]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
add bitbang option to lf cmdread
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
e09f21fa 1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
3606ac0a 19#include "protocols.h"
506672c4 20#include "usb_cdc.h" // for usb_poll_validate_length
e09f21fa 21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
21a615cb 29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
e09f21fa 30{
31
61e96805 32 StartTicks();
e0165dcf 33 int divisor_used = 95; // 125 KHz
34 // see if 'h' was specified
e09f21fa 35
e0165dcf 36 if (command[strlen((char *) command) - 1] == 'h')
37 divisor_used = 88; // 134.8 KHz
e09f21fa 38
39 sample_config sc = { 0,0,1, divisor_used, 0};
40 setSamplingConfig(&sc);
3cec7061 41 //clear read buffer
29b75739 42 BigBuf_Clear_keep_EM();
e09f21fa 43
44 /* Make sure the tag is reset */
45 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
46 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
61e96805 47 WaitMS(2500);
e09f21fa 48
61e96805 49 //power on
e09f21fa 50 LFSetupFPGAForADC(sc.divisor, 1);
51
52 // And a little more time for the tag to fully power up
61e96805 53 WaitMS(2000);
54 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
55 bool bitbang = delay_off == 0;
e0165dcf 56 // now modulate the reader field
61e96805 57
58 if (bitbang) {
59 //HACK it appears my loop and if statements take up about 7 us so adjust waits accordingly...
60 uint8_t hack_cnt = 7;
61 if (period_0 < hack_cnt || period_1 < hack_cnt) {
62 DbpString("Warning periods cannot be less than 7 in bit bang mode");
63 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
64 LED_D_OFF();
65 return;
66 }
67 //prime cmd_len to save time comparing strings while modulating
68 int cmd_len = 0;
69 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
70 cmd_len++;
71
72 int counter = 0;
73 bool off = false;
74 for (counter = 0; counter < cmd_len; counter++) {
75 //while(*command != '\0' && *command != ' ') {
76 // if cmd = 0 then turn field off
77 if (command[counter] == '0') {
78 // if field already off leave alone (affects timing otherwise)
79 if (off == false) {
80 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
81 LED_D_OFF();
82 off = true;
83 }
84 // note we appear to take about 6us to switch over (or run the if statements/loop...)
85 WaitUS(period_0-hack_cnt);
86 // else if cmd = 1 then turn field on
87 } else {
88 // if field already on leave alone (affects timing otherwise)
89 if (off) {
90 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
91 LED_D_ON();
92 off = false;
93 }
94 // note we appear to take about 6us to switch over (or run the if statements/loop...)
95 WaitUS(period_1-hack_cnt);
96 }
97 }
98 } else { // old mode of cmd read using delay as off period
99 while(*command != '\0' && *command != ' ') {
100 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
101 LED_D_OFF();
102 WaitUS(delay_off);
103 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
104 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
105 LED_D_ON();
106 if(*(command++) == '0') {
107 WaitUS(period_0);
108 } else {
109 WaitUS(period_1);
110 }
111 }
e0165dcf 112 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
113 LED_D_OFF();
61e96805 114 WaitUS(delay_off);
e09f21fa 115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
e0165dcf 116 }
e09f21fa 117
e0165dcf 118 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
e09f21fa 119
e0165dcf 120 // now do the read
b9957414 121 DoAcquisition_config(false, 0);
61e96805 122 // note leaves field on... (for future commands?)
e09f21fa 123}
124
e09f21fa 125/* blank r/w tag data stream
126...0000000000000000 01111111
1271010101010101010101010101010101010101010101010101010101010101010
1280011010010100001
12901111111
130101010101010101[0]000...
131
132[5555fe852c5555555555555555fe0000]
133*/
134void ReadTItag(void)
135{
e0165dcf 136 // some hardcoded initial params
137 // when we read a TI tag we sample the zerocross line at 2Mhz
138 // TI tags modulate a 1 as 16 cycles of 123.2Khz
139 // TI tags modulate a 0 as 16 cycles of 134.2Khz
e09f21fa 140 #define FSAMPLE 2000000
141 #define FREQLO 123200
142 #define FREQHI 134200
143
e0165dcf 144 signed char *dest = (signed char *)BigBuf_get_addr();
145 uint16_t n = BigBuf_max_traceLen();
146 // 128 bit shift register [shift3:shift2:shift1:shift0]
147 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
148
149 int i, cycles=0, samples=0;
150 // how many sample points fit in 16 cycles of each frequency
151 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
152 // when to tell if we're close enough to one freq or another
153 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
154
155 // TI tags charge at 134.2Khz
156 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
157 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
158
159 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
160 // connects to SSP_DIN and the SSP_DOUT logic level controls
161 // whether we're modulating the antenna (high)
162 // or listening to the antenna (low)
163 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
164
165 // get TI tag data into the buffer
166 AcquireTiType();
167
168 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
169
170 for (i=0; i<n-1; i++) {
171 // count cycles by looking for lo to hi zero crossings
172 if ( (dest[i]<0) && (dest[i+1]>0) ) {
173 cycles++;
174 // after 16 cycles, measure the frequency
175 if (cycles>15) {
176 cycles=0;
177 samples=i-samples; // number of samples in these 16 cycles
178
179 // TI bits are coming to us lsb first so shift them
180 // right through our 128 bit right shift register
181 shift0 = (shift0>>1) | (shift1 << 31);
182 shift1 = (shift1>>1) | (shift2 << 31);
183 shift2 = (shift2>>1) | (shift3 << 31);
184 shift3 >>= 1;
185
186 // check if the cycles fall close to the number
187 // expected for either the low or high frequency
188 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
189 // low frequency represents a 1
190 shift3 |= (1<<31);
191 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
192 // high frequency represents a 0
193 } else {
194 // probably detected a gay waveform or noise
195 // use this as gaydar or discard shift register and start again
196 shift3 = shift2 = shift1 = shift0 = 0;
197 }
198 samples = i;
199
200 // for each bit we receive, test if we've detected a valid tag
201
202 // if we see 17 zeroes followed by 6 ones, we might have a tag
203 // remember the bits are backwards
204 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
205 // if start and end bytes match, we have a tag so break out of the loop
206 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
207 cycles = 0xF0B; //use this as a flag (ugly but whatever)
208 break;
209 }
210 }
211 }
212 }
213 }
214
215 // if flag is set we have a tag
216 if (cycles!=0xF0B) {
217 DbpString("Info: No valid tag detected.");
218 } else {
219 // put 64 bit data into shift1 and shift0
220 shift0 = (shift0>>24) | (shift1 << 8);
221 shift1 = (shift1>>24) | (shift2 << 8);
222
223 // align 16 bit crc into lower half of shift2
224 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
225
226 // if r/w tag, check ident match
e09f21fa 227 if (shift3 & (1<<15) ) {
e0165dcf 228 DbpString("Info: TI tag is rewriteable");
229 // only 15 bits compare, last bit of ident is not valid
e09f21fa 230 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
e0165dcf 231 DbpString("Error: Ident mismatch!");
232 } else {
233 DbpString("Info: TI tag ident is valid");
234 }
235 } else {
236 DbpString("Info: TI tag is readonly");
237 }
238
239 // WARNING the order of the bytes in which we calc crc below needs checking
240 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
241 // bytes in reverse or something
242 // calculate CRC
243 uint32_t crc=0;
244
245 crc = update_crc16(crc, (shift0)&0xff);
246 crc = update_crc16(crc, (shift0>>8)&0xff);
247 crc = update_crc16(crc, (shift0>>16)&0xff);
248 crc = update_crc16(crc, (shift0>>24)&0xff);
249 crc = update_crc16(crc, (shift1)&0xff);
250 crc = update_crc16(crc, (shift1>>8)&0xff);
251 crc = update_crc16(crc, (shift1>>16)&0xff);
252 crc = update_crc16(crc, (shift1>>24)&0xff);
253
254 Dbprintf("Info: Tag data: %x%08x, crc=%x",
255 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
256 if (crc != (shift2&0xffff)) {
257 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
258 } else {
259 DbpString("Info: CRC is good");
260 }
261 }
e09f21fa 262}
263
264void WriteTIbyte(uint8_t b)
265{
e0165dcf 266 int i = 0;
267
268 // modulate 8 bits out to the antenna
269 for (i=0; i<8; i++)
270 {
271 if (b&(1<<i)) {
272 // stop modulating antenna
273 LOW(GPIO_SSC_DOUT);
274 SpinDelayUs(1000);
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277 SpinDelayUs(1000);
278 } else {
279 // stop modulating antenna
280 LOW(GPIO_SSC_DOUT);
281 SpinDelayUs(300);
282 // modulate antenna
283 HIGH(GPIO_SSC_DOUT);
284 SpinDelayUs(1700);
285 }
286 }
e09f21fa 287}
288
289void AcquireTiType(void)
290{
e0165dcf 291 int i, j, n;
292 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
293 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
e09f21fa 294 #define TIBUFLEN 1250
295
e0165dcf 296 // clear buffer
e09f21fa 297 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
709665b5 298 BigBuf_Clear_ext(false);
e0165dcf 299
300 // Set up the synchronous serial port
301 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
302 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
303
304 // steal this pin from the SSP and use it to control the modulation
305 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
306 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
307
308 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
309 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
310
311 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
312 // 48/2 = 24 MHz clock must be divided by 12
313 AT91C_BASE_SSC->SSC_CMR = 12;
314
315 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
316 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
317 AT91C_BASE_SSC->SSC_TCMR = 0;
318 AT91C_BASE_SSC->SSC_TFMR = 0;
319
320 LED_D_ON();
321
322 // modulate antenna
323 HIGH(GPIO_SSC_DOUT);
324
325 // Charge TI tag for 50ms.
