]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Split output from nrz raw demod function
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
902cb3c0 13#include "usb_cdc.h"
14#include "cmd.h"
15
e30c654b 16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
31d1caa5 21
9ab7a6c7 22#include <stdarg.h>
f7e3ed82 23
15c4dc5a 24#include "legicrf.h"
d19929cb 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
15c4dc5a 32#define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34//=============================================================================
35// A buffer where we can queue things up to be sent through the FPGA, for
36// any purpose (fake tag, as reader, whatever). We go MSB first, since that
37// is the order in which they go out on the wire.
38//=============================================================================
39
6a1f2d82 40#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 42int ToSendMax;
43static int ToSendBit;
44struct common_area common_area __attribute__((section(".commonarea")));
45
15c4dc5a 46void ToSendReset(void)
47{
48 ToSendMax = -1;
49 ToSendBit = 8;
50}
51
52void ToSendStuffBit(int b)
53{
54 if(ToSendBit >= 8) {
55 ToSendMax++;
56 ToSend[ToSendMax] = 0;
57 ToSendBit = 0;
58 }
59
60 if(b) {
61 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
62 }
63
64 ToSendBit++;
65
6a1f2d82 66 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 67 ToSendBit = 0;
68 DbpString("ToSendStuffBit overflowed!");
69 }
70}
71
72//=============================================================================
73// Debug print functions, to go out over USB, to the usual PC-side client.
74//=============================================================================
75
76void DbpString(char *str)
77{
9440213d 78 byte_t len = strlen(str);
79 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 80}
81
82#if 0
83void DbpIntegers(int x1, int x2, int x3)
84{
902cb3c0 85 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 86}
87#endif
88
89void Dbprintf(const char *fmt, ...) {
90// should probably limit size here; oh well, let's just use a big buffer
91 char output_string[128];
92 va_list ap;
93
94 va_start(ap, fmt);
95 kvsprintf(fmt, output_string, 10, ap);
96 va_end(ap);
e30c654b 97
15c4dc5a 98 DbpString(output_string);
99}
100
9455b51c 101// prints HEX & ASCII
d19929cb 102void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 103 int l=0,i;
104 char ascii[9];
d19929cb 105
9455b51c 106 while (len>0) {
107 if (len>8) l=8;
108 else l=len;
109
110 memcpy(ascii,d,l);
d19929cb 111 ascii[l]=0;
9455b51c 112
113 // filter safe ascii
d19929cb 114 for (i=0;i<l;i++)
9455b51c 115 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 116
117 if (bAsci) {
118 Dbprintf("%-8s %*D",ascii,l,d," ");
119 } else {
120 Dbprintf("%*D",l,d," ");
121 }
122
9455b51c 123 len-=8;
124 d+=8;
125 }
126}
127
15c4dc5a 128//-----------------------------------------------------------------------------
129// Read an ADC channel and block till it completes, then return the result
130// in ADC units (0 to 1023). Also a routine to average 32 samples and
131// return that.
