]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Merge pull request #125 from pwpiwi/hf_mifare_fix
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
3000dc4e 23#include "BigBuf.h"
534983d7 24static uint32_t iso14a_timeout;
1e262141 25int rsamples = 0;
1e262141 26uint8_t trigger = 0;
b0127e65 27// the block number for the ISO14443-4 PCB
28static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 29
7bc95e2e 30//
31// ISO14443 timing:
32//
33// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34#define REQUEST_GUARD_TIME (7000/16 + 1)
35// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37// bool LastCommandWasRequest = FALSE;
38
39//
40// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41//
d714d3ef 42// When the PM acts as reader and is receiving tag data, it takes
43// 3 ticks delay in the AD converter
44// 16 ticks until the modulation detector completes and sets curbit
45// 8 ticks until bit_to_arm is assigned from curbit
46// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 47// 4*16 ticks until we measure the time
48// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 49#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 50
51// When the PM acts as a reader and is sending, it takes
52// 4*16 ticks until we can write data to the sending hold register
53// 8*16 ticks until the SHR is transferred to the Sending Shift Register
54// 8 ticks until the first transfer starts
55// 8 ticks later the FPGA samples the data
56// 1 tick to assign mod_sig_coil
57#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58
59// When the PM acts as tag and is receiving it takes
d714d3ef 60// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 61// 3 ticks for the A/D conversion,
62// 8 ticks on average until the start of the SSC transfer,
63// 8 ticks until the SSC samples the first data
64// 7*16 ticks to complete the transfer from FPGA to ARM
65// 8 ticks until the next ssp_clk rising edge
d714d3ef 66// 4*16 ticks until we measure the time
7bc95e2e 67// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 68#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 69
70// The FPGA will report its internal sending delay in
71uint16_t FpgaSendQueueDelay;
72// the 5 first bits are the number of bits buffered in mod_sig_buf
73// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75
76// When the PM acts as tag and is sending, it takes
d714d3ef 77// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 78// 8*16 ticks until the SHR is transferred to the Sending Shift Register
79// 8 ticks until the first transfer starts
80// 8 ticks later the FPGA samples the data
81// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82// + 1 tick to assign mod_sig_coil
d714d3ef 83#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 84
85// When the PM acts as sniffer and is receiving tag data, it takes
86// 3 ticks A/D conversion
d714d3ef 87// 14 ticks to complete the modulation detection
88// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 89// + the delays in transferring data - which is the same for
90// sniffing reader and tag data and therefore not relevant
d714d3ef 91#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 92
d714d3ef 93// When the PM acts as sniffer and is receiving reader data, it takes
94// 2 ticks delay in analogue RF receiver (for the falling edge of the
95// start bit, which marks the start of the communication)
7bc95e2e 96// 3 ticks A/D conversion
d714d3ef 97// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 98// + the delays in transferring data - which is the same for
99// sniffing reader and tag data and therefore not relevant
d714d3ef 100#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 101
102//variables used for timing purposes:
103//these are in ssp_clk cycles:
6a1f2d82 104static uint32_t NextTransferTime;
105static uint32_t LastTimeProxToAirStart;
106static uint32_t LastProxToAirDuration;
7bc95e2e 107
108
109
8f51ddb0 110// CARD TO READER - manchester
72934aa3 111// Sequence D: 11110000 modulation with subcarrier during first half
112// Sequence E: 00001111 modulation with subcarrier during second half
113// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 114// READER TO CARD - miller
72934aa3 115// Sequence X: 00001100 drop after half a period
116// Sequence Y: 00000000 no drop
117// Sequence Z: 11000000 drop at start
118#define SEC_D 0xf0
119#define SEC_E 0x0f
120#define SEC_F 0x00
121#define SEC_X 0x0c
122#define SEC_Y 0x00
123#define SEC_Z 0xc0
15c4dc5a 124
1e262141 125const uint8_t OddByteParity[256] = {
15c4dc5a 126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
142};
143
19a700a8 144
902cb3c0 145void iso14a_set_trigger(bool enable) {
534983d7 146 trigger = enable;
147}
148
d19929cb 149
b0127e65 150void iso14a_set_timeout(uint32_t timeout) {
151 iso14a_timeout = timeout;
19a700a8 152 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
b0127e65 153}
8556b852 154
19a700a8 155
156void iso14a_set_ATS_timeout(uint8_t *ats) {
157
158 uint8_t tb1;
159 uint8_t fwi;
160 uint32_t fwt;
161
162 if (ats[0] > 1) { // there is a format byte T0
163 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
165 tb1 = ats[3];
166 } else {
167 tb1 = ats[2];
168 }
169 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
171
172 iso14a_set_timeout(fwt/(8*16));
173 }
174 }
175}
176
177
15c4dc5a 178//-----------------------------------------------------------------------------
179// Generate the parity value for a byte sequence
e30c654b 180//
15c4dc5a 181//-----------------------------------------------------------------------------
20f9a2a1
M
182byte_t oddparity (const byte_t bt)
183{
5f6d6c90 184 return OddByteParity[bt];
20f9a2a1
M
185}
186
6a1f2d82 187void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
15c4dc5a 188{
6a1f2d82 189 uint16_t paritybit_cnt = 0;
190 uint16_t paritybyte_cnt = 0;
191 uint8_t parityBits = 0;
192
193 for (uint16_t i = 0; i < iLen; i++) {
194 // Generate the parity bits
195 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
196 if (paritybit_cnt == 7) {
197 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
198 parityBits = 0; // and advance to next Parity Byte
199 paritybyte_cnt++;
200 paritybit_cnt = 0;
201 } else {
202 paritybit_cnt++;
203 }
5f6d6c90 204 }
6a1f2d82 205
206 // save remaining parity bits
207 par[paritybyte_cnt] = parityBits;
208
15c4dc5a 209}
210
534983d7 211void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 212{
5f6d6c90 213 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 214}
215
7bc95e2e 216//=============================================================================
217// ISO 14443 Type A - Miller decoder
218//=============================================================================
219// Basics:
220// This decoder is used when the PM3 acts as a tag.
221// The reader will generate "pauses" by temporarily switching of the field.
222// At the PM3 antenna we will therefore measure a modulated antenna voltage.
223// The FPGA does a comparison with a threshold and would deliver e.g.:
224// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225// The Miller decoder needs to identify the following sequences:
226// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229// Note 1: the bitstream may start at any time. We therefore need to sync.
230// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 231//-----------------------------------------------------------------------------
b62a5a84 232static tUart Uart;
15c4dc5a 233
d7aa3739 234// Lookup-Table to decide if 4 raw bits are a modulation.
235// We accept two or three consecutive "0" in any position with the rest "1"
236const bool Mod_Miller_LUT[] = {
237 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
238 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
239};
240#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
242
7bc95e2e 243void UartReset()
15c4dc5a 244{
7bc95e2e 245 Uart.state = STATE_UNSYNCD;
246 Uart.bitCount = 0;
247 Uart.len = 0; // number of decoded data bytes
6a1f2d82 248 Uart.parityLen = 0; // number of decoded parity bytes
7bc95e2e 249 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
6a1f2d82 250 Uart.parityBits = 0; // holds 8 parity bits
7bc95e2e 251 Uart.twoBits = 0x0000; // buffer for 2 Bits
252 Uart.highCnt = 0;
253 Uart.startTime = 0;
254 Uart.endTime = 0;
255}
15c4dc5a 256
6a1f2d82 257void UartInit(uint8_t *data, uint8_t *parity)
258{
259 Uart.output = data;
260 Uart.parity = parity;
261 UartReset();
262}
d714d3ef 263
7bc95e2e 264// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
266{
15c4dc5a 267
7bc95e2e 268 Uart.twoBits = (Uart.twoBits << 8) | bit;
269
0c8d25eb 270 if (Uart.state == STATE_UNSYNCD) { // not yet synced
3fe4ff4f 271
0c8d25eb 272 if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
7bc95e2e 273 if (Uart.twoBits == 0xffff) {
274 Uart.highCnt++;
275 } else {
276 Uart.highCnt = 0;
15c4dc5a 277 }
7bc95e2e 278 } else {
0c8d25eb 279 Uart.syncBit = 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
285 else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
286 else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
287 else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
288 else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
289 else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
290 if (Uart.syncBit != 0xFFFF) { // found a sync bit
7bc95e2e 291 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
292 Uart.startTime -= Uart.syncBit;
d7aa3739 293 Uart.endTime = Uart.startTime;
7bc95e2e 294 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 295 }
7bc95e2e 296 }
15c4dc5a 297
7bc95e2e 298 } else {
15c4dc5a 299
d7aa3739 300 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
301 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
302 UartReset();
d7aa3739 303 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 304 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
305 UartReset();
7bc95e2e 306 } else {
307 Uart.bitCount++;
308 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
309 Uart.state = STATE_MILLER_Z;
310 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
311 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
312 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
313 Uart.parityBits <<= 1; // make room for the parity bit
314 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
315 Uart.bitCount = 0;
316 Uart.shiftReg = 0;
6a1f2d82 317 if((Uart.len&0x0007) == 0) { // every 8 data bytes
318 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
319 Uart.parityBits = 0;
320 }
15c4dc5a 321 }
7bc95e2e 322 }
d7aa3739 323 }
324 } else {
325 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 326 Uart.bitCount++;
327 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
328 Uart.state = STATE_MILLER_X;
329 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
330 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
331 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
332 Uart.parityBits <<= 1; // make room for the new parity bit
333 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
334 Uart.bitCount = 0;
335 Uart.shiftReg = 0;
6a1f2d82 336 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
337 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
338 Uart.parityBits = 0;
339 }
7bc95e2e 340 }
d7aa3739 341 } else { // no modulation in both halves - Sequence Y
7bc95e2e 342 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 343 Uart.state = STATE_UNSYNCD;
6a1f2d82 344 Uart.bitCount--; // last "0" was part of EOC sequence
345 Uart.shiftReg <<= 1; // drop it
346 if(Uart.bitCount > 0) { // if we decoded some bits
347 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
348 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
349 Uart.parityBits <<= 1; // add a (void) parity bit
350 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
351 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
352 return TRUE;
353 } else if (Uart.len & 0x0007) { // there are some parity bits to store
354 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
355 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
52bfb955 356 }
357 if (Uart.len) {
6a1f2d82 358 return TRUE; // we are finished with decoding the raw data sequence
52bfb955 359 } else {
0c8d25eb 360 UartReset(); // Nothing received - start over
361 Uart.highCnt = 1;
7bc95e2e 362 }
15c4dc5a 363 }
7bc95e2e 364 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
365 UartReset();
0c8d25eb 366 Uart.highCnt = 1;
7bc95e2e 367 } else { // a logic "0"
368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
370 Uart.state = STATE_MILLER_Y;
371 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
372 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
373 Uart.parityBits <<= 1; // make room for the parity bit
374 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
375 Uart.bitCount = 0;
376 Uart.shiftReg = 0;
6a1f2d82 377 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
378 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
379 Uart.parityBits = 0;
380 }
15c4dc5a 381 }
382 }
d7aa3739 383 }
15c4dc5a 384 }
7bc95e2e 385
386 }
15c4dc5a 387
7bc95e2e 388 return FALSE; // not finished yet, need more data
15c4dc5a 389}
390
7bc95e2e 391
392
15c4dc5a 393//=============================================================================
e691fc45 394// ISO 14443 Type A - Manchester decoder
15c4dc5a 395//=============================================================================
e691fc45 396// Basics:
7bc95e2e 397// This decoder is used when the PM3 acts as a reader.