326 SpinDelay(50);
327
328 // stop modulating antenna and listen
329 LOW(GPIO_SSC_DOUT);
330
331 LED_D_OFF();
332
333 i = 0;
334 for(;;) {
335 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
336 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
337 i++; if(i >= TIBUFLEN) break;
338 }
339 WDT_HIT();
340 }
341
342 // return stolen pin to SSP
343 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
345
346 char *dest = (char *)BigBuf_get_addr();
347 n = TIBUFLEN*32;
348 // unpack buffer
349 for (i=TIBUFLEN-1; i>=0; i--) {
350 for (j=0; j<32; j++) {
351 if(BigBuf[i] & (1 << j)) {
352 dest[--n] = 1;
353 } else {
354 dest[--n] = -1;
355 }
356 }
357 }
e09f21fa 358}
359
360// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
361// if crc provided, it will be written with the data verbatim (even if bogus)
362// if not provided a valid crc will be computed from the data and written.
363void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
364{
fff58476 365 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
e0165dcf 366 if(crc == 0) {
367 crc = update_crc16(crc, (idlo)&0xff);
368 crc = update_crc16(crc, (idlo>>8)&0xff);
369 crc = update_crc16(crc, (idlo>>16)&0xff);
370 crc = update_crc16(crc, (idlo>>24)&0xff);
371 crc = update_crc16(crc, (idhi)&0xff);
372 crc = update_crc16(crc, (idhi>>8)&0xff);
373 crc = update_crc16(crc, (idhi>>16)&0xff);
374 crc = update_crc16(crc, (idhi>>24)&0xff);
375 }
376 Dbprintf("Writing to tag: %x%08x, crc=%x",
377 (unsigned int) idhi, (unsigned int) idlo, crc);
378
379 // TI tags charge at 134.2Khz
380 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
381 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
382 // connects to SSP_DIN and the SSP_DOUT logic level controls
383 // whether we're modulating the antenna (high)
384 // or listening to the antenna (low)
385 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
386 LED_A_ON();
387
388 // steal this pin from the SSP and use it to control the modulation
389 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
390 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
391
392 // writing algorithm:
393 // a high bit consists of a field off for 1ms and field on for 1ms
394 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
395 // initiate a charge time of 50ms (field on) then immediately start writing bits
396 // start by writing 0xBB (keyword) and 0xEB (password)
397 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
398 // finally end with 0x0300 (write frame)
399 // all data is sent lsb firts
400 // finish with 15ms programming time
401
402 // modulate antenna
403 HIGH(GPIO_SSC_DOUT);
404 SpinDelay(50); // charge time
405
406 WriteTIbyte(0xbb); // keyword
407 WriteTIbyte(0xeb); // password
408 WriteTIbyte( (idlo )&0xff );
409 WriteTIbyte( (idlo>>8 )&0xff );
410 WriteTIbyte( (idlo>>16)&0xff );
411 WriteTIbyte( (idlo>>24)&0xff );
412 WriteTIbyte( (idhi )&0xff );
413 WriteTIbyte( (idhi>>8 )&0xff );
414 WriteTIbyte( (idhi>>16)&0xff );
415 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
416 WriteTIbyte( (crc )&0xff ); // crc lo
417 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
418 WriteTIbyte(0x00); // write frame lo
419 WriteTIbyte(0x03); // write frame hi
420 HIGH(GPIO_SSC_DOUT);
421 SpinDelay(50); // programming time
422
423 LED_A_OFF();
424
425 // get TI tag data into the buffer
426 AcquireTiType();
427
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
72c5877a 429 DbpString("Now use `lf ti read` to check");
e09f21fa 430}
431
432void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
433{
e0165dcf 434 int i;
435 uint8_t *tab = BigBuf_get_addr();
e09f21fa 436
8c8317a5 437 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
438 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
e0165dcf 439 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
e09f21fa 440
e0165dcf 441 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
e09f21fa 442
e0165dcf 443 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
444 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
e09f21fa 445
709665b5 446 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
447 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
e09f21fa 448
e0165dcf 449 i = 0;
450 for(;;) {
451 //wait until SSC_CLK goes HIGH
f2081c43 452 int ii = 0;
e0165dcf 453 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
f2081c43 454 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
455 if ( ii == 1000 ) {
456 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
457 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
458 DbpString("Stopped");
459 return;
460 }
461 ii=0;
e0165dcf 462 }
463 WDT_HIT();
f2081c43 464 ii++;
e0165dcf 465 }
466 if (ledcontrol)
467 LED_D_ON();
468
469 if(tab[i])
470 OPEN_COIL();
471 else
472 SHORT_COIL();
473
474 if (ledcontrol)
475 LED_D_OFF();
f2081c43 476 ii=0;
e0165dcf 477 //wait until SSC_CLK goes LOW
478 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
f2081c43 479 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
480 if ( ii == 1000 ) {
481 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
482 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
483 DbpString("Stopped");
484 return;
485 }
486 ii=0;
e0165dcf 487 }
488 WDT_HIT();
f2081c43 489 ii++;
e0165dcf 490 }
491
492 i++;
493 if(i == period) {
494
495 i = 0;
496 if (gap) {
497 SHORT_COIL();
498 SpinDelayUs(gap);
499 }
500 }
89696b8b 501
e0165dcf 502 }
e09f21fa 503}
504
e09f21fa 505#define DEBUG_FRAME_CONTENTS 1
506void SimulateTagLowFrequencyBidir(int divisor, int t0)
507{
508}
509
510// compose fc/8 fc/10 waveform (FSK2)
511static void fc(int c, int *n)
512{
e0165dcf 513 uint8_t *dest = BigBuf_get_addr();
514 int idx;
515
516 // for when we want an fc8 pattern every 4 logical bits
517 if(c==0) {
518 dest[((*n)++)]=1;
519 dest[((*n)++)]=1;
520 dest[((*n)++)]=1;
521 dest[((*n)++)]=1;
522 dest[((*n)++)]=0;
523 dest[((*n)++)]=0;
524 dest[((*n)++)]=0;
525 dest[((*n)++)]=0;
526 }
527
528 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
529 if(c==8) {
530 for (idx=0; idx<6; idx++) {
531 dest[((*n)++)]=1;
532 dest[((*n)++)]=1;
533 dest[((*n)++)]=1;
534 dest[((*n)++)]=1;