132//-----------------------------------------------------------------------------
133static int ReadAdc(int ch)
134{
f7e3ed82 135 uint32_t d;
15c4dc5a 136
137 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
138 AT91C_BASE_ADC->ADC_MR =
3b692427 139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
142
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
146 //
147 // The maths are:
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 //
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
151 //
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
153
15c4dc5a 154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 157
15c4dc5a 158 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
159 ;
160 d = AT91C_BASE_ADC->ADC_CDR[ch];
161
162 return d;
163}
164
9ca155ba 165int AvgAdc(int ch) // was static - merlok
15c4dc5a 166{
167 int i;
168 int a = 0;
169
170 for(i = 0; i < 32; i++) {
171 a += ReadAdc(ch);
172 }
173
174 return (a + 15) >> 5;
175}
176
177void MeasureAntennaTuning(void)
178{
2bdd68c3 179 uint8_t LF_Results[256];
9f693930 180 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 181 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
182
2bdd68c3 183 LED_B_ON();
15c4dc5a 184
185/*
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
192 */
d19929cb 193
7cc204bf 194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2bdd68c3 196 for (i=255; i>=19; i--) {
d19929cb 197 WDT_HIT();
15c4dc5a 198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
199 SpinDelay(20);
3b692427 200 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 201 if (i==95) vLf125 = adcval; // voltage at 125Khz
202 if (i==89) vLf134 = adcval; // voltage at 134Khz
203
2bdd68c3 204 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results[i] > peak) {
15c4dc5a 206 peakv = adcval;
2bdd68c3 207 peak = LF_Results[i];
15c4dc5a 208 peakf = i;
9f693930 209 //ptr = i;
15c4dc5a 210 }
211 }
212
2bdd68c3 213 for (i=18; i >= 0; i--) LF_Results[i] = 0;
214
215 LED_A_ON();
15c4dc5a 216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
219 SpinDelay(20);
3b692427 220 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 221
3b692427 222 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 224 LED_A_OFF();
225 LED_B_OFF();
226 return;
15c4dc5a 227}
228
229void MeasureAntennaTuningHf(void)
230{
231 int vHf = 0; // in mV
232
233 DbpString("Measuring HF antenna, press button to exit");
234
3b692427 235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
238
15c4dc5a 239 for (;;) {
15c4dc5a 240 SpinDelay(20);
3b692427 241 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 242
15c4dc5a 243 Dbprintf("%d mV",vHf);
244 if (BUTTON_PRESS()) break;
245 }
246 DbpString("cancelled");
3b692427 247
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249
15c4dc5a 250}
251
252
253void SimulateTagHfListen(void)
254{
f71f4deb 255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
f7e3ed82 259 uint8_t v = 0;
15c4dc5a 260 int i;
261 int p = 0;
262
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
7cc204bf 265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
267
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
270
271 FpgaSetupSsc();
272
273 i = 0;
274 for(;;) {
275 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
276 AT91C_BASE_SSC->SSC_THR = 0xff;
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 279 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 280
281 v <<= 1;
282 if(r & 1) {
283 v |= 1;
284 }
285 p++;
286
287 if(p >= 8) {
288 dest[i] = v;
289 v = 0;
290 p = 0;
291 i++;
292
f71f4deb 293 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
15c4dc5a 294 break;
295 }
296 }
297 }
298 }
299 DbpString("simulate tag (now type bitsamples)");
300}
301
302void ReadMem(int addr)
303{
f7e3ed82 304 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 305
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
308}
309
310/* osimage version information is linked in */
311extern struct version_information version_information;
312/* bootrom version information is pointed to from _bootphase1_version_pointer */
313extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
314void SendVersion(void)
315{
3fe4ff4f 316 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 317 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 318
319 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
325 DbpString("bootrom version information appears invalid");
326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
328 DbpString(temp);
329 }
e30c654b 330
15c4dc5a 331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
332 DbpString(temp);
e30c654b 333
15c4dc5a 334 FpgaGatherVersion(temp, sizeof(temp));
335 DbpString(temp);
4f269f63 336 // Send Chip ID
337 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
15c4dc5a 338}
339
340#ifdef WITH_LF
341// samy's sniff and repeat routine
342void SamyRun()
343{
344 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 345 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 346
347 // 3 possible options? no just 2 for now
348#define OPTS 2
349
350 int high[OPTS], low[OPTS];
351
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 int selected = 0;
364 int playing = 0;
3fe4ff4f 365 int cardRead = 0;
15c4dc5a 366
367 // Turn on selected LED
368 LED(selected + 1, 0);
369
370 for (;;)
371 {
6e82300d 372 usb_poll();
373 WDT_HIT();
15c4dc5a 374
375 // Was our button held down or pressed?