e691fc45 398// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401// The Manchester decoder needs to identify the following sequences:
402// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404// 8 ticks unmodulated: Sequence F = end of communication
405// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 406// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 407// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 408static tDemod Demod;
15c4dc5a 409
d7aa3739 410// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 411// We accept three or four "1" in any position
7bc95e2e 412const bool Mod_Manchester_LUT[] = {
d7aa3739 413 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 414 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 415};
416
417#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 419
2f2d9fc5 420
7bc95e2e 421void DemodReset()
e691fc45 422{
7bc95e2e 423 Demod.state = DEMOD_UNSYNCD;
424 Demod.len = 0; // number of decoded data bytes
6a1f2d82 425 Demod.parityLen = 0;
7bc95e2e 426 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
427 Demod.parityBits = 0; //
428 Demod.collisionPos = 0; // Position of collision bit
429 Demod.twoBits = 0xffff; // buffer for 2 Bits
430 Demod.highCnt = 0;
431 Demod.startTime = 0;
432 Demod.endTime = 0;
e691fc45 433}
15c4dc5a 434
6a1f2d82 435void DemodInit(uint8_t *data, uint8_t *parity)
436{
437 Demod.output = data;
438 Demod.parity = parity;
439 DemodReset();
440}
441
7bc95e2e 442// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 444{
7bc95e2e 445
446 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 447
7bc95e2e 448 if (Demod.state == DEMOD_UNSYNCD) {
449
450 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
451 if (Demod.twoBits == 0x0000) {
452 Demod.highCnt++;
453 } else {
454 Demod.highCnt = 0;
455 }
456 } else {
457 Demod.syncBit = 0xFFFF; // not set
458 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
459 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
460 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
461 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
462 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
463 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
464 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
465 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 466 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 467 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
468 Demod.startTime -= Demod.syncBit;
469 Demod.bitCount = offset; // number of decoded data bits
e691fc45 470 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 471 }
7bc95e2e 472 }
15c4dc5a 473
7bc95e2e 474 } else {
15c4dc5a 475
7bc95e2e 476 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 478 if (!Demod.collisionPos) {
479 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
480 }
481 } // modulation in first half only - Sequence D = 1
7bc95e2e 482 Demod.bitCount++;
483 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 485 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 486 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 487 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
488 Demod.bitCount = 0;
489 Demod.shiftReg = 0;
6a1f2d82 490 if((Demod.len&0x0007) == 0) { // every 8 data bytes
491 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
492 Demod.parityBits = 0;
493 }
15c4dc5a 494 }
7bc95e2e 495 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 498 Demod.bitCount++;
7bc95e2e 499 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 500 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 501 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 502 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 503 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
504 Demod.bitCount = 0;
505 Demod.shiftReg = 0;
6a1f2d82 506 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
507 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
508 Demod.parityBits = 0;
509 }
15c4dc5a 510 }
7bc95e2e 511 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 512 } else { // no modulation in both halves - End of communication
6a1f2d82 513 if(Demod.bitCount > 0) { // there are some remaining data bits
514 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
515 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
516 Demod.parityBits <<= 1; // add a (void) parity bit
517 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
518 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
519 return TRUE;
520 } else if (Demod.len & 0x0007) { // there are some parity bits to store
521 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
522 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
52bfb955 523 }
524 if (Demod.len) {
d7aa3739 525 return TRUE; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
527 DemodReset();
e691fc45 528 }
15c4dc5a 529 }
7bc95e2e 530 }
e691fc45 531
532 }
15c4dc5a 533
e691fc45 534 return FALSE; // not finished yet, need more data
15c4dc5a 535}
536
537//=============================================================================
538// Finally, a `sniffer' for ISO 14443 Type A
539// Both sides of communication!
540//=============================================================================
541
542//-----------------------------------------------------------------------------
543// Record the sequence of commands sent by the reader to the tag, with
544// triggering so that we start recording at the point that the tag is moved
545// near the reader.
546//-----------------------------------------------------------------------------
5cd9ec01
M
547void RAMFUNC SnoopIso14443a(uint8_t param) {
548 // param:
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
551
552 LEDsoff();
5cd9ec01
M
553
554 // We won't start recording the frames that we acquire until we trigger;
555 // a good trigger condition to get started is probably when we see a
556 // response from the tag.
557 // triggered == FALSE -- to wait first for card
7bc95e2e 558 bool triggered = !(param & 0x03);
559
f71f4deb 560 // Allocate memory from BigBuf for some buffers
561 // free all previous allocations first
562 BigBuf_free();
563
5cd9ec01 564 // The command (reader -> tag) that we're receiving.
f71f4deb 565 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
566 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
6a1f2d82 567
5cd9ec01 568 // The response (tag -> reader) that we're receiving.
f71f4deb 569 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
570 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
5cd9ec01
M
571
572 // The DMA buffer, used to stream samples from the FPGA
f71f4deb 573 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
574
575 // init trace buffer
3000dc4e
MHS
576 clear_trace();
577 set_tracing(TRUE);
f71f4deb 578
7bc95e2e 579 uint8_t *data = dmaBuf;
580 uint8_t previous_data = 0;
5cd9ec01
M
581 int maxDataLen = 0;
582 int dataLen = 0;
7bc95e2e 583 bool TagIsActive = FALSE;
584 bool ReaderIsActive = FALSE;
585
586 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 587
5cd9ec01 588 // Set up the demodulator for tag -> reader responses.
6a1f2d82 589 DemodInit(receivedResponse, receivedResponsePar);
590
5cd9ec01 591 // Set up the demodulator for the reader -> tag commands
6a1f2d82 592 UartInit(receivedCmd, receivedCmdPar);
593
7bc95e2e 594 // Setup and start DMA.
5cd9ec01 595 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 596
5cd9ec01 597 // And now we loop, receiving samples.
7bc95e2e 598 for(uint32_t rsamples = 0; TRUE; ) {
599
5cd9ec01
M
600 if(BUTTON_PRESS()) {
601 DbpString("cancelled by button");
7bc95e2e 602 break;
5cd9ec01 603 }
15c4dc5a 604
5cd9ec01
M
605 LED_A_ON();
606 WDT_HIT();
15c4dc5a 607
5cd9ec01
M
608 int register readBufDataP = data - dmaBuf;
609 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
610 if (readBufDataP <= dmaBufDataP){
611 dataLen = dmaBufDataP - readBufDataP;
612 } else {
7bc95e2e 613 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
614 }
615 // test for length of buffer
616 if(dataLen > maxDataLen) {
617 maxDataLen = dataLen;
f71f4deb 618 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
7bc95e2e 619 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
620 break;
5cd9ec01
M
621 }
622 }
623 if(dataLen < 1) continue;
624
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
627 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
628 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
630 }
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
633 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
634 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
635 }
636
637 LED_A_OFF();
7bc95e2e 638
639 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 640
7bc95e2e 641 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
643 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
644 LED_C_ON();
5cd9ec01 645
7bc95e2e 646 // check - if there is a short 7bit request from reader
647 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 648
7bc95e2e 649 if(triggered) {
6a1f2d82 650 if (!LogTrace(receivedCmd,
651 Uart.len,
652 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
653 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
654 Uart.parity,
655 TRUE)) break;
7bc95e2e 656 }
657 /* And ready to receive another command. */
658 UartReset();
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
661 DemodReset();
662 LED_B_OFF();
663 }
664 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 665 }
3be2a5ae 666
7bc95e2e 667 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
669 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
670 LED_B_ON();
5cd9ec01 671
6a1f2d82 672 if (!LogTrace(receivedResponse,
673 Demod.len,
674 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
675 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
676 Demod.parity,
677 FALSE)) break;
5cd9ec01 678
7bc95e2e 679 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 680
7bc95e2e 681 // And ready to receive another response.
682 DemodReset();
683 LED_C_OFF();
684 }
685 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
686 }
5cd9ec01
M
687 }
688
7bc95e2e 689 previous_data = *data;
690 rsamples++;
5cd9ec01 691 data++;
d714d3ef 692 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
693 data = dmaBuf;
694 }
695 } // main cycle
696
697 DbpString("COMMAND FINISHED");
15c4dc5a 698
7bc95e2e 699 FpgaDisableSscDma();
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
3000dc4e 701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
5cd9ec01 702 LEDsoff();
15c4dc5a 703}
704
15c4dc5a 705//-----------------------------------------------------------------------------
706// Prepare tag messages
707//-----------------------------------------------------------------------------
6a1f2d82 708static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
15c4dc5a 709{
8f51ddb0 710 ToSendReset();
15c4dc5a 711
712 // Correction bit, might be removed when not needed
713 ToSendStuffBit(0);
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(1); // 1
718 ToSendStuffBit(0);
719 ToSendStuffBit(0);
720 ToSendStuffBit(0);
8f51ddb0 721
15c4dc5a 722 // Send startbit
72934aa3 723 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 724 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 725
6a1f2d82 726 for(uint16_t i = 0; i < len; i++) {
8f51ddb0 727 uint8_t b = cmd[i];
15c4dc5a 728
729 // Data bits
6a1f2d82 730 for(uint16_t j = 0; j < 8; j++) {
15c4dc5a 731 if(b & 1) {
72934aa3 732 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 733 } else {
72934aa3 734 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
735 }
736 b >>= 1;
737 }
15c4dc5a 738
0014cb46 739 // Get the parity bit
6a1f2d82 740 if (parity[i>>3] & (0x80>>(i&0x0007))) {
8f51ddb0 741 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 742 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 743 } else {
72934aa3 744 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 745 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 746 }
8f51ddb0 747 }
15c4dc5a 748
8f51ddb0
M
749 // Send stopbit
750 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 751
8f51ddb0
M
752 // Convert from last byte pos to length
753 ToSendMax++;
8f51ddb0
M
754}
755
6a1f2d82 756static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
757{
758 uint8_t par[MAX_PARITY_SIZE];
759
760 GetParity(cmd, len, par);
761 CodeIso14443aAsTagPar(cmd, len, par);
15c4dc5a 762}
763
15c4dc5a 764
8f51ddb0
M
765static void Code4bitAnswerAsTag(uint8_t cmd)
766{
767 int i;
768
5f6d6c90 769 ToSendReset();
8f51ddb0
M
770
771 // Correction bit, might be removed when not needed
772 ToSendStuffBit(0);
773 ToSendStuffBit(0);
774 ToSendStuffBit(0);
775 ToSendStuffBit(0);
776 ToSendStuffBit(1); // 1
777 ToSendStuffBit(0);
778 ToSendStuffBit(0);
779 ToSendStuffBit(0);
780
781 // Send startbit
782 ToSend[++ToSendMax] = SEC_D;
783
784 uint8_t b = cmd;
785 for(i = 0; i < 4; i++) {
786 if(b & 1) {
787 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 788 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
789 } else {
790 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 791 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
792 }
793 b >>= 1;
794 }
795
796 // Send stopbit
797 ToSend[++ToSendMax] = SEC_F;
798
5f6d6c90 799 // Convert from last byte pos to length
800 ToSendMax++;
15c4dc5a 801}
802
803//-----------------------------------------------------------------------------
804// Wait for commands from reader
805// Stop when button is pressed
806// Or return TRUE when command is captured
807//-----------------------------------------------------------------------------
6a1f2d82 808static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
15c4dc5a 809{
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
813 LED_D_OFF();
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
815
816 // Now run a `software UART' on the stream of incoming samples.