535 dest[((*n)++)]=0;
536 dest[((*n)++)]=0;
537 dest[((*n)++)]=0;
538 dest[((*n)++)]=0;
539 }
540 }
541
542 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
543 if(c==10) {
544 for (idx=0; idx<5; idx++) {
545 dest[((*n)++)]=1;
546 dest[((*n)++)]=1;
547 dest[((*n)++)]=1;
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 }
556 }
e09f21fa 557}
558// compose fc/X fc/Y waveform (FSKx)
712ebfa6 559static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
e09f21fa 560{
e0165dcf 561 uint8_t *dest = BigBuf_get_addr();
562 uint8_t halfFC = fc/2;
563 uint8_t wavesPerClock = clock/fc;
564 uint8_t mod = clock % fc; //modifier
565 uint8_t modAdj = fc/mod; //how often to apply modifier
566 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
567 // loop through clock - step field clock
568 for (uint8_t idx=0; idx < wavesPerClock; idx++){
569 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
570 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
571 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
572 *n += fc;
573 }
574 if (mod>0) (*modCnt)++;
575 if ((mod>0) && modAdjOk){ //fsk2
576 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
577 memset(dest+(*n), 0, fc-halfFC);
578 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
579 *n += fc;
580 }
581 }
582 if (mod>0 && !modAdjOk){ //fsk1
583 memset(dest+(*n), 0, mod-(mod/2));
584 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
585 *n += mod;
586 }
e09f21fa 587}
588
589// prepare a waveform pattern in the buffer based on the ID given then
590// simulate a HID tag until the button is pressed
591void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
592{
e0165dcf 593 int n=0, i=0;
594 /*
595 HID tag bitstream format
596 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
597 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
598 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
599 A fc8 is inserted before every 4 bits
600 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
601 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
602 */
603
604 if (hi>0xFFF) {
605 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
606 return;
607 }
f2081c43 608 // set LF so we don't kill the bigbuf we are setting with simulation data.
609 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
610
e0165dcf 611 fc(0,&n);
612 // special start of frame marker containing invalid bit sequences
613 fc(8, &n); fc(8, &n); // invalid
614 fc(8, &n); fc(10, &n); // logical 0
615 fc(10, &n); fc(10, &n); // invalid
616 fc(8, &n); fc(10, &n); // logical 0
617
618 WDT_HIT();
619 // manchester encode bits 43 to 32
620 for (i=11; i>=0; i--) {
621 if ((i%4)==3) fc(0,&n);
622 if ((hi>>i)&1) {
623 fc(10, &n); fc(8, &n); // low-high transition
624 } else {
625 fc(8, &n); fc(10, &n); // high-low transition
626 }
627 }
628
629 WDT_HIT();
630 // manchester encode bits 31 to 0
631 for (i=31; i>=0; i--) {
632 if ((i%4)==3) fc(0,&n);
633 if ((lo>>i)&1) {
634 fc(10, &n); fc(8, &n); // low-high transition
635 } else {
636 fc(8, &n); fc(10, &n); // high-low transition
637 }
638 }
639
640 if (ledcontrol)
641 LED_A_ON();
642 SimulateTagLowFrequency(n, 0, ledcontrol);
643
644 if (ledcontrol)
645 LED_A_OFF();
e09f21fa 646}
647
648// prepare a waveform pattern in the buffer based on the ID given then
649// simulate a FSK tag until the button is pressed
650// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
651void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
652{
e0165dcf 653 int ledcontrol=1;
654 int n=0, i=0;
655 uint8_t fcHigh = arg1 >> 8;
656 uint8_t fcLow = arg1 & 0xFF;
657 uint16_t modCnt = 0;
658 uint8_t clk = arg2 & 0xFF;
659 uint8_t invert = (arg2 >> 8) & 1;
660
f2081c43 661 // set LF so we don't kill the bigbuf we are setting with simulation data.
662 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
663
e0165dcf 664 for (i=0; i<size; i++){
665 if (BitStream[i] == invert){
666 fcAll(fcLow, &n, clk, &modCnt);
667 } else {
668 fcAll(fcHigh, &n, clk, &modCnt);
669 }
670 }
671 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
672 /*Dbprintf("DEBUG: First 32:");
673 uint8_t *dest = BigBuf_get_addr();
674 i=0;
675 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
676 i+=16;
677 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
678 */
679 if (ledcontrol)
680 LED_A_ON();
681
682 SimulateTagLowFrequency(n, 0, ledcontrol);
683
684 if (ledcontrol)
685 LED_A_OFF();
e09f21fa 686}
687
688// compose ask waveform for one bit(ASK)
e0165dcf 689static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
e09f21fa 690{
e0165dcf 691 uint8_t *dest = BigBuf_get_addr();
692 uint8_t halfClk = clock/2;
693 // c = current bit 1 or 0
694 if (manchester==1){
695 memset(dest+(*n), c, halfClk);
696 memset(dest+(*n) + halfClk, c^1, halfClk);
697 } else {
698 memset(dest+(*n), c, clock);
699 }
700 *n += clock;
e09f21fa 701}
702
b41534d1 703static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
704{
e0165dcf 705 uint8_t *dest = BigBuf_get_addr();
706 uint8_t halfClk = clock/2;
707 if (c){
708 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
709 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
710 } else {
711 memset(dest+(*n), c ^ *phase, clock);
712 *phase ^= 1;
713 }
39611e3d 714 *n += clock;
b41534d1 715}
716
29ada8fc 717static void stAskSimBit(int *n, uint8_t clock) {
718 uint8_t *dest = BigBuf_get_addr();
719 uint8_t halfClk = clock/2;
720 //ST = .5 high .5 low 1.5 high .5 low 1 high
721 memset(dest+(*n), 1, halfClk);
722 memset(dest+(*n) + halfClk, 0, halfClk);
723 memset(dest+(*n) + clock, 1, clock + halfClk);
724 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
725 memset(dest+(*n) + clock*3, 1, clock);
726 *n += clock*4;
727}
728
e09f21fa 729// args clock, ask/man or askraw, invert, transmission separator
730void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
731{
e0165dcf 732 int ledcontrol = 1;
733 int n=0, i=0;
734 uint8_t clk = (arg1 >> 8) & 0xFF;
2b3af97d 735 uint8_t encoding = arg1 & 0xFF;
e0165dcf 736 uint8_t separator = arg2 & 1;
737 uint8_t invert = (arg2 >> 8) & 1;
738
f2081c43 739 // set LF so we don't kill the bigbuf we are setting with simulation data.
