloneMode14a();
1545#endif
15c4dc5a 1546#endif
1547 }
1548}
Impressum, Datenschutz