6a1f2d82 817 UartInit(received, parity);
7bc95e2e 818
819 // clear RXRDY:
820 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 821
822 for(;;) {
823 WDT_HIT();
824
825 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 826
15c4dc5a 827 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 828 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
829 if(MillerDecoding(b, 0)) {
830 *len = Uart.len;
15c4dc5a 831 return TRUE;
832 }
7bc95e2e 833 }
15c4dc5a 834 }
835}
28afbd2b 836
6a1f2d82 837static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
7bc95e2e 838int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 839int EmSend4bit(uint8_t resp);
6a1f2d82 840int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
841int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
842int EmSendCmd(uint8_t *resp, uint16_t respLen);
843int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
844bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
845 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
15c4dc5a 846
117d9ec2 847static uint8_t* free_buffer_pointer;
ce02f6f9 848
849typedef struct {
850 uint8_t* response;
851 size_t response_n;
852 uint8_t* modulation;
853 size_t modulation_n;
7bc95e2e 854 uint32_t ProxToAirDuration;
ce02f6f9 855} tag_response_info_t;
856
ce02f6f9 857bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
861 // 18 parity bits
862 // 2 Start and stop
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
865 // ----------- +
866 // 166 bytes, since every bit that needs to be send costs us a byte
867 //
f71f4deb 868
869
ce02f6f9 870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info->response,response_info->response_n);
872
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax > max_buffer_size) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info->response_n,response_info->response,false);
877 return false;
878 }
879
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info->modulation,ToSend,ToSendMax);
882
7bc95e2e 883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 884 response_info->modulation_n = ToSendMax;
7bc95e2e 885 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 886
887 return true;
888}
889
f71f4deb 890
891// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894// -> need 273 bytes buffer
895#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
896
ce02f6f9 897bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
898 // Retrieve and store the current buffer index
899 response_info->modulation = free_buffer_pointer;
900
901 // Determine the maximum size we can use from our buffer
f71f4deb 902 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
ce02f6f9 903
904 // Forward the prepare tag modulation function to the inner function
f71f4deb 905 if (prepare_tag_modulation(response_info, max_buffer_size)) {
ce02f6f9 906 // Update the free buffer offset
907 free_buffer_pointer += ToSendMax;
908 return true;
909 } else {
910 return false;
911 }
912}
913
15c4dc5a 914//-----------------------------------------------------------------------------
915// Main loop of simulated tag: receive commands from reader, decide what
916// response to send, and send it.
917//-----------------------------------------------------------------------------
28afbd2b 918void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 919{
81cd0474 920 uint8_t sak;
921
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1[2];
924
925 switch (tagType) {
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
928 response1[0] = 0x04;
929 response1[1] = 0x00;
930 sak = 0x08;
931 } break;
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
934 response1[0] = 0x04;
935 response1[1] = 0x00;
936 sak = 0x00;
937 } break;
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
940 response1[0] = 0x04;
941 response1[1] = 0x03;
942 sak = 0x20;
943 } break;
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
946 response1[0] = 0x04;
947 response1[1] = 0x00;
948 sak = 0x28;
949 } break;
3fe4ff4f 950 case 5: { // MIFARE TNP3XXX
951 // Says: I am a toy
952 response1[0] = 0x01;
953 response1[1] = 0x0f;
954 sak = 0x01;
955 } break;
81cd0474 956 default: {
957 Dbprintf("Error: unkown tagtype (%d)",tagType);
958 return;
959 } break;
960 }
961
962 // The second response contains the (mandatory) first 24 bits of the UID
c8b6da22 963 uint8_t response2[5] = {0x00};
81cd0474 964
965 // Check if the uid uses the (optional) part
c8b6da22 966 uint8_t response2a[5] = {0x00};
967
81cd0474 968 if (uid_2nd) {
969 response2[0] = 0x88;
970 num_to_bytes(uid_1st,3,response2+1);
971 num_to_bytes(uid_2nd,4,response2a);
972 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
973
974 // Configure the ATQA and SAK accordingly
975 response1[0] |= 0x40;
976 sak |= 0x04;
977 } else {
978 num_to_bytes(uid_1st,4,response2);
979 // Configure the ATQA and SAK accordingly
980 response1[0] &= 0xBF;
981 sak &= 0xFB;
982 }
983
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
986
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
c8b6da22 988 uint8_t response3[3] = {0x00};
81cd0474 989 response3[0] = sak;
990 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
991
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
c8b6da22 993 uint8_t response3a[3] = {0x00};
81cd0474 994 response3a[0] = sak & 0xFB;
995 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
996
254b70a4 997 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
6a1f2d82 998 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
ce02f6f9 1003 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1004
7bc95e2e 1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1007 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1008 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1009 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1011 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1012 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1013 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1014 };
1015
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1021 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1022 tag_response_info_t dynamic_response_info = {
1023 .response = dynamic_response_buffer,
1024 .response_n = 0,
1025 .modulation = dynamic_modulation_buffer,
1026 .modulation_n = 0
1027 };
ce02f6f9 1028
f71f4deb 1029 BigBuf_free_keep_EM();
1030
1031 // allocate buffers:
1032 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1033 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1034 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1035
1036 // clear trace
3000dc4e
MHS
1037 clear_trace();
1038 set_tracing(TRUE);
f71f4deb 1039
7bc95e2e 1040 // Prepare the responses of the anticollision phase
ce02f6f9 1041 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 1042 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1043 prepare_allocated_tag_modulation(&responses[i]);
1044 }
15c4dc5a 1045
7bc95e2e 1046 int len = 0;
15c4dc5a 1047
1048 // To control where we are in the protocol
1049 int order = 0;
1050 int lastorder;
1051
1052 // Just to allow some checks
1053 int happened = 0;
1054 int happened2 = 0;
81cd0474 1055 int cmdsRecvd = 0;
15c4dc5a 1056
254b70a4 1057 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 1058 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 1059
254b70a4 1060 cmdsRecvd = 0;
7bc95e2e 1061 tag_response_info_t* p_response;
15c4dc5a 1062
254b70a4 1063 LED_A_ON();
1064 for(;;) {
7bc95e2e 1065 // Clean receive command buffer
1066
6a1f2d82 1067 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
ce02f6f9 1068 DbpString("Button press");
254b70a4 1069 break;
1070 }
7bc95e2e 1071
1072 p_response = NULL;
1073
254b70a4 1074 // Okay, look at the command now.
1075 lastorder = order;
1076 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1077 p_response = &responses[0]; order = 1;
254b70a4 1078 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1079 p_response = &responses[0]; order = 6;
254b70a4 1080 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1081 p_response = &responses[1]; order = 2;
6a1f2d82 1082 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1083 p_response = &responses[2]; order = 20;
254b70a4 1084 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1085 p_response = &responses[3]; order = 3;
254b70a4 1086 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1087 p_response = &responses[4]; order = 30;
254b70a4 1088 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
6a1f2d82 1089 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
7bc95e2e 1090 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1091 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1092 p_response = NULL;
254b70a4 1093 } else if(receivedCmd[0] == 0x50) { // Received a HALT
3fe4ff4f 1094
7bc95e2e 1095 if (tracing) {
6a1f2d82 1096 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1097 }
1098 p_response = NULL;
254b70a4 1099 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1100 p_response = &responses[5]; order = 7;
254b70a4 1101 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1102 if (tagType == 1 || tagType == 2) { // RATS not supported
1103 EmSend4bit(CARD_NACK_NA);
1104 p_response = NULL;
1105 } else {
1106 p_response = &responses[6]; order = 70;
1107 }
6a1f2d82 1108 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
7bc95e2e 1109 if (tracing) {
6a1f2d82 1110 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1111 }
1112 uint32_t nr = bytes_to_num(receivedCmd,4);
1113 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1114 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1115 } else {
1116 // Check for ISO 14443A-4 compliant commands, look at left nibble
1117 switch (receivedCmd[0]) {
1118
1119 case 0x0B:
1120 case 0x0A: { // IBlock (command)
1121 dynamic_response_info.response[0] = receivedCmd[0];
1122 dynamic_response_info.response[1] = 0x00;
1123 dynamic_response_info.response[2] = 0x90;
1124 dynamic_response_info.response[3] = 0x00;
1125 dynamic_response_info.response_n = 4;
1126 } break;
1127
1128 case 0x1A:
1129 case 0x1B: { // Chaining command
1130 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1131 dynamic_response_info.response_n = 2;
1132 } break;
1133
1134 case 0xaa:
1135 case 0xbb: {
1136 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1137 dynamic_response_info.response_n = 2;
1138 } break;
1139
1140 case 0xBA: { //
1141 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1142 dynamic_response_info.response_n = 2;
1143 } break;
1144
1145 case 0xCA:
1146 case 0xC2: { // Readers sends deselect command
1147 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1148 dynamic_response_info.response_n = 2;
1149 } break;
1150
1151 default: {
1152 // Never seen this command before
1153 if (tracing) {
6a1f2d82 1154 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1155 }
1156 Dbprintf("Received unknown command (len=%d):",len);
1157 Dbhexdump(len,receivedCmd,false);
1158 // Do not respond
1159 dynamic_response_info.response_n = 0;
1160 } break;
1161 }
ce02f6f9 1162
7bc95e2e 1163 if (dynamic_response_info.response_n > 0) {
1164 // Copy the CID from the reader query
1165 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1166
7bc95e2e 1167 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1168 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1169 dynamic_response_info.response_n += 2;
ce02f6f9 1170
7bc95e2e 1171 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1172 Dbprintf("Error preparing tag response");
1173 if (tracing) {
6a1f2d82 1174 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 1175 }
1176 break;
1177 }
1178 p_response = &dynamic_response_info;
1179 }
81cd0474 1180 }
15c4dc5a 1181
1182 // Count number of wakeups received after a halt
1183 if(order == 6 && lastorder == 5) { happened++; }
1184
1185 // Count number of other messages after a halt
1186 if(order != 6 && lastorder == 5) { happened2++; }
1187
15c4dc5a 1188 if(cmdsRecvd > 999) {
1189 DbpString("1000 commands later...");
254b70a4 1190 break;
15c4dc5a 1191 }
ce02f6f9 1192 cmdsRecvd++;
1193
1194 if (p_response != NULL) {
7bc95e2e 1195 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1196 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1197 uint8_t par[MAX_PARITY_SIZE];
1198 GetParity(p_response->response, p_response->response_n, par);
3fe4ff4f 1199
7bc95e2e 1200 EmLogTrace(Uart.output,
1201 Uart.len,
1202 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1203 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1204 Uart.parity,
7bc95e2e 1205 p_response->response,
1206 p_response->response_n,
1207 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1208 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1209 par);
7bc95e2e 1210 }
1211
1212 if (!tracing) {
1213 Dbprintf("Trace Full. Simulation stopped.");
1214 break;
1215 }
1216 }
15c4dc5a 1217
1218 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1219 LED_A_OFF();
f71f4deb 1220 BigBuf_free_keep_EM();
15c4dc5a 1221}
1222
9492e0b0 1223
1224// prepare a delayed transfer. This simply shifts ToSend[] by a number
1225// of bits specified in the delay parameter.