740 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
741
e0165dcf 742 if (encoding==2){ //biphase
743 uint8_t phase=0;
744 for (i=0; i<size; i++){
745 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
746 }
39611e3d 747 if (phase==1) { //run a second set inverted to keep phase in check
e0165dcf 748 for (i=0; i<size; i++){
749 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
750 }
751 }
752 } else { // ask/manchester || ask/raw
753 for (i=0; i<size; i++){
754 askSimBit(BitStream[i]^invert, &n, clk, encoding);
755 }
7666f460 756 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
e0165dcf 757 for (i=0; i<size; i++){
758 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
759 }
760 }
761 }
29ada8fc 762 if (separator==1 && encoding == 1)
763 stAskSimBit(&n, clk);
764 else if (separator==1)
765 Dbprintf("sorry but separator option not yet available");
e0165dcf 766
767 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
768 //DEBUG
769 //Dbprintf("First 32:");
770 //uint8_t *dest = BigBuf_get_addr();
771 //i=0;
772 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
773 //i+=16;
774 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
39611e3d 775
709665b5 776 if (ledcontrol) LED_A_ON();
e0165dcf 777 SimulateTagLowFrequency(n, 0, ledcontrol);
709665b5 778 if (ledcontrol) LED_A_OFF();
e09f21fa 779}
780
781//carrier can be 2,4 or 8
782static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
783{
e0165dcf 784 uint8_t *dest = BigBuf_get_addr();
785 uint8_t halfWave = waveLen/2;
786 //uint8_t idx;
787 int i = 0;
788 if (phaseChg){
789 // write phase change
790 memset(dest+(*n), *curPhase^1, halfWave);
791 memset(dest+(*n) + halfWave, *curPhase, halfWave);
792 *n += waveLen;
793 *curPhase ^= 1;
794 i += waveLen;
795 }
796 //write each normal clock wave for the clock duration
797 for (; i < clk; i+=waveLen){
798 memset(dest+(*n), *curPhase, halfWave);
799 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
800 *n += waveLen;
801 }
e09f21fa 802}
803
804// args clock, carrier, invert,
805void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
806{
e0165dcf 807 int ledcontrol=1;
808 int n=0, i=0;
809 uint8_t clk = arg1 >> 8;
810 uint8_t carrier = arg1 & 0xFF;
811 uint8_t invert = arg2 & 0xFF;
812 uint8_t curPhase = 0;
f2081c43 813 // set LF so we don't kill the bigbuf we are setting with simulation data.
814 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
815
e0165dcf 816 for (i=0; i<size; i++){
817 if (BitStream[i] == curPhase){
818 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
819 } else {
820 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
821 }
822 }
823 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
824 //Dbprintf("DEBUG: First 32:");
825 //uint8_t *dest = BigBuf_get_addr();
826 //i=0;
827 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
828 //i+=16;
829 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
830
709665b5 831 if (ledcontrol) LED_A_ON();
e0165dcf 832 SimulateTagLowFrequency(n, 0, ledcontrol);
709665b5 833 if (ledcontrol) LED_A_OFF();
e09f21fa 834}
835
836// loop to get raw HID waveform then FSK demodulate the TAG ID from it
837void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
838{
e0165dcf 839 uint8_t *dest = BigBuf_get_addr();
2eec55c8 840 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
841 size_t size;
e0165dcf 842 uint32_t hi2=0, hi=0, lo=0;
843 int idx=0;
1c70664a 844 int dummyIdx = 0;
e0165dcf 845 // Configure to go in 125Khz listen mode
846 LFSetupFPGAForADC(95, true);
e09f21fa 847
3cec7061 848 //clear read buffer
29b75739 849 BigBuf_Clear_keep_EM();
3cec7061 850
d10e08ae 851 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e09f21fa 852
e0165dcf 853 WDT_HIT();
854 if (ledcontrol) LED_A_ON();
e09f21fa 855
856 DoAcquisition_default(-1,true);
857 // FSK demodulator
2eec55c8 858 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
859 size = 50*128*2; //big enough to catch 2 sequences of largest format
1c70664a 860 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
e0165dcf 861
2eec55c8 862 if (idx>0 && lo>0 && (size==96 || size==192)){
863 // go over previously decoded manchester data and decode into usable tag ID
864 if (hi2 != 0){ //extra large HID tags 88/192 bits
e0165dcf 865 Dbprintf("TAG ID: %x%08x%08x (%d)",
866 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
2eec55c8 867 }else { //standard HID tags 44/96 bits
e0165dcf 868 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
869 uint8_t bitlen = 0;
870 uint32_t fc = 0;
871 uint32_t cardnum = 0;
e09f21fa 872 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
e0165dcf 873 uint32_t lo2=0;
874 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
875 uint8_t idx3 = 1;
e09f21fa 876 while(lo2 > 1){ //find last bit set to 1 (format len bit)
877 lo2=lo2 >> 1;
e0165dcf 878 idx3++;
879 }
e09f21fa 880 bitlen = idx3+19;
e0165dcf 881 fc =0;
882 cardnum=0;
e09f21fa 883 if(bitlen == 26){
e0165dcf 884 cardnum = (lo>>1)&0xFFFF;
885 fc = (lo>>17)&0xFF;
886 }
e09f21fa 887 if(bitlen == 37){
e0165dcf 888 cardnum = (lo>>1)&0x7FFFF;
889 fc = ((hi&0xF)<<12)|(lo>>20);
890 }
e09f21fa 891 if(bitlen == 34){
e0165dcf 892 cardnum = (lo>>1)&0xFFFF;
893 fc= ((hi&1)<<15)|(lo>>17);
894 }
e09f21fa 895 if(bitlen == 35){
e0165dcf 896 cardnum = (lo>>1)&0xFFFFF;
897 fc = ((hi&1)<<11)|(lo>>21);
898 }
899 }
900 else { //if bit 38 is not set then 37 bit format is used
901 bitlen= 37;
902 fc =0;
903 cardnum=0;
904 if(bitlen==37){
905 cardnum = (lo>>1)&0x7FFFF;
906 fc = ((hi&0xF)<<12)|(lo>>20);
907 }
908 }
909 //Dbprintf("TAG ID: %x%08x (%d)",
910 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
911 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
912 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
913 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
914 }
915 if (findone){
916 if (ledcontrol) LED_A_OFF();
917 *high = hi;
918 *low = lo;
89696b8b 919 break;
e0165dcf 920 }
921 // reset
e0165dcf 922 }
2eec55c8 923 hi2 = hi = lo = idx = 0;
e0165dcf 924 WDT_HIT();
925 }
89696b8b 926
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e0165dcf 928 DbpString("Stopped");
929 if (ledcontrol) LED_A_OFF();
e09f21fa 930}
931
dbf6e824
CY
932// loop to get raw HID waveform then FSK demodulate the TAG ID from it
933void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
934{
935 uint8_t *dest = BigBuf_get_addr();
dbf6e824 936 size_t size;
1c70664a 937 int idx=0, dummyIdx=0;
3cec7061 938 //clear read buffer
29b75739 939 BigBuf_Clear_keep_EM();
dbf6e824
CY
940 // Configure to go in 125Khz listen mode
941 LFSetupFPGAForADC(95, true);
942
d10e08ae 943 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
dbf6e824
CY
944
945 WDT_HIT();
946 if (ledcontrol) LED_A_ON();
947
948 DoAcquisition_default(-1,true);
949 // FSK demodulator
dbf6e824 950 size = 50*128*2; //big enough to catch 2 sequences of largest format
1c70664a 951 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
dbf6e824 952
709665b5 953 if (idx<=0 || size!=96) continue;
954 // Index map
955 // 0 10 20 30 40 50 60
956 // | | | | | | |
957 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
958 // -----------------------------------------------------------------------------
959 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
960 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
961 // |---26 bit---| |-----117----||-------------142-------------|
962 // b = format bit len, o = odd parity of last 3 bits
963 // f = facility code, c = card number
964 // w = wiegand parity
965 // (26 bit format shown)
966
967 //get raw ID before removing parities
968 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
969 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
970 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
971
972 size = removeParity(dest, idx+8, 4, 1, 88);
973 if (size != 66) continue;
974 // ok valid card found!