376 int button_pressed = BUTTON_HELD(1000);
377 SpinDelay(300);
378
379 // Button was held for a second, begin recording
3fe4ff4f 380 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 381 {
382 LEDsoff();
383 LED(selected + 1, 0);
384 LED(LED_RED2, 0);
385
386 // record
387 DbpString("Starting recording");
388
389 // wait for button to be released
390 while(BUTTON_PRESS())
391 WDT_HIT();
392
393 /* need this delay to prevent catching some weird data */
394 SpinDelay(500);
395
396 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
397 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
398
399 LEDsoff();
400 LED(selected + 1, 0);
401 // Finished recording
402
403 // If we were previously playing, set playing off
404 // so next button push begins playing what we recorded
405 playing = 0;
3fe4ff4f 406
407 cardRead = 1;
408
409 }
410
411 else if (button_pressed > 0 && cardRead == 1)
412 {
413 LEDsoff();
414 LED(selected + 1, 0);
415 LED(LED_ORANGE, 0);
416
417 // record
418 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
419
420 // wait for button to be released
421 while(BUTTON_PRESS())
422 WDT_HIT();
423
424 /* need this delay to prevent catching some weird data */
425 SpinDelay(500);
426
427 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
428 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
429
430 LEDsoff();
431 LED(selected + 1, 0);
432 // Finished recording
433
434 // If we were previously playing, set playing off
435 // so next button push begins playing what we recorded
436 playing = 0;
437
438 cardRead = 0;
439
15c4dc5a 440 }
441
442 // Change where to record (or begin playing)
443 else if (button_pressed)
444 {
445 // Next option if we were previously playing
446 if (playing)
447 selected = (selected + 1) % OPTS;
448 playing = !playing;
449
450 LEDsoff();
451 LED(selected + 1, 0);
452
453 // Begin transmitting
454 if (playing)
455 {
456 LED(LED_GREEN, 0);
457 DbpString("Playing");
458 // wait for button to be released
459 while(BUTTON_PRESS())
460 WDT_HIT();
461 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
462 CmdHIDsimTAG(high[selected], low[selected], 0);
463 DbpString("Done playing");
464 if (BUTTON_HELD(1000) > 0)
465 {
466 DbpString("Exiting");
467 LEDsoff();
468 return;
469 }
470
471 /* We pressed a button so ignore it here with a delay */
472 SpinDelay(300);
473
474 // when done, we're done playing, move to next option
475 selected = (selected + 1) % OPTS;
476 playing = !playing;
477 LEDsoff();
478 LED(selected + 1, 0);
479 }
480 else
481 while(BUTTON_PRESS())
482 WDT_HIT();
483 }
484 }
485}
486#endif
487
488/*
489OBJECTIVE
490Listen and detect an external reader. Determine the best location
491for the antenna.
492
493INSTRUCTIONS:
494Inside the ListenReaderField() function, there is two mode.
495By default, when you call the function, you will enter mode 1.
496If you press the PM3 button one time, you will enter mode 2.
497If you press the PM3 button a second time, you will exit the function.
498
499DESCRIPTION OF MODE 1:
500This mode just listens for an external reader field and lights up green
501for HF and/or red for LF. This is the original mode of the detectreader
502function.
503
504DESCRIPTION OF MODE 2:
505This mode will visually represent, using the LEDs, the actual strength of the
506current compared to the maximum current detected. Basically, once you know
507what kind of external reader is present, it will help you spot the best location to place
508your antenna. You will probably not get some good results if there is a LF and a HF reader
509at the same place! :-)
510
511LIGHT SCHEME USED:
512*/
513static const char LIGHT_SCHEME[] = {
514 0x0, /* ---- | No field detected */
515 0x1, /* X--- | 14% of maximum current detected */
516 0x2, /* -X-- | 29% of maximum current detected */
517 0x4, /* --X- | 43% of maximum current detected */
518 0x8, /* ---X | 57% of maximum current detected */
519 0xC, /* --XX | 71% of maximum current detected */
520 0xE, /* -XXX | 86% of maximum current detected */
521 0xF, /* XXXX | 100% of maximum current detected */
522};
523static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
524