1226void PrepareDelayedTransfer(uint16_t delay)
1227{
1228 uint8_t bitmask = 0;
1229 uint8_t bits_to_shift = 0;
1230 uint8_t bits_shifted = 0;
1231
1232 delay &= 0x07;
1233 if (delay) {
1234 for (uint16_t i = 0; i < delay; i++) {
1235 bitmask |= (0x01 << i);
1236 }
7bc95e2e 1237 ToSend[ToSendMax++] = 0x00;
9492e0b0 1238 for (uint16_t i = 0; i < ToSendMax; i++) {
1239 bits_to_shift = ToSend[i] & bitmask;
1240 ToSend[i] = ToSend[i] >> delay;
1241 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1242 bits_shifted = bits_to_shift;
1243 }
1244 }
1245}
1246
7bc95e2e 1247
1248//-------------------------------------------------------------------------------------
15c4dc5a 1249// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1250// Parameter timing:
7bc95e2e 1251// if NULL: transfer at next possible time, taking into account
1252// request guard time and frame delay time
1253// if == 0: transfer immediately and return time of transfer
9492e0b0 1254// if != 0: delay transfer until time specified
7bc95e2e 1255//-------------------------------------------------------------------------------------
6a1f2d82 1256static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
15c4dc5a 1257{
7bc95e2e 1258
9492e0b0 1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1260
7bc95e2e 1261 uint32_t ThisTransferTime = 0;
e30c654b 1262
9492e0b0 1263 if (timing) {
1264 if(*timing == 0) { // Measure time
7bc95e2e 1265 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1266 } else {
1267 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 }
7bc95e2e 1269 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1270 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1271 LastTimeProxToAirStart = *timing;
1272 } else {
1273 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1274 while(GetCountSspClk() < ThisTransferTime);
1275 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1276 }
1277
7bc95e2e 1278 // clear TXRDY
1279 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1280
7bc95e2e 1281 uint16_t c = 0;
9492e0b0 1282 for(;;) {
1283 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1284 AT91C_BASE_SSC->SSC_THR = cmd[c];
1285 c++;
1286 if(c >= len) {
1287 break;
1288 }
1289 }
1290 }
7bc95e2e 1291
1292 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1293}
1294
7bc95e2e 1295
15c4dc5a 1296//-----------------------------------------------------------------------------
195af472 1297// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1298//-----------------------------------------------------------------------------
6a1f2d82 1299void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
15c4dc5a 1300{
7bc95e2e 1301 int i, j;
1302 int last;
1303 uint8_t b;
e30c654b 1304
7bc95e2e 1305 ToSendReset();
e30c654b 1306
7bc95e2e 1307 // Start of Communication (Seq. Z)
1308 ToSend[++ToSendMax] = SEC_Z;
1309 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1310 last = 0;
1311
1312 size_t bytecount = nbytes(bits);
1313 // Generate send structure for the data bits
1314 for (i = 0; i < bytecount; i++) {
1315 // Get the current byte to send
1316 b = cmd[i];
1317 size_t bitsleft = MIN((bits-(i*8)),8);
1318
1319 for (j = 0; j < bitsleft; j++) {
1320 if (b & 1) {
1321 // Sequence X
1322 ToSend[++ToSendMax] = SEC_X;
1323 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1324 last = 1;
1325 } else {
1326 if (last == 0) {
1327 // Sequence Z
1328 ToSend[++ToSendMax] = SEC_Z;
1329 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1330 } else {
1331 // Sequence Y
1332 ToSend[++ToSendMax] = SEC_Y;
1333 last = 0;
1334 }
1335 }
1336 b >>= 1;
1337 }
1338
6a1f2d82 1339 // Only transmit parity bit if we transmitted a complete byte
7bc95e2e 1340 if (j == 8) {
1341 // Get the parity bit
6a1f2d82 1342 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
7bc95e2e 1343 // Sequence X
1344 ToSend[++ToSendMax] = SEC_X;
1345 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1346 last = 1;
1347 } else {
1348 if (last == 0) {
1349 // Sequence Z
1350 ToSend[++ToSendMax] = SEC_Z;
1351 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1352 } else {
1353 // Sequence Y
1354 ToSend[++ToSendMax] = SEC_Y;
1355 last = 0;
1356 }
1357 }
1358 }
1359 }
e30c654b 1360
7bc95e2e 1361 // End of Communication: Logic 0 followed by Sequence Y
1362 if (last == 0) {
1363 // Sequence Z
1364 ToSend[++ToSendMax] = SEC_Z;
1365 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1366 } else {
1367 // Sequence Y
1368 ToSend[++ToSendMax] = SEC_Y;
1369 last = 0;
1370 }
1371 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1372
7bc95e2e 1373 // Convert to length of command:
1374 ToSendMax++;
15c4dc5a 1375}
1376
195af472 1377//-----------------------------------------------------------------------------
1378// Prepare reader command to send to FPGA
1379//-----------------------------------------------------------------------------
6a1f2d82 1380void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
195af472 1381{
6a1f2d82 1382 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
195af472 1383}
1384
0c8d25eb 1385
9ca155ba
M
1386//-----------------------------------------------------------------------------
1387// Wait for commands from reader
1388// Stop when button is pressed (return 1) or field was gone (return 2)
1389// Or return 0 when command is captured
1390//-----------------------------------------------------------------------------
6a1f2d82 1391static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
9ca155ba
M
1392{
1393 *len = 0;
1394
1395 uint32_t timer = 0, vtime = 0;
1396 int analogCnt = 0;
1397 int analogAVG = 0;
1398
1399 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1400 // only, since we are receiving, not transmitting).
1401 // Signal field is off with the appropriate LED
1402 LED_D_OFF();
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1404
1405 // Set ADC to read field strength
1406 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1407 AT91C_BASE_ADC->ADC_MR =
0c8d25eb 1408 ADC_MODE_PRESCALE(63) |
1409 ADC_MODE_STARTUP_TIME(1) |
1410 ADC_MODE_SAMPLE_HOLD_TIME(15);
9ca155ba
M
1411 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1412 // start ADC
1413 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1414
1415 // Now run a 'software UART' on the stream of incoming samples.
6a1f2d82 1416 UartInit(received, parity);
7bc95e2e 1417
1418 // Clear RXRDY:
1419 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1420
9ca155ba
M
1421 for(;;) {
1422 WDT_HIT();
1423
1424 if (BUTTON_PRESS()) return 1;
1425
1426 // test if the field exists
1427 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1428 analogCnt++;
1429 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1430 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1431 if (analogCnt >= 32) {
0c8d25eb 1432 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
9ca155ba
M
1433 vtime = GetTickCount();
1434 if (!timer) timer = vtime;
1435 // 50ms no field --> card to idle state
1436 if (vtime - timer > 50) return 2;
1437 } else
1438 if (timer) timer = 0;
1439 analogCnt = 0;
1440 analogAVG = 0;
1441 }
1442 }
7bc95e2e 1443
9ca155ba 1444 // receive and test the miller decoding
7bc95e2e 1445 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1446 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1447 if(MillerDecoding(b, 0)) {
1448 *len = Uart.len;
9ca155ba
M
1449 return 0;
1450 }
7bc95e2e 1451 }
1452
9ca155ba
M
1453 }
1454}
1455
9ca155ba 1456
6a1f2d82 1457static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
7bc95e2e 1458{
1459 uint8_t b;
1460 uint16_t i = 0;
1461 uint32_t ThisTransferTime;
1462
9ca155ba
M
1463 // Modulate Manchester
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1465
1466 // include correction bit if necessary
1467 if (Uart.parityBits & 0x01) {
1468 correctionNeeded = TRUE;
1469 }
1470 if(correctionNeeded) {
9ca155ba
M
1471 // 1236, so correction bit needed
1472 i = 0;
7bc95e2e 1473 } else {
1474 i = 1;
9ca155ba 1475 }
7bc95e2e 1476
d714d3ef 1477 // clear receiving shift register and holding register
7bc95e2e 1478 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1479 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1480 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1481 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1482
7bc95e2e 1483 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1484 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1485 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1486 if (AT91C_BASE_SSC->SSC_RHR) break;
1487 }
1488
1489 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1490
1491 // Clear TXRDY:
1492 AT91C_BASE_SSC->SSC_THR = SEC_F;
1493
9ca155ba 1494 // send cycle
bb42a03e 1495 for(; i < respLen; ) {
9ca155ba 1496 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1497 AT91C_BASE_SSC->SSC_THR = resp[i++];
1498 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1499 }
7bc95e2e 1500
9ca155ba
M
1501 if(BUTTON_PRESS()) {
1502 break;
1503 }
1504 }
1505
7bc95e2e 1506 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
0c8d25eb 1507 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1508 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
7bc95e2e 1509 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1510 AT91C_BASE_SSC->SSC_THR = SEC_F;
1511 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1512 i++;
1513 }
1514 }
0c8d25eb 1515
7bc95e2e 1516 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1517
9ca155ba
M
1518 return 0;
1519}
1520
7bc95e2e 1521int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1522 Code4bitAnswerAsTag(resp);
0a39986e 1523 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1524 // do the tracing for the previous reader request and this tag answer:
6a1f2d82 1525 uint8_t par[1];
1526 GetParity(&resp, 1, par);
7bc95e2e 1527 EmLogTrace(Uart.output,
1528 Uart.len,
1529 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1530 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1531 Uart.parity,
7bc95e2e 1532 &resp,
1533 1,
1534 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1535 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1536 par);
0a39986e 1537 return res;
9ca155ba
M
1538}
1539
8f51ddb0 1540int EmSend4bit(uint8_t resp){
7bc95e2e 1541 return EmSend4bitEx(resp, false);
8f51ddb0
M
1542}
1543
6a1f2d82 1544int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
7bc95e2e 1545 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1546 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1547 // do the tracing for the previous reader request and this tag answer:
1548 EmLogTrace(Uart.output,
1549 Uart.len,
1550 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1551 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
6a1f2d82 1552 Uart.parity,
7bc95e2e 1553 resp,
1554 respLen,
1555 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1556 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
6a1f2d82 1557 par);
8f51ddb0
M
1558 return res;
1559}
1560
6a1f2d82 1561int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1562 uint8_t par[MAX_PARITY_SIZE];
1563 GetParity(resp, respLen, par);
1564 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
8f51ddb0
M
1565}
1566
6a1f2d82 1567int EmSendCmd(uint8_t *resp, uint16_t respLen){
1568 uint8_t par[MAX_PARITY_SIZE];
1569 GetParity(resp, respLen, par);
1570 return EmSendCmdExPar(resp, respLen, false, par);
8f51ddb0
M
1571}
1572
6a1f2d82 1573int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
7bc95e2e 1574 return EmSendCmdExPar(resp, respLen, false, par);
1575}
1576
6a1f2d82 1577bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1578 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
7bc95e2e 1579{
1580 if (tracing) {
1581 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1582 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1583 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1584 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1585 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1586 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1587 reader_EndTime = tag_StartTime - exact_fdt;
1588 reader_StartTime = reader_EndTime - reader_modlen;
6a1f2d82 1589 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
7bc95e2e 1590 return FALSE;
6a1f2d82 1591 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
7bc95e2e 1592 } else {
1593 return TRUE;
1594 }
9ca155ba
M
1595}
1596
15c4dc5a 1597//-----------------------------------------------------------------------------
1598// Wait a certain time for tag response
1599// If a response is captured return TRUE
e691fc45 1600// If it takes too long return FALSE
15c4dc5a 1601//-----------------------------------------------------------------------------
6a1f2d82 1602static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
15c4dc5a 1603{
52bfb955 1604 uint32_t c;
e691fc45 1605
15c4dc5a 1606 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1607 // only, since we are receiving, not transmitting).