975
976 // Index map
977 // 0 10 20 30 40 50 60
978 // | | | | | | |
979 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
980 // -----------------------------------------------------------------------------
981 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
982 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
983 // |26 bit| |-117--| |-----142------|
984 // b = format bit len, o = odd parity of last 3 bits
985 // f = facility code, c = card number
986 // w = wiegand parity
987 // (26 bit format shown)
988
989 uint32_t fc = 0;
990 uint32_t cardnum = 0;
991 uint32_t code1 = 0;
992 uint32_t code2 = 0;
993 uint8_t fmtLen = bytebits_to_byte(dest,8);
994 if (fmtLen==26){
995 fc = bytebits_to_byte(dest+9, 8);
996 cardnum = bytebits_to_byte(dest+17, 16);
997 code1 = bytebits_to_byte(dest+8,fmtLen);
998 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
999 } else {
1000 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1001 if (fmtLen>32){
1002 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1003 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1004 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1005 } else{
1006 code1 = bytebits_to_byte(dest+8,fmtLen);
1007 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
dbf6e824 1008 }
dbf6e824 1009 }
709665b5 1010 if (findone){
1011 if (ledcontrol) LED_A_OFF();
89696b8b 1012 break;
709665b5 1013 }
1014 // reset
dbf6e824
CY
1015 idx = 0;
1016 WDT_HIT();
1017 }
89696b8b 1018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
dbf6e824
CY
1019 DbpString("Stopped");
1020 if (ledcontrol) LED_A_OFF();
1021}
1022
e09f21fa 1023void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1024{
e0165dcf 1025 uint8_t *dest = BigBuf_get_addr();
1026
1027 size_t size=0, idx=0;
1028 int clk=0, invert=0, errCnt=0, maxErr=20;
1029 uint32_t hi=0;
1030 uint64_t lo=0;
3cec7061 1031 //clear read buffer
29b75739 1032 BigBuf_Clear_keep_EM();
e0165dcf 1033 // Configure to go in 125Khz listen mode
1034 LFSetupFPGAForADC(95, true);
1035
d10e08ae 1036 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 1037
1038 WDT_HIT();
1039 if (ledcontrol) LED_A_ON();
1040
1041 DoAcquisition_default(-1,true);
1042 size = BigBuf_max_traceLen();
e0165dcf 1043 //askdemod and manchester decode
2eec55c8 1044 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
fef74fdc 1045 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
e0165dcf 1046 WDT_HIT();
1047
2eec55c8 1048 if (errCnt<0) continue;
1049
1050 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1051 if (errCnt){
1052 if (size>64){
1053 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1054 hi,
1055 (uint32_t)(lo>>32),
1056 (uint32_t)lo,
1057 (uint32_t)(lo&0xFFFF),
1058 (uint32_t)((lo>>16LL) & 0xFF),
1059 (uint32_t)(lo & 0xFFFFFF));
1060 } else {
1061 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1062 (uint32_t)(lo>>32),
1063 (uint32_t)lo,
1064 (uint32_t)(lo&0xFFFF),
1065 (uint32_t)((lo>>16LL) & 0xFF),
1066 (uint32_t)(lo & 0xFFFFFF));
e0165dcf 1067 }
2eec55c8 1068
e0165dcf 1069 if (findone){
1070 if (ledcontrol) LED_A_OFF();
1071 *high=lo>>32;
1072 *low=lo & 0xFFFFFFFF;
89696b8b 1073 break;
e0165dcf 1074 }
e0165dcf 1075 }
1076 WDT_HIT();
2eec55c8 1077 hi = lo = size = idx = 0;
1078 clk = invert = errCnt = 0;
e0165dcf 1079 }
89696b8b 1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e0165dcf 1081 DbpString("Stopped");
1082 if (ledcontrol) LED_A_OFF();
e09f21fa 1083}
1084
1085void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1086{
e0165dcf 1087 uint8_t *dest = BigBuf_get_addr();
1088 int idx=0;
1089 uint32_t code=0, code2=0;
1090 uint8_t version=0;
1091 uint8_t facilitycode=0;
1092 uint16_t number=0;
1c70664a 1093 int dummyIdx=0;
3cec7061 1094 //clear read buffer
29b75739 1095 BigBuf_Clear_keep_EM();
e0165dcf 1096 // Configure to go in 125Khz listen mode
1097 LFSetupFPGAForADC(95, true);
1098
d10e08ae 1099 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 1100 WDT_HIT();
1101 if (ledcontrol) LED_A_ON();
e09f21fa 1102 DoAcquisition_default(-1,true);
1103 //fskdemod and get start index
e0165dcf 1104 WDT_HIT();
1c70664a 1105 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
2eec55c8 1106 if (idx<0) continue;
1107 //valid tag found
1108
1109 //Index map
1110 //0 10 20 30 40 50 60
1111 //| | | | | | |
1112 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1113 //-----------------------------------------------------------------------------
1114 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1115 //
1116 //XSF(version)facility:codeone+codetwo
1117 //Handle the data
1118 if(findone){ //only print binary if we are doing one
1119 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1120 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1121 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1122 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1123 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1124 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1125 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1126 }
1127 code = bytebits_to_byte(dest+idx,32);
1128 code2 = bytebits_to_byte(dest+idx+32,32);
1129 version = bytebits_to_byte(dest+idx+27,8); //14,4
1130 facilitycode = bytebits_to_byte(dest+idx+18,8);
1131 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1132
1133 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1134 // if we're only looking for one tag
1135 if (findone){
1136 if (ledcontrol) LED_A_OFF();
1137 //LED_A_OFF();
1138 *high=code;
1139 *low=code2;
89696b8b 1140 break;
e0165dcf 1141 }
2eec55c8 1142 code=code2=0;
1143 version=facilitycode=0;
1144 number=0;
1145 idx=0;
1146
e0165dcf 1147 WDT_HIT();
1148 }
89696b8b 1149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e0165dcf 1150 DbpString("Stopped");
1151 if (ledcontrol) LED_A_OFF();
e09f21fa 1152}
1153
1154/*------------------------------
3606ac0a 1155 * T5555/T5557/T5567/T5577 routines
e09f21fa 1156 *------------------------------
709665b5 1157 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1158 *
3606ac0a 1159 * Relevant communication times in microsecond
e09f21fa 1160 * To compensate antenna falling times shorten the write times
1161 * and enlarge the gap ones.
7cfc777b 1162 * Q5 tags seems to have issues when these values changes.
e09f21fa 1163 */
4a3f1a37 1164#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1165#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1166#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1167#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
6fe5c94b 1168#define READ_GAP 15*8
7cfc777b 1169
1170void TurnReadLFOn(int delay) {
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1172 // Give it a bit of time for the resonant antenna to settle.
b97311b1 1173 WaitUS(delay); //155*8 //50*8
7cfc777b 1174}
13d77ef9 1175
e09f21fa 1176// Write one bit to card
7cfc777b 1177void T55xxWriteBit(int bit) {
7cfc777b 1178 if (!bit)
3606ac0a 1179 TurnReadLFOn(WRITE_0);
e0165dcf 1180 else
3606ac0a 1181 TurnReadLFOn(WRITE_1);
e0165dcf 1182 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b97311b1 1183 WaitUS(WRITE_GAP);
e09f21fa 1184}
1185
66837a03 1186// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1187void T55xxResetRead(void) {
1188 LED_A_ON();
9f669cb2 1189 //clear buffer now so it does not interfere with timing later
29b75739 1190 BigBuf_Clear_keep_EM();
9f669cb2 1191
66837a03 1192 // Set up FPGA, 125kHz
1193 LFSetupFPGAForADC(95, true);
b97311b1 1194 StartTicks();
1195 // make sure tag is fully powered up...
1196 WaitMS(5);
1197
66837a03 1198 // Trigger T55x7 in mode.