525void ListenReaderField(int limit)
526{
3b692427 527 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
528 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 529 int mode=1, display_val, display_max, i;
530
3b692427 531#define LF_ONLY 1
532#define HF_ONLY 2
533#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
534
535
536 // switch off FPGA - we don't want to measure our own signal
537 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
538 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 539
540 LEDsoff();
541
3b692427 542 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 543
544 if(limit != HF_ONLY) {
3b692427 545 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 546 lf_baseline = lf_av;
547 }
548
3b692427 549 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 550
551 if (limit != LF_ONLY) {
3b692427 552 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 553 hf_baseline = hf_av;
554 }
555
556 for(;;) {
557 if (BUTTON_PRESS()) {
558 SpinDelay(500);
559 switch (mode) {
560 case 1:
561 mode=2;
562 DbpString("Signal Strength Mode");
563 break;
564 case 2:
565 default:
566 DbpString("Stopped");
567 LEDsoff();
568 return;
569 break;
570 }
571 }
572 WDT_HIT();
573
574 if (limit != HF_ONLY) {
3b692427 575 if(mode == 1) {
576 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
577 LED_D_ON();
578 else
579 LED_D_OFF();
15c4dc5a 580 }
e30c654b 581
3b692427 582 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 583 // see if there's a significant change
3b692427 584 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
585 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 586 lf_av = lf_av_new;
587 if (lf_av > lf_max)
588 lf_max = lf_av;
15c4dc5a 589 }
590 }
591
592 if (limit != LF_ONLY) {
593 if (mode == 1){
3b692427 594 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
595 LED_B_ON();
596 else
597 LED_B_OFF();
15c4dc5a 598 }
e30c654b 599
3b692427 600 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 601 // see if there's a significant change
3b692427 602 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
603 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 604 hf_av = hf_av_new;
605 if (hf_av > hf_max)
606 hf_max = hf_av;
15c4dc5a 607 }
608 }
e30c654b 609
15c4dc5a 610 if(mode == 2) {
611 if (limit == LF_ONLY) {
612 display_val = lf_av;
613 display_max = lf_max;
614 } else if (limit == HF_ONLY) {
615 display_val = hf_av;
616 display_max = hf_max;
617 } else { /* Pick one at random */
618 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
619 display_val = hf_av;
620 display_max = hf_max;
621 } else {
622 display_val = lf_av;
623 display_max = lf_max;
624 }
625 }
626 for (i=0; i<LIGHT_LEN; i++) {
627 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
628 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
629 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
630 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
631 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
632 break;
633 }
634 }
635 }
636 }
637}
638
f7e3ed82 639void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 640{
641 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 642
902cb3c0 643// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
644
15c4dc5a 645 switch(c->cmd) {
646#ifdef WITH_LF
31abe49f
MHS
647 case CMD_SET_LF_SAMPLING_CONFIG:
648 setSamplingConfig((sample_config *) c->d.asBytes);
649 break;
15c4dc5a 650 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
31abe49f 651 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
15c4dc5a 652 break;
15c4dc5a 653 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
654 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
655 break;
b014c96d 656 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 657 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 658 break;
7e67e42f 659 case CMD_HID_DEMOD_FSK:
3fe4ff4f 660 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 661 break;
662 case CMD_HID_SIM_TAG:
3fe4ff4f 663 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 664 break;
abd6112f 665 case CMD_FSK_SIM_TAG:
666 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
667 break;
668 case CMD_ASK_SIM_TAG:
669 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
670 break;
671 case CMD_HID_CLONE_TAG:
1c611bbd 672 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 673 break;
a1f3bb12 674 case CMD_IO_DEMOD_FSK:
3fe4ff4f 675 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 676 break;
3fe4ff4f 677 case CMD_IO_CLONE_TAG:
a1f3bb12 678 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
679 break;
66707a3b 680 case CMD_EM410X_DEMOD:
681 CmdEM410xdemod(c->arg[0], 0, 0, 1);
682 break;
2d4eae76 683 case CMD_EM410X_WRITE_TAG:
684 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
685 break;
7e67e42f 686 case CMD_READ_TI_TYPE:
687 ReadTItag();
688 break;
689 case CMD_WRITE_TI_TYPE:
690 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
691 break;
692 case CMD_SIMULATE_TAG_125K:
31d1caa5 693 LED_A_ON();
7e67e42f 694 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 695 LED_A_OFF();
7e67e42f 696 break;
697 case CMD_LF_SIMULATE_BIDIR:
698 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
699 break;
3fe4ff4f 700 case CMD_INDALA_CLONE_TAG:
2414f978 701 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
702 break;
3fe4ff4f 703 case CMD_INDALA_CLONE_TAG_L:
2414f978 704 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
705 break;
1c611bbd 706 case CMD_T55XX_READ_BLOCK:
707 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
708 break;
709 case CMD_T55XX_WRITE_BLOCK:
710 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
711 break;
3fe4ff4f 712 case CMD_T55XX_READ_TRACE:
1c611bbd 713 T55xxReadTrace();
714 break;
3fe4ff4f 715 case CMD_PCF7931_READ:
1c611bbd 716 ReadPCF7931();
717 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 718 break;
719 case CMD_EM4X_READ_WORD:
720 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
721 break;
722 case CMD_EM4X_WRITE_WORD:
723 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
724 break;
15c4dc5a 725#endif
726
d19929cb 727#ifdef WITH_HITAG
728 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
729 SnoopHitag(c->arg[0]);
730 break;
731 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
732 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
733 break;
734 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
735 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
736 break;
737#endif
738
15c4dc5a 739#ifdef WITH_ISO15693
740 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
741 AcquireRawAdcSamplesIso15693();
742 break;
9455b51c 743 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
744 RecordRawAdcSamplesIso15693();
745 break;
746
747 case CMD_ISO_15693_COMMAND:
748 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
749 break;
750
751 case CMD_ISO_15693_FIND_AFI:
752 BruteforceIso15693Afi(c->arg[0]);
753 break;
754
755 case CMD_ISO_15693_DEBUG:
756 SetDebugIso15693(c->arg[0]);
757 break;
15c4dc5a 758
15c4dc5a 759 case CMD_READER_ISO_15693:
760 ReaderIso15693(c->arg[0]);
761 break;
7e67e42f 762 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 763 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 764 break;
15c4dc5a 765#endif
766
7e67e42f 767#ifdef WITH_LEGICRF
768 case CMD_SIMULATE_TAG_LEGIC_RF:
769 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
770 break;
3612a8a8 771
7e67e42f 772 case CMD_WRITER_LEGIC_RF:
773 LegicRfWriter(c->arg[1], c->arg[0]);
774 break;
3612a8a8 775
15c4dc5a 776 case CMD_READER_LEGIC_RF:
777 LegicRfReader(c->arg[0], c->arg[1]);
778 break;
15c4dc5a 779#endif
780
781#ifdef WITH_ISO14443b
782 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
783 AcquireRawAdcSamplesIso14443(c->arg[0]);
784 break;
15c4dc5a 785 case CMD_READ_SRI512_TAG:
7cf3ef20 786 ReadSTMemoryIso14443(0x0F);
15c4dc5a 787 break;
7e67e42f 788 case CMD_READ_SRIX4K_TAG:
7cf3ef20 789 ReadSTMemoryIso14443(0x7F);
7e67e42f 790 break;
791 case CMD_SNOOP_ISO_14443:
792 SnoopIso14443();
793 break;
794 case CMD_SIMULATE_TAG_ISO_14443:
795 SimulateIso14443Tag();
796 break;
7cf3ef20 797 case CMD_ISO_14443B_COMMAND:
798 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
799 break;
15c4dc5a 800#endif
801
802#ifdef WITH_ISO14443a
7e67e42f 803 case CMD_SNOOP_ISO_14443a:
5cd9ec01 804 SnoopIso14443a(c->arg[0]);
7e67e42f 805 break;