1608 // Signal field is on with the appropriate LED
1609 LED_D_ON();
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1611
534983d7 1612 // Now get the answer from the card
6a1f2d82 1613 DemodInit(receivedResponse, receivedResponsePar);
15c4dc5a 1614
7bc95e2e 1615 // clear RXRDY:
1616 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
0c8d25eb 1617
15c4dc5a 1618 c = 0;
1619 for(;;) {
534983d7 1620 WDT_HIT();
15c4dc5a 1621
534983d7 1622 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1623 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1624 if(ManchesterDecoding(b, offset, 0)) {
1625 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1626 return TRUE;
19a700a8 1627 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
7bc95e2e 1628 return FALSE;
15c4dc5a 1629 }
534983d7 1630 }
1631 }
15c4dc5a 1632}
1633
6a1f2d82 1634void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
15c4dc5a 1635{
6a1f2d82 1636 CodeIso14443aBitsAsReaderPar(frame, bits, par);
dfc3c505 1637
7bc95e2e 1638 // Send command to tag
1639 TransmitFor14443a(ToSend, ToSendMax, timing);
1640 if(trigger)
1641 LED_A_ON();
dfc3c505 1642
7bc95e2e 1643 // Log reader command in trace buffer
1644 if (tracing) {
6a1f2d82 1645 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
7bc95e2e 1646 }
15c4dc5a 1647}
1648
6a1f2d82 1649void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
dfc3c505 1650{
6a1f2d82 1651 ReaderTransmitBitsPar(frame, len*8, par, timing);
dfc3c505 1652}
15c4dc5a 1653
6a1f2d82 1654void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
e691fc45 1655{
1656 // Generate parity and redirect
6a1f2d82 1657 uint8_t par[MAX_PARITY_SIZE];
1658 GetParity(frame, len/8, par);
1659 ReaderTransmitBitsPar(frame, len, par, timing);
e691fc45 1660}
1661
6a1f2d82 1662void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
15c4dc5a 1663{
1664 // Generate parity and redirect
6a1f2d82 1665 uint8_t par[MAX_PARITY_SIZE];
1666 GetParity(frame, len, par);
1667 ReaderTransmitBitsPar(frame, len*8, par, timing);
15c4dc5a 1668}
1669
6a1f2d82 1670int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
e691fc45 1671{
6a1f2d82 1672 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
7bc95e2e 1673 if (tracing) {
6a1f2d82 1674 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1675 }
e691fc45 1676 return Demod.len;
1677}
1678
6a1f2d82 1679int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
15c4dc5a 1680{
6a1f2d82 1681 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
7bc95e2e 1682 if (tracing) {
6a1f2d82 1683 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
7bc95e2e 1684 }
e691fc45 1685 return Demod.len;
f89c7050
M
1686}
1687
e691fc45 1688/* performs iso14443a anticollision procedure
534983d7 1689 * fills the uid pointer unless NULL
1690 * fills resp_data unless NULL */
6a1f2d82 1691int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1692 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1693 uint8_t sel_all[] = { 0x93,0x20 };
1694 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1695 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
f71f4deb 1696 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1697 uint8_t resp_par[MAX_PARITY_SIZE];
6a1f2d82 1698 byte_t uid_resp[4];
1699 size_t uid_resp_len;
1700
1701 uint8_t sak = 0x04; // cascade uid
1702 int cascade_level = 0;
1703 int len;
1704
1705 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1706 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1707
6a1f2d82 1708 // Receive the ATQA
1709 if(!ReaderReceive(resp, resp_par)) return 0;
6a1f2d82 1710
1711 if(p_hi14a_card) {
1712 memcpy(p_hi14a_card->atqa, resp, 2);
1713 p_hi14a_card->uidlen = 0;
1714 memset(p_hi14a_card->uid,0,10);
1715 }
5f6d6c90 1716
6a1f2d82 1717 // clear uid
1718 if (uid_ptr) {
1719 memset(uid_ptr,0,10);
1720 }
79a73ab2 1721
6a1f2d82 1722 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1723 // which case we need to make a cascade 2 request and select - this is a long UID
1724 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1725 for(; sak & 0x04; cascade_level++) {
1726 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1727 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1728
1729 // SELECT_ALL
1730 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1731 if (!ReaderReceive(resp, resp_par)) return 0;
1732
1733 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1734 memset(uid_resp, 0, 4);
1735 uint16_t uid_resp_bits = 0;
1736 uint16_t collision_answer_offset = 0;
1737 // anti-collision-loop:
1738 while (Demod.collisionPos) {
1739 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1740 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1741 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
758f1fd1 1742 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
6a1f2d82 1743 }
1744 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1745 uid_resp_bits++;
1746 // construct anticollosion command:
1747 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1748 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1749 sel_uid[2+i] = uid_resp[i];
1750 }
1751 collision_answer_offset = uid_resp_bits%8;
1752 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1753 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
e691fc45 1754 }
6a1f2d82 1755 // finally, add the last bits and BCC of the UID
1756 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1757 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1758 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
e691fc45 1759 }
e691fc45 1760
6a1f2d82 1761 } else { // no collision, use the response to SELECT_ALL as current uid
1762 memcpy(uid_resp, resp, 4);
1763 }
1764 uid_resp_len = 4;
5f6d6c90 1765
6a1f2d82 1766 // calculate crypto UID. Always use last 4 Bytes.
1767 if(cuid_ptr) {
1768 *cuid_ptr = bytes_to_num(uid_resp, 4);
1769 }
e30c654b 1770
6a1f2d82 1771 // Construct SELECT UID command
1772 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1773 memcpy(sel_uid+2, uid_resp, 4); // the UID
1774 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1775 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1776 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1777
1778 // Receive the SAK
1779 if (!ReaderReceive(resp, resp_par)) return 0;
1780 sak = resp[0];
1781
52ab55ab 1782 // Test if more parts of the uid are coming
6a1f2d82 1783 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1784 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1785 // http://www.nxp.com/documents/application_note/AN10927.pdf
6a1f2d82 1786 uid_resp[0] = uid_resp[1];
1787 uid_resp[1] = uid_resp[2];
1788 uid_resp[2] = uid_resp[3];
1789
1790 uid_resp_len = 3;
1791 }
5f6d6c90 1792
6a1f2d82 1793 if(uid_ptr) {
1794 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1795 }
5f6d6c90 1796
6a1f2d82 1797 if(p_hi14a_card) {
1798 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1799 p_hi14a_card->uidlen += uid_resp_len;
1800 }
1801 }
79a73ab2 1802
6a1f2d82 1803 if(p_hi14a_card) {
1804 p_hi14a_card->sak = sak;
1805 p_hi14a_card->ats_len = 0;
1806 }
534983d7 1807
3fe4ff4f 1808 // non iso14443a compliant tag
1809 if( (sak & 0x20) == 0) return 2;
534983d7 1810
6a1f2d82 1811 // Request for answer to select
1812 AppendCrc14443a(rats, 2);
1813 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1814
6a1f2d82 1815 if (!(len = ReaderReceive(resp, resp_par))) return 0;
5191b3d1 1816
3fe4ff4f 1817
6a1f2d82 1818 if(p_hi14a_card) {
1819 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1820 p_hi14a_card->ats_len = len;
1821 }
5f6d6c90 1822
6a1f2d82 1823 // reset the PCB block number
1824 iso14_pcb_blocknum = 0;
19a700a8 1825
1826 // set default timeout based on ATS
1827 iso14a_set_ATS_timeout(resp);
1828
6a1f2d82 1829 return 1;
7e758047 1830}
15c4dc5a 1831
7bc95e2e 1832void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1833 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1834 // Set up the synchronous serial port
1835 FpgaSetupSsc();
7bc95e2e 1836 // connect Demodulated Signal to ADC:
7e758047 1837 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1838
7e758047 1839 // Signal field is on with the appropriate LED
7bc95e2e 1840 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1841 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1842 LED_D_ON();
1843 } else {
1844 LED_D_OFF();
1845 }
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1847
7bc95e2e 1848 // Start the timer
1849 StartCountSspClk();
1850
1851 DemodReset();
1852 UartReset();
1853 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1854 iso14a_set_timeout(1050); // 10ms default
7e758047 1855}
15c4dc5a 1856
6a1f2d82 1857int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1858 uint8_t parity[MAX_PARITY_SIZE];
534983d7 1859 uint8_t real_cmd[cmd_len+4];
1860 real_cmd[0] = 0x0a; //I-Block
b0127e65 1861 // put block number into the PCB
1862 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1863 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1864 memcpy(real_cmd+2, cmd, cmd_len);
1865 AppendCrc14443a(real_cmd,cmd_len+2);
1866
9492e0b0 1867 ReaderTransmit(real_cmd, cmd_len+4, NULL);
6a1f2d82 1868 size_t len = ReaderReceive(data, parity);
1869 uint8_t *data_bytes = (uint8_t *) data;
b0127e65 1870 if (!len)
1871 return 0; //DATA LINK ERROR
1872 // if we received an I- or R(ACK)-Block with a block number equal to the
1873 // current block number, toggle the current block number
1874 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1875 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1876 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1877 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1878 {
1879 iso14_pcb_blocknum ^= 1;
1880 }
1881
534983d7 1882 return len;
1883}
1884
7e758047 1885//-----------------------------------------------------------------------------
1886// Read an ISO 14443a tag. Send out commands and store answers.