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b97311b1 1200 WaitUS(START_GAP);
66837a03 1201
1202 // reset tag - op code 00
1203 T55xxWriteBit(0);
1204 T55xxWriteBit(0);
1205
66837a03 1206 TurnReadLFOn(READ_GAP);
1207
1208 // Acquisition
217cfb6b 1209 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
66837a03 1210
1211 // Turn the field off
1212 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1213 cmd_send(CMD_ACK,0,0,0,0,0);
1214 LED_A_OFF();
1215}
1216
e09f21fa 1217// Write one card block in page 0, no lock
66837a03 1218void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
7cfc777b 1219 LED_A_ON();
be2d41b7 1220 bool PwdMode = arg & 0x1;
1221 uint8_t Page = (arg & 0x2)>>1;
b97311b1 1222 bool testMode = arg & 0x4;
e0165dcf 1223 uint32_t i = 0;
1224
1225 // Set up FPGA, 125kHz
f4eadf8a 1226 LFSetupFPGAForADC(95, true);
b97311b1 1227 StartTicks();
1228 // make sure tag is fully powered up...
1229 WaitMS(5);
7cfc777b 1230 // Trigger T55x7 in mode.
e0165dcf 1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b97311b1 1232 WaitUS(START_GAP);
e0165dcf 1233
b97311b1 1234 if (testMode) Dbprintf("TestMODE");
1235 // Std Opcode 10
1236 T55xxWriteBit(testMode ? 0 : 1);
1237 T55xxWriteBit(testMode ? 1 : Page); //Page 0
2229ee89 1238
1239 if (PwdMode) {
7cfc777b 1240 // Send Pwd
e0165dcf 1241 for (i = 0x80000000; i != 0; i >>= 1)
1242 T55xxWriteBit(Pwd & i);
1243 }
7cfc777b 1244 // Send Lock bit
e0165dcf 1245 T55xxWriteBit(0);
1246
7cfc777b 1247 // Send Data
e0165dcf 1248 for (i = 0x80000000; i != 0; i >>= 1)
1249 T55xxWriteBit(Data & i);
1250
7cfc777b 1251 // Send Block number
e0165dcf 1252 for (i = 0x04; i != 0; i >>= 1)
1253 T55xxWriteBit(Block & i);
1254
7cfc777b 1255 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
e0165dcf 1256 // so wait a little more)
b97311b1 1257
1258 // "there is a clock delay before programming"
2229ee89 1259 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
b97311b1 1260 // so we should wait 1 clock + 5.6ms then read response?
2229ee89 1261 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
b97311b1 1262 if (testMode) {
2229ee89 1263 //TESTMODE TIMING TESTS:
1264 // <566us does nothing
1265 // 566-568 switches between wiping to 0s and doing nothing
1266 // 5184 wipes and allows 1 block to be programmed.
1267 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1268 TurnReadLFOn(5184);
b97311b1 1269
b97311b1 1270 } else {
1271 TurnReadLFOn(20 * 1000);
be2d41b7 1272 //could attempt to do a read to confirm write took
1273 // as the tag should repeat back the new block
1274 // until it is reset, but to confirm it we would
b97311b1 1275 // need to know the current block 0 config mode for
1276 // modulation clock an other details to demod the response...
1277 // response should be (for t55x7) a 0 bit then (ST if on)
1278 // block data written in on repeat until reset.
e09f21fa 1279
2229ee89 1280 //DoPartialAcquisition(20, true, 12000);
1281 }
1282
7cfc777b 1283 // turn field off
1284 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
7cfc777b 1285 LED_A_OFF();
13d77ef9 1286}
1287
66837a03 1288// Write one card block in page 0, no lock
1289void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1290 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1291 cmd_send(CMD_ACK,0,0,0,0,0);
1292}
1293
db829602 1294// Read one card block in page [page]
8e99ec25 1295void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
7cfc777b 1296 LED_A_ON();
be2d41b7 1297 bool PwdMode = arg0 & 0x1;
1298 uint8_t Page = (arg0 & 0x2) >> 1;
e0165dcf 1299 uint32_t i = 0;
bf85d22f 1300 bool RegReadMode = (Block == 0xFF);//regular read mode
e0165dcf 1301
7cfc777b 1302 //clear buffer now so it does not interfere with timing later
1303 BigBuf_Clear_ext(false);
f4eadf8a 1304
7cfc777b 1305 //make sure block is at max 7
1306 Block &= 0x7;
1307
0c8200f1 1308 // Set up FPGA, 125kHz to power up the tag
f4eadf8a 1309 LFSetupFPGAForADC(95, true);
b97311b1 1310 StartTicks();
1311 // make sure tag is fully powered up...
1312 WaitMS(5);
0c8200f1 1313 // Trigger T55x7 Direct Access Mode with start gap
e0165dcf 1314 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b97311b1 1315 WaitUS(START_GAP);
e0165dcf 1316
3606ac0a 1317 // Opcode 1[page]
e0165dcf 1318 T55xxWriteBit(1);
be2d41b7 1319 T55xxWriteBit(Page); //Page 0
7cfc777b 1320
be2d41b7 1321 if (PwdMode){
7cfc777b 1322 // Send Pwd
e0165dcf 1323 for (i = 0x80000000; i != 0; i >>= 1)
1324 T55xxWriteBit(Pwd & i);
1325 }
be2d41b7 1326 // Send a zero bit separation
1327 T55xxWriteBit(0);
7cfc777b 1328
be2d41b7 1329 // Send Block number (if direct access mode)
1330 if (!RegReadMode)
8e99ec25 1331 for (i = 0x04; i != 0; i >>= 1)
1332 T55xxWriteBit(Block & i);
e0165dcf 1333
1334 // Turn field on to read the response
bf85d22f 1335 // 137*8 seems to get to the start of data pretty well...
1336 // but we want to go past the start and let the repeating data settle in...
1337 TurnReadLFOn(210*8);
f4eadf8a 1338
7cfc777b 1339 // Acquisition
b97311b1 1340 // Now do the acquisition
217cfb6b 1341 DoPartialAcquisition(0, true, 12000, 0);
b97311b1 1342
7cfc777b 1343 // Turn the field off
e0165dcf 1344 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
7cfc777b 1345 cmd_send(CMD_ACK,0,0,0,0,0);
1346 LED_A_OFF();
e09f21fa 1347}
1348
be2d41b7 1349void T55xxWakeUp(uint32_t Pwd){
1350 LED_B_ON();
1351 uint32_t i = 0;
1352
1353 // Set up FPGA, 125kHz
1354 LFSetupFPGAForADC(95, true);
b97311b1 1355 StartTicks();
1356 // make sure tag is fully powered up...