15c4dc5a 806 case CMD_READER_ISO_14443a:
902cb3c0 807 ReaderIso14443a(c);
15c4dc5a 808 break;
7e67e42f 809 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 810 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 811 break;
3fe4ff4f 812
5acd09bd 813 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 814 EPA_PACE_Collect_Nonce(c);
5acd09bd 815 break;
7e67e42f 816
15c4dc5a 817 case CMD_READER_MIFARE:
1c611bbd 818 ReaderMifare(c->arg[0]);
15c4dc5a 819 break;
20f9a2a1
M
820 case CMD_MIFARE_READBL:
821 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
822 break;
981bd429 823 case CMD_MIFAREU_READBL:
824 MifareUReadBlock(c->arg[0],c->d.asBytes);
825 break;
a631936e 826 case CMD_MIFAREUC_AUTH1:
827 MifareUC_Auth1(c->arg[0],c->d.asBytes);
828 break;
829 case CMD_MIFAREUC_AUTH2:
830 MifareUC_Auth2(c->arg[0],c->d.asBytes);
831 break;
981bd429 832 case CMD_MIFAREU_READCARD:
31d1caa5 833 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
117d9ec2 834 break;
a631936e 835 case CMD_MIFAREUC_READCARD:
117d9ec2 836 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
837 break;
20f9a2a1
M
838 case CMD_MIFARE_READSC:
839 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
840 break;
841 case CMD_MIFARE_WRITEBL:
842 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
843 break;
981bd429 844 case CMD_MIFAREU_WRITEBL_COMPAT:
845 MifareUWriteBlock(c->arg[0], c->d.asBytes);
846 break;
847 case CMD_MIFAREU_WRITEBL:
848 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
849 break;
20f9a2a1
M
850 case CMD_MIFARE_NESTED:
851 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
852 break;
853 case CMD_MIFARE_CHKKEYS:
854 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
855 break;
856 case CMD_SIMULATE_MIFARE_CARD:
857 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
858 break;
8556b852
M
859
860 // emulator
861 case CMD_MIFARE_SET_DBGMODE:
862 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
863 break;
864 case CMD_MIFARE_EML_MEMCLR:
865 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
866 break;
867 case CMD_MIFARE_EML_MEMSET:
868 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
869 break;
870 case CMD_MIFARE_EML_MEMGET:
871 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
872 break;
873 case CMD_MIFARE_EML_CARDLOAD:
874 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
875 break;
876
877 // Work with "magic Chinese" card
3fe4ff4f 878 case CMD_MIFARE_CSETBLOCK:
0675f200 879 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 880 break;
3fe4ff4f 881 case CMD_MIFARE_CGETBLOCK:
545a1f38 882 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 883 break;
3fe4ff4f 884 case CMD_MIFARE_CIDENT:
885 MifareCIdent();
886 break;
b62a5a84
M
887
888 // mifare sniffer
889 case CMD_MIFARE_SNIFFER:
5cd9ec01 890 SniffMifare(c->arg[0]);
b62a5a84 891 break;
a631936e 892
20f9a2a1
M
893#endif
894
7e67e42f 895#ifdef WITH_ICLASS
cee5a30d 896 // Makes use of ISO14443a FPGA Firmware
897 case CMD_SNOOP_ICLASS:
898 SnoopIClass();
899 break;
1e262141 900 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 901 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 902 break;
903 case CMD_READER_ICLASS:
904 ReaderIClass(c->arg[0]);
905 break;
c3963755 906 case CMD_READER_ICLASS_REPLAY:
fecd8202 907 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 908 break;
e80aeb96
MHS
909 case CMD_ICLASS_EML_MEMSET:
910 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
911 break;
cee5a30d 912#endif
913
15c4dc5a 914 case CMD_SIMULATE_TAG_HF_LISTEN:
915 SimulateTagHfListen();
916 break;
917
7e67e42f 918 case CMD_BUFF_CLEAR:
117d9ec2 919 BigBuf_Clear();
15c4dc5a 920 break;
15c4dc5a 921
922 case CMD_MEASURE_ANTENNA_TUNING:
923 MeasureAntennaTuning();
924 break;
925
926 case CMD_MEASURE_ANTENNA_TUNING_HF:
927 MeasureAntennaTuningHf();
928 break;
929
930 case CMD_LISTEN_READER_FIELD:
931 ListenReaderField(c->arg[0]);
932 break;
933
15c4dc5a 934 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
936 SpinDelay(200);
937 LED_D_OFF(); // LED D indicates field ON or OFF
938 break;
939
1c611bbd 940 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 941
1c611bbd 942 LED_B_ON();