1887//
1888//-----------------------------------------------------------------------------
7bc95e2e 1889void ReaderIso14443a(UsbCommand *c)
7e758047 1890{
534983d7 1891 iso14a_command_t param = c->arg[0];
7bc95e2e 1892 uint8_t *cmd = c->d.asBytes;
04bc1c66 1893 size_t len = c->arg[1] & 0xffff;
1894 size_t lenbits = c->arg[1] >> 16;
1895 uint32_t timeout = c->arg[2];
9492e0b0 1896 uint32_t arg0 = 0;
1897 byte_t buf[USB_CMD_DATA_SIZE];
6a1f2d82 1898 uint8_t par[MAX_PARITY_SIZE];
902cb3c0 1899
5f6d6c90 1900 if(param & ISO14A_CONNECT) {
3000dc4e 1901 clear_trace();
5f6d6c90 1902 }
e691fc45 1903
3000dc4e 1904 set_tracing(TRUE);
e30c654b 1905
79a73ab2 1906 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1907 iso14a_set_trigger(TRUE);
9492e0b0 1908 }
15c4dc5a 1909
534983d7 1910 if(param & ISO14A_CONNECT) {
7bc95e2e 1911 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1912 if(!(param & ISO14A_NO_SELECT)) {
1913 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1914 arg0 = iso14443a_select_card(NULL,card,NULL);
1915 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1916 }
534983d7 1917 }
e30c654b 1918
534983d7 1919 if(param & ISO14A_SET_TIMEOUT) {
04bc1c66 1920 iso14a_set_timeout(timeout);
534983d7 1921 }
e30c654b 1922
534983d7 1923 if(param & ISO14A_APDU) {
902cb3c0 1924 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1925 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1926 }
e30c654b 1927
534983d7 1928 if(param & ISO14A_RAW) {
1929 if(param & ISO14A_APPEND_CRC) {
1930 AppendCrc14443a(cmd,len);
1931 len += 2;
c7324bef 1932 if (lenbits) lenbits += 16;
15c4dc5a 1933 }
5f6d6c90 1934 if(lenbits>0) {
6a1f2d82 1935 GetParity(cmd, lenbits/8, par);
1936 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
5f6d6c90 1937 } else {
1938 ReaderTransmit(cmd,len, NULL);
1939 }
6a1f2d82 1940 arg0 = ReaderReceive(buf, par);
9492e0b0 1941 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1942 }
15c4dc5a 1943
79a73ab2 1944 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1945 iso14a_set_trigger(FALSE);
9492e0b0 1946 }
15c4dc5a 1947
79a73ab2 1948 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1949 return;
9492e0b0 1950 }
15c4dc5a 1951
15c4dc5a 1952 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1953 LEDsoff();
15c4dc5a 1954}
b0127e65 1955
1c611bbd 1956
1c611bbd 1957// Determine the distance between two nonces.
1958// Assume that the difference is small, but we don't know which is first.
1959// Therefore try in alternating directions.
1960int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1961
1962 uint16_t i;
1963 uint32_t nttmp1, nttmp2;
e772353f 1964
1c611bbd 1965 if (nt1 == nt2) return 0;
1966
1967 nttmp1 = nt1;
1968 nttmp2 = nt2;
1969
1970 for (i = 1; i < 32768; i++) {
1971 nttmp1 = prng_successor(nttmp1, 1);
1972 if (nttmp1 == nt2) return i;
1973 nttmp2 = prng_successor(nttmp2, 1);
dc8ba239 1974 if (nttmp2 == nt1) return -i;
1c611bbd 1975 }
1976
1977 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 1978}
1979
e772353f 1980
1c611bbd 1981//-----------------------------------------------------------------------------
1982// Recover several bits of the cypher stream. This implements (first stages of)
1983// the algorithm described in "The Dark Side of Security by Obscurity and
1984// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1985// (article by Nicolas T. Courtois, 2009)
1986//-----------------------------------------------------------------------------
1987void ReaderMifare(bool first_try)
1988{
1989 // Mifare AUTH
1990 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1991 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1992 static uint8_t mf_nr_ar3;
e772353f 1993
f71f4deb 1994 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
1995 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
7bc95e2e 1996
f71f4deb 1997 // free eventually allocated BigBuf memory. We want all for tracing.
1998 BigBuf_free();
1999
3000dc4e
MHS
2000 clear_trace();
2001 set_tracing(TRUE);
e772353f 2002
1c611bbd 2003 byte_t nt_diff = 0;
6a1f2d82 2004 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
1c611bbd 2005 static byte_t par_low = 0;
2006 bool led_on = TRUE;
ca4714cd 2007 uint8_t uid[10] ={0};
1c611bbd 2008 uint32_t cuid;
e772353f 2009
6a1f2d82 2010 uint32_t nt = 0;
2ed270a8 2011 uint32_t previous_nt = 0;
1c611bbd 2012 static uint32_t nt_attacked = 0;
3fe4ff4f 2013 byte_t par_list[8] = {0x00};
2014 byte_t ks_list[8] = {0x00};
e772353f 2015
1c611bbd 2016 static uint32_t sync_time;
2017 static uint32_t sync_cycles;
2018 int catch_up_cycles = 0;
2019 int last_catch_up = 0;
2020 uint16_t consecutive_resyncs = 0;
2021 int isOK = 0;
e772353f 2022
1c611bbd 2023 if (first_try) {
1c611bbd 2024 mf_nr_ar3 = 0;
7bc95e2e 2025 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2026 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 2027 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2028 nt_attacked = 0;
2029 nt = 0;
6a1f2d82 2030 par[0] = 0;
1c611bbd 2031 }
2032 else {
2033 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1c611bbd 2034 mf_nr_ar3++;
2035 mf_nr_ar[3] = mf_nr_ar3;
6a1f2d82 2036 par[0] = par_low;
1c611bbd 2037 }
e30c654b 2038
15c4dc5a 2039 LED_A_ON();
2040 LED_B_OFF();
2041 LED_C_OFF();
1c611bbd 2042
dc8ba239 2043
2044 #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up.
2045 uint16_t unsuccessfull_tries = 0;
2046
1c611bbd 2047 for(uint16_t i = 0; TRUE; i++) {
2048
dc8ba239 2049 LED_C_ON();
1c611bbd 2050 WDT_HIT();
e30c654b 2051
1c611bbd 2052 // Test if the action was cancelled
2053 if(BUTTON_PRESS()) {
dc8ba239 2054 isOK = -1;
1c611bbd 2055 break;
2056 }
2057
1c611bbd 2058 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 2059 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 2060 continue;
2061 }
2062
9492e0b0 2063 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 2064 catch_up_cycles = 0;
2065
2066 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 2067 while(GetCountSspClk() > sync_time) {
9492e0b0 2068 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 2069 }
e30c654b 2070
9492e0b0 2071 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2072 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2073
1c611bbd 2074 // Receive the (4 Byte) "random" nonce
6a1f2d82 2075 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
9492e0b0 2076 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2077 continue;
2078 }
2079
1c611bbd 2080 previous_nt = nt;
2081 nt = bytes_to_num(receivedAnswer, 4);
2082
2083 // Transmit reader nonce with fake par
9492e0b0 2084 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2085
2086 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2087 int nt_distance = dist_nt(previous_nt, nt);
2088 if (nt_distance == 0) {
2089 nt_attacked = nt;
2090 }
2091 else {
dc8ba239 2092 if (nt_distance == -99999) { // invalid nonce received
2093 unsuccessfull_tries++;
2094 if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) {
2095 isOK = -3; // Card has an unpredictable PRNG. Give up
2096 break;
2097 } else {
2098 continue; // continue trying...
2099 }
1c611bbd 2100 }
2101 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2102 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2103 continue;
2104 }
2105 }
2106
2107 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2108 catch_up_cycles = -dist_nt(nt_attacked, nt);
2109 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2110 catch_up_cycles = 0;
2111 continue;
2112 }
2113 if (catch_up_cycles == last_catch_up) {
2114 consecutive_resyncs++;
2115 }
2116 else {
2117 last_catch_up = catch_up_cycles;
2118 consecutive_resyncs = 0;
2119 }
2120 if (consecutive_resyncs < 3) {
9492e0b0 2121 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2122 }
2123 else {
2124 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2125 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2126 }
2127 continue;
2128 }
2129
2130 consecutive_resyncs = 0;
2131
2132 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
6a1f2d82 2133 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
1c611bbd 2134 {
9492e0b0 2135 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2136
2137 if (nt_diff == 0)
2138 {
6a1f2d82 2139 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
1c611bbd 2140 }
2141
2142 led_on = !led_on;
2143 if(led_on) LED_B_ON(); else LED_B_OFF();
2144
6a1f2d82 2145 par_list[nt_diff] = SwapBits(par[0], 8);
1c611bbd 2146 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2147
2148 // Test if the information is complete
2149 if (nt_diff == 0x07) {
2150 isOK = 1;
2151 break;
2152 }
2153
2154 nt_diff = (nt_diff + 1) & 0x07;
2155 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
6a1f2d82 2156 par[0] = par_low;
1c611bbd 2157 } else {
2158 if (nt_diff == 0 && first_try)
2159 {
6a1f2d82 2160 par[0]++;
dc8ba239 2161 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2162 isOK = -2;
2163 break;
2164 }
1c611bbd 2165 } else {
6a1f2d82 2166 par[0] = ((par[0] & 0x1F) + 1) | par_low;
1c611bbd 2167 }
2168 }
2169 }
2170
1c611bbd 2171
2172 mf_nr_ar[3] &= 0x1F;
2173
2174 byte_t buf[28];
2175 memcpy(buf + 0, uid, 4);
2176 num_to_bytes(nt, 4, buf + 4);
2177 memcpy(buf + 8, par_list, 8);
2178 memcpy(buf + 16, ks_list, 8);
2179 memcpy(buf + 24, mf_nr_ar, 4);
2180
dc8ba239 2181 cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
1c611bbd 2182
2183 // Thats it...