1357 WaitMS(5);
be2d41b7 1358
1359 // Trigger T55x7 Direct Access Mode
1360 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b97311b1 1361 WaitUS(START_GAP);
be2d41b7 1362
1363 // Opcode 10
1364 T55xxWriteBit(1);
1365 T55xxWriteBit(0); //Page 0
1366
1367 // Send Pwd
1368 for (i = 0x80000000; i != 0; i >>= 1)
1369 T55xxWriteBit(Pwd & i);
1370
1371 // Turn and leave field on to let the begin repeating transmission
1372 TurnReadLFOn(20*1000);
1373}
e09f21fa 1374
1375/*-------------- Cloning routines -----------*/
3606ac0a 1376
1377void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1378 // write last block first and config block last (if included)
66837a03 1379 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
66837a03 1380 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1381 }
3606ac0a 1382}
1383
e09f21fa 1384// Copy HID id to card and setup block 0 config
3606ac0a 1385void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1386 uint32_t data[] = {0,0,0,0,0,0,0};
3606ac0a 1387 uint8_t last_block = 0;
e0165dcf 1388
3606ac0a 1389 if (longFMT) {
e0165dcf 1390 // Ensure no more than 84 bits supplied
1391 if (hi2>0xFFFFF) {
1392 DbpString("Tags can only have 84 bits.");
1393 return;
1394 }
1395 // Build the 6 data blocks for supplied 84bit ID
1396 last_block = 6;
3606ac0a 1397 // load preamble (1D) & long format identifier (9E manchester encoded)
66837a03 1398 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
3606ac0a 1399 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1400 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1401 data[3] = manchesterEncode2Bytes(hi >> 16);
1402 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1403 data[5] = manchesterEncode2Bytes(lo >> 16);
1404 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1405 } else {
e0165dcf 1406 // Ensure no more than 44 bits supplied
1407 if (hi>0xFFF) {
1408 DbpString("Tags can only have 44 bits.");
1409 return;
1410 }
e0165dcf 1411 // Build the 3 data blocks for supplied 44bit ID
1412 last_block = 3;
3606ac0a 1413 // load preamble
66837a03 1414 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
3606ac0a 1415 data[2] = manchesterEncode2Bytes(lo >> 16);
1416 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
e0165dcf 1417 }
3606ac0a 1418 // load chip config block
1419 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
e0165dcf 1420
76346455 1421 //TODO add selection of chip for Q5 or T55x7
1422 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1423
e0165dcf 1424 LED_D_ON();
1425 // Program the data blocks for supplied ID
1426 // and the block 0 for HID format
3606ac0a 1427 WriteT55xx(data, 0, last_block+1);
e0165dcf 1428
1429 LED_D_OFF();
1430
1431 DbpString("DONE!");
e09f21fa 1432}
1433
9f669cb2 1434void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
3606ac0a 1435 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
76346455 1436 //TODO add selection of chip for Q5 or T55x7
1437 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
e09f21fa 1438
e0165dcf 1439 LED_D_ON();
1440 // Program the data blocks for supplied ID
3606ac0a 1441 // and the block 0 config
1442 WriteT55xx(data, 0, 3);
e09f21fa 1443
e0165dcf 1444 LED_D_OFF();
e09f21fa 1445
e0165dcf 1446 DbpString("DONE!");
e09f21fa 1447}
1448
3606ac0a 1449// Clone Indala 64-bit tag by UID to T55x7
1450void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1451 //Program the 2 data blocks for supplied 64bit UID
1452 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1453 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
76346455 1454 //TODO add selection of chip for Q5 or T55x7
1455 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1456
3606ac0a 1457 WriteT55xx(data, 0, 3);
1458 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1459 // T5567WriteBlock(0x603E1042,0);
1460 DbpString("DONE!");
1461}
1462// Clone Indala 224-bit tag by UID to T55x7
66837a03 1463void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
3606ac0a 1464 //Program the 7 data blocks for supplied 224bit UID
1465 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1466 // and the block 0 for Indala224 format
1dae9811 1467 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1468 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
76346455 1469 //TODO add selection of chip for Q5 or T55x7
1dae9811 1470 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
3606ac0a 1471 WriteT55xx(data, 0, 8);
1472 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1473 // T5567WriteBlock(0x603E10E2,0);
1474 DbpString("DONE!");
1475}
709665b5 1476// clone viking tag to T55xx
1477void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1478 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
b97311b1 1479 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
709665b5 1480 // Program the data blocks for supplied ID and the block 0 config
1481 WriteT55xx(data, 0, 3);
1482 LED_D_OFF();
1483 cmd_send(CMD_ACK,0,0,0,0,0);
1484}
3606ac0a 1485
e09f21fa 1486// Define 9bit header for EM410x tags
3606ac0a 1487#define EM410X_HEADER 0x1FF
e09f21fa 1488#define EM410X_ID_LENGTH 40
1489
66837a03 1490void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
e0165dcf 1491 int i, id_bit;
1492 uint64_t id = EM410X_HEADER;
1493 uint64_t rev_id = 0; // reversed ID
1494 int c_parity[4]; // column parity
1495 int r_parity = 0; // row parity
1496 uint32_t clock = 0;
1497
1498 // Reverse ID bits given as parameter (for simpler operations)
1499 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1500 if (i < 32) {
1501 rev_id = (rev_id << 1) | (id_lo & 1);
1502 id_lo >>= 1;
1503 } else {
1504 rev_id = (rev_id << 1) | (id_hi & 1);
1505 id_hi >>= 1;
1506 }
1507 }
1508
1509 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1510 id_bit = rev_id & 1;
1511
1512 if (i % 4 == 0) {
1513 // Don't write row parity bit at start of parsing
1514 if (i)
1515 id = (id << 1) | r_parity;
1516 // Start counting parity for new row
1517 r_parity = id_bit;
1518 } else {
1519 // Count row parity
1520 r_parity ^= id_bit;
1521 }
1522
1523 // First elements in column?
1524 if (i < 4)
1525 // Fill out first elements
1526 c_parity[i] = id_bit;
1527 else
1528 // Count column parity
1529 c_parity[i % 4] ^= id_bit;
1530
1531 // Insert ID bit
1532 id = (id << 1) | id_bit;
1533 rev_id >>= 1;
1534 }
1535
1536 // Insert parity bit of last row
1537 id = (id << 1) | r_parity;
1538
1539 // Fill out column parity at the end of tag
1540 for (i = 0; i < 4; ++i)
1541 id = (id << 1) | c_parity[i];
1542
1543 // Add stop bit
1544 id <<= 1;
1545
1546 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1547 LED_D_ON();
1548
1549 // Write EM410x ID
72c5877a 1550 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
76346455 1551
1552 clock = (card & 0xFF00) >> 8;
1553 clock = (clock == 0) ? 64 : clock;
1554 Dbprintf("Clock rate: %d", clock);
1555 if (card & 0xFF) { //t55x7
1556 clock = GetT55xxClockBit(clock);
3606ac0a 1557 if (clock == 0) {
e0165dcf 1558 Dbprintf("Invalid clock rate: %d", clock);
1559 return;
1560 }
3606ac0a 1561 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
76346455 1562 } else { //t5555 (Q5)
b97311b1 1563 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
e0165dcf 1564 }
3606ac0a 1565
1566 WriteT55xx(data, 0, 3);
e0165dcf 1567
1568 LED_D_OFF();
1569 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1570 (uint32_t)(id >> 32), (uint32_t)id);
e09f21fa 1571}
1572
e09f21fa 1573//-----------------------------------
1574// EM4469 / EM4305 routines
1575//-----------------------------------
1576#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1577#define FWD_CMD_WRITE 0xA
1578#define FWD_CMD_READ 0x9
1579#define FWD_CMD_DISABLE 0x5
1580
e09f21fa 1581uint8_t forwardLink_data[64]; //array of forwarded bits
1582uint8_t * forward_ptr; //ptr for forward message preparation
1583uint8_t fwd_bit_sz; //forwardlink bit counter
1584uint8_t * fwd_write_ptr; //forwardlink bit pointer
1585
1586//====================================================================
1587// prepares command bits
1588// see EM4469 spec
1589//====================================================================