117d9ec2 943 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 944 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
945 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 946 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 947 }
948 // Trigger a finish downloading signal with an ACK frame
3000dc4e 949 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 950 LED_B_OFF();
1c611bbd 951 break;
15c4dc5a 952
953 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 954 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 955 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 956 cmd_send(CMD_ACK,0,0,0,0,0);
957 break;
958 }
15c4dc5a 959 case CMD_READ_MEM:
960 ReadMem(c->arg[0]);
961 break;
962
963 case CMD_SET_LF_DIVISOR:
7cc204bf 964 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 965 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
966 break;
967
968 case CMD_SET_ADC_MUX:
969 switch(c->arg[0]) {
970 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
971 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
972 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
973 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
974 }
975 break;
976
977 case CMD_VERSION:
978 SendVersion();
979 break;
980
15c4dc5a 981#ifdef WITH_LCD
982 case CMD_LCD_RESET:
983 LCDReset();
984 break;
985 case CMD_LCD:
986 LCDSend(c->arg[0]);
987 break;
988#endif
989 case CMD_SETUP_WRITE:
990 case CMD_FINISH_WRITE:
1c611bbd 991 case CMD_HARDWARE_RESET:
992 usb_disable();
15c4dc5a 993 SpinDelay(1000);
994 SpinDelay(1000);
995 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
996 for(;;) {
997 // We're going to reset, and the bootrom will take control.
998 }
1c611bbd 999 break;
15c4dc5a 1000
1c611bbd 1001 case CMD_START_FLASH:
15c4dc5a 1002 if(common_area.flags.bootrom_present) {
1003 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1004 }
1c611bbd 1005 usb_disable();
15c4dc5a 1006 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1007 for(;;);
1c611bbd 1008 break;
e30c654b 1009
15c4dc5a 1010 case CMD_DEVICE_INFO: {
902cb3c0 1011 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1012 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1013 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1014 break;
1015 }
1016 default:
15c4dc5a 1017 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1018 break;
15c4dc5a 1019 }
1020}
1021
1022void __attribute__((noreturn)) AppMain(void)
1023{
1024 SpinDelay(100);
9e8255d4 1025 clear_trace();
15c4dc5a 1026 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1027 /* Initialize common area */
1028 memset(&common_area, 0, sizeof(common_area));
1029 common_area.magic = COMMON_AREA_MAGIC;
1030 common_area.version = 1;
1031 }
1032 common_area.flags.osimage_present = 1;
1033
1034 LED_D_OFF();
1035 LED_C_OFF();
1036 LED_B_OFF();
1037 LED_A_OFF();
1038
3fe4ff4f 1039 // Init USB device
902cb3c0 1040 usb_enable();
15c4dc5a 1041
1042 // The FPGA gets its clock from us from PCK0 output, so set that up.
1043 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1044 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1045 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1046 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1047 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1048 AT91C_PMC_PRES_CLK_4;
1049 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1050
1051 // Reset SPI
1052 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1053 // Reset SSC
1054 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1055
1056 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1057 // (the HF version by default)
1058 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1059
9ca155ba 1060 StartTickCount();
902cb3c0 1061
15c4dc5a 1062#ifdef WITH_LCD
15c4dc5a 1063 LCDInit();
15c4dc5a 1064#endif
1065
902cb3c0 1066 byte_t rx[sizeof(UsbCommand)];
1067 size_t rx_len;
1068
15c4dc5a 1069 for(;;) {
902cb3c0 1070 if (usb_poll()) {
1071 rx_len = usb_read(rx,sizeof(UsbCommand));
1072 if (rx_len) {
1073 UsbPacketReceived(rx,rx_len);
1074 }
1075 }
15c4dc5a 1076 WDT_HIT();
1077
1078#ifdef WITH_LF
1079 if (BUTTON_HELD(1000) > 0)
1080 SamyRun();
1081#endif
1082 }
1083}
Impressum, Datenschutz