2184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2185 LEDsoff();
7bc95e2e 2186
3000dc4e 2187 set_tracing(FALSE);
20f9a2a1 2188}
1c611bbd 2189
d2f487af 2190/**
2191 *MIFARE 1K simulate.
2192 *
2193 *@param flags :
2194 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2195 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2196 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2197 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2198 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2199 */
2200void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2201{
50193c1e 2202 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2203 int _7BUID = 0;
9ca155ba 2204 int vHf = 0; // in mV
8f51ddb0 2205 int res;
0a39986e
M
2206 uint32_t selTimer = 0;
2207 uint32_t authTimer = 0;
6a1f2d82 2208 uint16_t len = 0;
8f51ddb0 2209 uint8_t cardWRBL = 0;
9ca155ba
M
2210 uint8_t cardAUTHSC = 0;
2211 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2212 uint32_t cardRr = 0;
9ca155ba 2213 uint32_t cuid = 0;
d2f487af 2214 //uint32_t rn_enc = 0;
51969283 2215 uint32_t ans = 0;
0014cb46
M
2216 uint32_t cardINTREG = 0;
2217 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2218 struct Crypto1State mpcs = {0, 0};
2219 struct Crypto1State *pcs;
2220 pcs = &mpcs;
d2f487af 2221 uint32_t numReads = 0;//Counts numer of times reader read a block
f71f4deb 2222 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2223 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2224 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2225 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
9ca155ba 2226
d2f487af 2227 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2228 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2229 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2230 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2231 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2232
d2f487af 2233 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2234 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2235
d2f487af 2236 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2237 // This can be used in a reader-only attack.
2238 // (it can also be retrieved via 'hf 14a list', but hey...
2239 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2240 uint8_t ar_nr_collected = 0;
0014cb46 2241
f71f4deb 2242 // free eventually allocated BigBuf memory but keep Emulator Memory
2243 BigBuf_free_keep_EM();
0c8d25eb 2244
0a39986e 2245 // clear trace
3000dc4e
MHS
2246 clear_trace();
2247 set_tracing(TRUE);
51969283 2248
7bc95e2e 2249 // Authenticate response - nonce
51969283 2250 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2251
d2f487af 2252 //-- Determine the UID
2253 // Can be set from emulator memory, incoming data
2254 // and can be 7 or 4 bytes long
7bc95e2e 2255 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2256 {
2257 // 4B uid comes from data-portion of packet
2258 memcpy(rUIDBCC1,datain,4);
8556b852 2259 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2260
7bc95e2e 2261 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2262 // 7B uid comes from data-portion of packet
2263 memcpy(&rUIDBCC1[1],datain,3);
2264 memcpy(rUIDBCC2, datain+3, 4);
2265 _7BUID = true;
7bc95e2e 2266 } else {
d2f487af 2267 // get UID from emul memory
2268 emlGetMemBt(receivedCmd, 7, 1);
2269 _7BUID = !(receivedCmd[0] == 0x00);
2270 if (!_7BUID) { // ---------- 4BUID
2271 emlGetMemBt(rUIDBCC1, 0, 4);
2272 } else { // ---------- 7BUID
2273 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2274 emlGetMemBt(rUIDBCC2, 3, 4);
2275 }
2276 }
7bc95e2e 2277
d2f487af 2278 /*
2279 * Regardless of what method was used to set the UID, set fifth byte and modify
2280 * the ATQA for 4 or 7-byte UID
2281 */
d2f487af 2282 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2283 if (_7BUID) {
d2f487af 2284 rATQA[0] = 0x44;
8556b852 2285 rUIDBCC1[0] = 0x88;
e9b8d0dd 2286 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852
M
2287 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2288 }
2289
9ca155ba 2290 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2291 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2292
9ca155ba 2293
d2f487af 2294 if (MF_DBGLEVEL >= 1) {
2295 if (!_7BUID) {
b03c0f2d 2296 Dbprintf("4B UID: %02x%02x%02x%02x",
2297 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
7bc95e2e 2298 } else {
b03c0f2d 2299 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2300 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2301 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
d2f487af 2302 }
2303 }
7bc95e2e 2304
2305 bool finished = FALSE;
d2f487af 2306 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2307 WDT_HIT();
9ca155ba
M
2308
2309 // find reader field
9ca155ba 2310 if (cardSTATE == MFEMUL_NOFIELD) {
0c8d25eb 2311 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
9ca155ba 2312 if (vHf > MF_MINFIELDV) {
0014cb46 2313 cardSTATE_TO_IDLE();
9ca155ba
M
2314 LED_A_ON();
2315 }
2316 }
d2f487af 2317 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2318
d2f487af 2319 //Now, get data
2320
6a1f2d82 2321 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
d2f487af 2322 if (res == 2) { //Field is off!
2323 cardSTATE = MFEMUL_NOFIELD;
2324 LEDsoff();
2325 continue;
7bc95e2e 2326 } else if (res == 1) {
2327 break; //return value 1 means button press
2328 }
2329
d2f487af 2330 // REQ or WUP request in ANY state and WUP in HALTED state
2331 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2332 selTimer = GetTickCount();
2333 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2334 cardSTATE = MFEMUL_SELECT1;
2335
2336 // init crypto block
2337 LED_B_OFF();
2338 LED_C_OFF();
2339 crypto1_destroy(pcs);
2340 cardAUTHKEY = 0xff;
2341 continue;
0a39986e 2342 }
7bc95e2e 2343
50193c1e 2344 switch (cardSTATE) {
d2f487af 2345 case MFEMUL_NOFIELD:
2346 case MFEMUL_HALTED:
50193c1e 2347 case MFEMUL_IDLE:{
6a1f2d82 2348 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
50193c1e
M
2349 break;
2350 }
2351 case MFEMUL_SELECT1:{
9ca155ba
M
2352 // select all
2353 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2354 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2355 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2356 break;
9ca155ba
M
2357 }
2358
d2f487af 2359 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2360 {
2361 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2362 }
9ca155ba 2363 // select card
0a39986e
M
2364 if (len == 9 &&
2365 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2366 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2367 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2368 if (!_7BUID) {
2369 cardSTATE = MFEMUL_WORK;
0014cb46
M
2370 LED_B_ON();
2371 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2372 break;
8556b852
M
2373 } else {
2374 cardSTATE = MFEMUL_SELECT2;
8556b852 2375 }
9ca155ba 2376 }
50193c1e
M
2377 break;
2378 }
d2f487af 2379 case MFEMUL_AUTH1:{
2380 if( len != 8)
2381 {
2382 cardSTATE_TO_IDLE();
6a1f2d82 2383 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2384 break;
2385 }
0c8d25eb 2386
d2f487af 2387 uint32_t ar = bytes_to_num(receivedCmd, 4);
6a1f2d82 2388 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
d2f487af 2389
2390 //Collect AR/NR
2391 if(ar_nr_collected < 2){
273b57a7 2392 if(ar_nr_responses[2] != ar)
2393 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2394 ar_nr_responses[ar_nr_collected*4] = cuid;
2395 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2396 ar_nr_responses[ar_nr_collected*4+2] = ar;
2397 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2398 ar_nr_collected++;
d2f487af 2399 }
2400 }
2401
2402 // --- crypto
2403 crypto1_word(pcs, ar , 1);
2404 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2405
2406 // test if auth OK
2407 if (cardRr != prng_successor(nonce, 64)){
b03c0f2d 2408 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2409 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2410 cardRr, prng_successor(nonce, 64));
7bc95e2e 2411 // Shouldn't we respond anything here?
d2f487af 2412 // Right now, we don't nack or anything, which causes the
2413 // reader to do a WUPA after a while. /Martin
b03c0f2d 2414 // -- which is the correct response. /piwi
d2f487af 2415 cardSTATE_TO_IDLE();
6a1f2d82 2416 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
d2f487af 2417 break;
2418 }
2419
2420 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2421
2422 num_to_bytes(ans, 4, rAUTH_AT);
2423 // --- crypto
2424 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2425 LED_C_ON();
2426 cardSTATE = MFEMUL_WORK;
b03c0f2d 2427 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2428 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2429 GetTickCount() - authTimer);
d2f487af 2430 break;
2431 }
50193c1e 2432 case MFEMUL_SELECT2:{
7bc95e2e 2433 if (!len) {
6a1f2d82 2434 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2435 break;
2436 }
8556b852 2437 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2438 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2439 break;
2440 }
9ca155ba 2441
8556b852
M
2442 // select 2 card
2443 if (len == 9 &&
2444 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2445 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2446 cuid = bytes_to_num(rUIDBCC2, 4);
2447 cardSTATE = MFEMUL_WORK;
2448 LED_B_ON();
0014cb46 2449 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2450 break;
2451 }
0014cb46
M
2452
2453 // i guess there is a command). go into the work state.