1590//--------------------------------------------------------------------
db829602 1591// VALUES TAKEN FROM EM4x function: SendForward
1592// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1593// WRITE_GAP = 128; (16*8)
1594// WRITE_1 = 256 32*8; (32*8)
1595
1596// These timings work for 4469/4269/4305 (with the 55*8 above)
1597// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1598
e09f21fa 1599uint8_t Prepare_Cmd( uint8_t cmd ) {
e09f21fa 1600
e0165dcf 1601 *forward_ptr++ = 0; //start bit
1602 *forward_ptr++ = 0; //second pause for 4050 code
e09f21fa 1603
e0165dcf 1604 *forward_ptr++ = cmd;
1605 cmd >>= 1;
1606 *forward_ptr++ = cmd;
1607 cmd >>= 1;
1608 *forward_ptr++ = cmd;
1609 cmd >>= 1;
1610 *forward_ptr++ = cmd;
e09f21fa 1611
e0165dcf 1612 return 6; //return number of emited bits
e09f21fa 1613}
1614
1615//====================================================================
1616// prepares address bits
1617// see EM4469 spec
1618//====================================================================
e09f21fa 1619uint8_t Prepare_Addr( uint8_t addr ) {
e09f21fa 1620
e0165dcf 1621 register uint8_t line_parity;
e09f21fa 1622
e0165dcf 1623 uint8_t i;
1624 line_parity = 0;
1625 for(i=0;i<6;i++) {
1626 *forward_ptr++ = addr;
1627 line_parity ^= addr;
1628 addr >>= 1;
1629 }
e09f21fa 1630
e0165dcf 1631 *forward_ptr++ = (line_parity & 1);
e09f21fa 1632
e0165dcf 1633 return 7; //return number of emited bits
e09f21fa 1634}
1635
1636//====================================================================
1637// prepares data bits intreleaved with parity bits
1638// see EM4469 spec
1639//====================================================================
e09f21fa 1640uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
e0165dcf 1641
1642 register uint8_t line_parity;
1643 register uint8_t column_parity;
1644 register uint8_t i, j;
1645 register uint16_t data;
1646
1647 data = data_low;
1648 column_parity = 0;
1649
1650 for(i=0; i<4; i++) {
1651 line_parity = 0;
1652 for(j=0; j<8; j++) {
1653 line_parity ^= data;
1654 column_parity ^= (data & 1) << j;
1655 *forward_ptr++ = data;
1656 data >>= 1;
1657 }
1658 *forward_ptr++ = line_parity;
1659 if(i == 1)
1660 data = data_hi;
1661 }
1662
1663 for(j=0; j<8; j++) {
1664 *forward_ptr++ = column_parity;
1665 column_parity >>= 1;
1666 }
1667 *forward_ptr = 0;
1668
1669 return 45; //return number of emited bits
e09f21fa 1670}
1671
1672//====================================================================
1673// Forward Link send function
1674// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1675// fwd_bit_count set with number of bits to be sent
1676//====================================================================
1677void SendForward(uint8_t fwd_bit_count) {
1678
e0165dcf 1679 fwd_write_ptr = forwardLink_data;
1680 fwd_bit_sz = fwd_bit_count;
1681
40c6a02b 1682 // Set up FPGA, 125kHz or 95 divisor
7cfc777b 1683 LFSetupFPGAForADC(95, true);
fa1e00cf 1684
e0165dcf 1685 // force 1st mod pulse (start gap must be longer for 4305)
1686 fwd_bit_sz--; //prepare next bit modulation
1687 fwd_write_ptr++;
1688 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
62a38cc8 1689 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
e0165dcf 1690 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
62a38cc8 1691 WaitUS(18*8); //18 cycles on (8us each)
e0165dcf 1692
1693 // now start writting
1694 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1695 if(((*fwd_write_ptr++) & 1) == 1)
40c6a02b 1696 WaitUS(32*8); //32 cycles at 125Khz (8us each)
e0165dcf 1697 else {
1698 //These timings work for 4469/4269/4305 (with the 55*8 above)
1699 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
62a38cc8 1700 WaitUS(23*8); //23 cycles off (8us each)
e0165dcf 1701 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
62a38cc8 1702 WaitUS(18*8); //18 cycles on (8us each)
e0165dcf 1703 }
1704 }
e09f21fa 1705}
1706
1707void EM4xLogin(uint32_t Password) {
1708
e0165dcf 1709 uint8_t fwd_bit_count;
e09f21fa 1710
e0165dcf 1711 forward_ptr = forwardLink_data;
1712 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1713 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
e09f21fa 1714
e0165dcf 1715 SendForward(fwd_bit_count);
e09f21fa 1716
e0165dcf 1717 //Wait for command to complete
1718 SpinDelay(20);
e09f21fa 1719}
1720
1721void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1722
e0165dcf 1723 uint8_t fwd_bit_count;
7cfc777b 1724
1725 // Clear destination buffer before sending the command
709665b5 1726 BigBuf_Clear_ext(false);
e0165dcf 1727
7666f460 1728 LED_A_ON();
40c6a02b 1729 StartTicks();
e0165dcf 1730 //If password mode do login
1731 if (PwdMode == 1) EM4xLogin(Pwd);
1732
1733 forward_ptr = forwardLink_data;
1734 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1735 fwd_bit_count += Prepare_Addr( Address );
1736
e0165dcf 1737 SendForward(fwd_bit_count);
40c6a02b 1738 WaitUS(400);
e0165dcf 1739 // Now do the acquisition
217cfb6b 1740 DoPartialAcquisition(20, true, 6000, 1000);
7666f460 1741
e0165dcf 1742 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
7666f460 1743 LED_A_OFF();
7cfc777b 1744 cmd_send(CMD_ACK,0,0,0,0,0);
e09f21fa 1745}
1746
7666f460 1747void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1748
1749 bool PwdMode = (flag & 0xF);
1750 uint8_t Address = (flag >> 8) & 0xFF;
e0165dcf 1751 uint8_t fwd_bit_count;
e09f21fa 1752
7666f460 1753 //clear buffer now so it does not interfere with timing later
1754 BigBuf_Clear_ext(false);
1755
1756 LED_A_ON();
40c6a02b 1757 StartTicks();
e0165dcf 1758 //If password mode do login
7666f460 1759 if (PwdMode) EM4xLogin(Pwd);
e09f21fa 1760
e0165dcf 1761 forward_ptr = forwardLink_data;
1762 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1763 fwd_bit_count += Prepare_Addr( Address );
1764 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
e09f21fa 1765
e0165dcf 1766 SendForward(fwd_bit_count);
e09f21fa 1767
e0165dcf 1768 //Wait for write to complete
a37228c8 1769 //SpinDelay(10);
7666f460 1770
40c6a02b 1771 WaitUS(6500);
7666f460 1772 //Capture response if one exists
217cfb6b 1773 DoPartialAcquisition(20, true, 6000, 1000);
7666f460 1774
e0165dcf 1775 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
7666f460 1776 LED_A_OFF();
1777 cmd_send(CMD_ACK,0,0,0,0,0);
e09f21fa 1778}
e04475c4 1779/*
1780Reading a COTAG.
1781
1782COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1783because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1784
1785READER START SEQUENCE:
1786burst 800 us, gap 2.2 msecs
1787burst 3.6 msecs gap 2.2 msecs
1788burst 800 us gap 2.2 msecs
1789pulse 3.6 msecs
1790
1791This triggers a COTAG tag to response
1792*/
1793void Cotag(uint32_t arg0) {
1794
1795#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1796#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1797
1798 uint8_t rawsignal = arg0 & 0xF;
1799
1800 LED_A_ON();
1801
1802 // Switching to LF image on FPGA. This might empty BigBuff
1803 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1804
1805 //clear buffer now so it does not interfere with timing later
1806 BigBuf_Clear_ext(false);
1807
1808 // Set up FPGA, 132kHz to power up the tag
1809 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1810 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1811
1812 // Connect the A/D to the peak-detected low-frequency path.
1813 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1814
1815 // Now set up the SSC to get the ADC samples that are now streaming at us.
1816 FpgaSetupSsc();
1817
1818 // start clock - 1.5ticks is 1us
1819 StartTicks();
1820
1821 //send COTAG start pulse
1822 ON(740) OFF
1823 ON(3330) OFF
1824 ON(740) OFF
1825 ON(1000)
1826
1827 switch(rawsignal) {
1828 case 0: doCotagAcquisition(50000); break;
1829 case 1: doCotagAcquisitionManchester(); break;
b9957414 1830 case 2: DoAcquisition_config(true, 0); break;
e04475c4 1831 }
1832
1833 // Turn the field off
1834 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1835 cmd_send(CMD_ACK,0,0,0,0,0);
1836 LED_A_OFF();
1837}
Impressum, Datenschutz