7bc95e2e 2454 if (len != 4) {
6a1f2d82 2455 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2456 break;
2457 }
0014cb46 2458 cardSTATE = MFEMUL_WORK;
d2f487af 2459 //goto lbWORK;
2460 //intentional fall-through to the next case-stmt
50193c1e 2461 }
51969283 2462
7bc95e2e 2463 case MFEMUL_WORK:{
2464 if (len == 0) {
6a1f2d82 2465 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2466 break;
2467 }
2468
d2f487af 2469 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2470
7bc95e2e 2471 if(encrypted_data) {
51969283
M
2472 // decrypt seqence
2473 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2474 }
7bc95e2e 2475
d2f487af 2476 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2477 authTimer = GetTickCount();
2478 cardAUTHSC = receivedCmd[1] / 4; // received block num
2479 cardAUTHKEY = receivedCmd[0] - 0x60;
2480 crypto1_destroy(pcs);//Added by martin
2481 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2482
d2f487af 2483 if (!encrypted_data) { // first authentication
b03c0f2d 2484 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2485
d2f487af 2486 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2487 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2488 } else { // nested authentication
b03c0f2d 2489 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2490 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2491 num_to_bytes(ans, 4, rAUTH_AT);
2492 }
0c8d25eb 2493
d2f487af 2494 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2495 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2496 cardSTATE = MFEMUL_AUTH1;
2497 break;
51969283 2498 }
7bc95e2e 2499
8f51ddb0
M
2500 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2501 // BUT... ACK --> NACK
2502 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2503 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2504 break;
2505 }
2506
2507 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2508 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2509 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2510 break;
0a39986e
M
2511 }
2512
7bc95e2e 2513 if(len != 4) {
6a1f2d82 2514 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
7bc95e2e 2515 break;
2516 }
d2f487af 2517
2518 if(receivedCmd[0] == 0x30 // read block
2519 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2520 || receivedCmd[0] == 0xC0 // inc
2521 || receivedCmd[0] == 0xC1 // dec
2522 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2523 || receivedCmd[0] == 0xB0) { // transfer
2524 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
e35031d2 2526 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2527 break;
2528 }
2529
7bc95e2e 2530 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2531 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
e35031d2 2532 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2533 break;
2534 }
d2f487af 2535 }
2536 // read block
2537 if (receivedCmd[0] == 0x30) {
b03c0f2d 2538 if (MF_DBGLEVEL >= 4) {
d2f487af 2539 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2540 }
8f51ddb0
M
2541 emlGetMem(response, receivedCmd[1], 1);
2542 AppendCrc14443a(response, 16);
6a1f2d82 2543 mf_crypto1_encrypt(pcs, response, 18, response_par);
2544 EmSendCmdPar(response, 18, response_par);
d2f487af 2545 numReads++;
7bc95e2e 2546 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2547 Dbprintf("%d reads done, exiting", numReads);
2548 finished = true;
2549 }
0a39986e
M
2550 break;
2551 }
0a39986e 2552 // write block
d2f487af 2553 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2554 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2555 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2556 cardSTATE = MFEMUL_WRITEBL2;
2557 cardWRBL = receivedCmd[1];
0a39986e 2558 break;
7bc95e2e 2559 }
0014cb46 2560 // increment, decrement, restore
d2f487af 2561 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2562 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2563 if (emlCheckValBl(receivedCmd[1])) {
2564 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2565 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2566 break;
2567 }
2568 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2569 if (receivedCmd[0] == 0xC1)
2570 cardSTATE = MFEMUL_INTREG_INC;
2571 if (receivedCmd[0] == 0xC0)
2572 cardSTATE = MFEMUL_INTREG_DEC;
2573 if (receivedCmd[0] == 0xC2)
2574 cardSTATE = MFEMUL_INTREG_REST;
2575 cardWRBL = receivedCmd[1];
0014cb46
M
2576 break;
2577 }
0014cb46 2578 // transfer
d2f487af 2579 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2580 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2581 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2582 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2583 else
2584 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2585 break;
2586 }
9ca155ba 2587 // halt
d2f487af 2588 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2589 LED_B_OFF();
0a39986e 2590 LED_C_OFF();
0014cb46
M
2591 cardSTATE = MFEMUL_HALTED;
2592 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
6a1f2d82 2593 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0a39986e 2594 break;
9ca155ba 2595 }
d2f487af 2596 // RATS
2597 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2598 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2599 break;
2600 }
d2f487af 2601 // command not allowed
2602 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2603 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2604 break;
8f51ddb0
M
2605 }
2606 case MFEMUL_WRITEBL2:{
2607 if (len == 18){
2608 mf_crypto1_decrypt(pcs, receivedCmd, len);
2609 emlSetMem(receivedCmd, cardWRBL, 1);
2610 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2611 cardSTATE = MFEMUL_WORK;
51969283 2612 } else {
0014cb46 2613 cardSTATE_TO_IDLE();
6a1f2d82 2614 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
8f51ddb0 2615 }
8f51ddb0 2616 break;
50193c1e 2617 }
0014cb46
M
2618
2619 case MFEMUL_INTREG_INC:{
2620 mf_crypto1_decrypt(pcs, receivedCmd, len);
2621 memcpy(&ans, receivedCmd, 4);
2622 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2623 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2624 cardSTATE_TO_IDLE();
2625 break;
7bc95e2e 2626 }
6a1f2d82 2627 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2628 cardINTREG = cardINTREG + ans;
2629 cardSTATE = MFEMUL_WORK;
2630 break;
2631 }
2632 case MFEMUL_INTREG_DEC:{
2633 mf_crypto1_decrypt(pcs, receivedCmd, len);
2634 memcpy(&ans, receivedCmd, 4);
2635 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2636 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2637 cardSTATE_TO_IDLE();
2638 break;
2639 }
6a1f2d82 2640 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2641 cardINTREG = cardINTREG - ans;
2642 cardSTATE = MFEMUL_WORK;
2643 break;
2644 }
2645 case MFEMUL_INTREG_REST:{
2646 mf_crypto1_decrypt(pcs, receivedCmd, len);
2647 memcpy(&ans, receivedCmd, 4);
2648 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2649 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2650 cardSTATE_TO_IDLE();
2651 break;
2652 }
6a1f2d82 2653 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
0014cb46
M
2654 cardSTATE = MFEMUL_WORK;
2655 break;
2656 }
50193c1e 2657 }
50193c1e
M
2658 }
2659
9ca155ba
M
2660 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2661 LEDsoff();
2662
d2f487af 2663 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2664 {
2665 //May just aswell send the collected ar_nr in the response aswell
2666 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2667 }
d714d3ef 2668
d2f487af 2669 if(flags & FLAG_NR_AR_ATTACK)
2670 {
7bc95e2e 2671 if(ar_nr_collected > 1) {
d2f487af 2672 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2673 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
0c8d25eb 2674 ar_nr_responses[0], // UID
d2f487af 2675 ar_nr_responses[1], //NT
2676 ar_nr_responses[2], //AR1
2677 ar_nr_responses[3], //NR1
2678 ar_nr_responses[6], //AR2
2679 ar_nr_responses[7] //NR2
2680 );
7bc95e2e 2681 } else {
d2f487af 2682 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2683 if(ar_nr_collected >0) {
d714d3ef 2684 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2685 ar_nr_responses[0], // UID
2686 ar_nr_responses[1], //NT
2687 ar_nr_responses[2], //AR1
2688 ar_nr_responses[3] //NR1
2689 );
2690 }
2691 }
2692 }
3000dc4e 2693 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
0c8d25eb 2694
15c4dc5a 2695}
b62a5a84 2696
d2f487af 2697
2698
b62a5a84
M
2699//-----------------------------------------------------------------------------
2700// MIFARE sniffer.
2701//
2702//-----------------------------------------------------------------------------
5cd9ec01
M
2703void RAMFUNC SniffMifare(uint8_t param) {
2704 // param:
2705 // bit 0 - trigger from first card answer
2706 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2707
2708 // C(red) A(yellow) B(green)
b62a5a84
M
2709 LEDsoff();
2710 // init trace buffer
3000dc4e
MHS
2711 clear_trace();
2712 set_tracing(TRUE);
b62a5a84 2713
b62a5a84
M
2714 // The command (reader -> tag) that we're receiving.
2715 // The length of a received command will in most cases be no more than 18 bytes.
2716 // So 32 should be enough!
f71f4deb 2717 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2718 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
b62a5a84 2719 // The response (tag -> reader) that we're receiving.
f71f4deb 2720 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2721 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
b62a5a84
M
2722
2723 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2724 // into trace, along with its length and other annotations.
2725 //uint8_t *trace = (uint8_t *)BigBuf;
2726
f71f4deb 2727 // free eventually allocated BigBuf memory
2728 BigBuf_free();
2729 // allocate the DMA buffer, used to stream samples from the FPGA
2730 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
7bc95e2e 2731 uint8_t *data = dmaBuf;
2732 uint8_t previous_data = 0;
5cd9ec01
M
2733 int maxDataLen = 0;
2734 int dataLen = 0;
7bc95e2e 2735 bool ReaderIsActive = FALSE;
2736 bool TagIsActive = FALSE;
2737
2738 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2739
2740 // Set up the demodulator for tag -> reader responses.
6a1f2d82 2741 DemodInit(receivedResponse, receivedResponsePar);
b62a5a84
M
2742
2743 // Set up the demodulator for the reader -> tag commands
6a1f2d82 2744 UartInit(receivedCmd, receivedCmdPar);
b62a5a84
M
2745
2746 // Setup for the DMA.
7bc95e2e 2747 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2748
b62a5a84 2749 LED_D_OFF();
39864b0b
M
2750
2751 // init sniffer
2752 MfSniffInit();
b62a5a84 2753
b62a5a84 2754 // And now we loop, receiving samples.
7bc95e2e 2755 for(uint32_t sniffCounter = 0; TRUE; ) {
2756
5cd9ec01
M
2757 if(BUTTON_PRESS()) {
2758 DbpString("cancelled by button");
7bc95e2e 2759 break;
5cd9ec01
M
2760 }
2761
b62a5a84
M
2762 LED_A_ON();
2763 WDT_HIT();
39864b0b 2764
7bc95e2e 2765 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2766 // check if a transaction is completed (timeout after 2000ms).
2767 // if yes, stop the DMA transfer and send what we have so far to the client
2768 if (MfSniffSend(2000)) {
2769 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2770 sniffCounter = 0;
2771 data = dmaBuf;
2772 maxDataLen = 0;
2773 ReaderIsActive = FALSE;
2774 TagIsActive = FALSE;
2775 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2776 }
39864b0b 2777 }
7bc95e2e 2778
2779 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2780 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2781 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2782 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2783 } else {
2784 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2785 }
2786 // test for length of buffer
7bc95e2e 2787 if(dataLen > maxDataLen) { // we are more behind than ever...
2788 maxDataLen = dataLen;
f71f4deb 2789 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
5cd9ec01 2790 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2791 break;
b62a5a84
M
2792 }
2793 }
5cd9ec01 2794 if(dataLen < 1) continue;
b62a5a84 2795
7bc95e2e 2796 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2797 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2798 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2799 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2800 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2801 }
2802 // secondary buffer sets as primary, secondary buffer was stopped
2803 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2804 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2805 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2806 }
5cd9ec01
M
2807
2808 LED_A_OFF();
b62a5a84 2809
7bc95e2e 2810 if (sniffCounter & 0x01) {
b62a5a84 2811
7bc95e2e 2812 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2813 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2814 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2815 LED_C_INV();
6a1f2d82 2816 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
b62a5a84 2817
7bc95e2e 2818 /* And ready to receive another command. */
2819 UartReset();
2820
2821 /* And also reset the demod code */
2822 DemodReset();
2823 }
2824 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2825 }
2826
2827 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2828 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2829 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2830 LED_C_INV();
b62a5a84 2831
6a1f2d82 2832 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
39864b0b 2833
7bc95e2e 2834 // And ready to receive another response.
2835 DemodReset();
2836 }
2837 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2838 }
b62a5a84
M
2839 }
2840
7bc95e2e 2841 previous_data = *data;
2842 sniffCounter++;
5cd9ec01 2843 data++;
d714d3ef 2844 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2845 data = dmaBuf;
b62a5a84 2846 }
7bc95e2e 2847
b62a5a84
M
2848 } // main cycle
2849
2850 DbpString("COMMAND FINISHED");
2851
55acbb2a 2852 FpgaDisableSscDma();
39864b0b
M
2853 MfSniffEnd();
2854
7bc95e2e 2855 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2856 LEDsoff();
3803d529 2857}
Impressum, Datenschutz