]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443b.c
iso14443b modifications (#804)
[proxmark3-svn] / armsrc / iso14443b.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
bd20f8f4 2// Jonathan Westhues, split Nov 2006
6a5d4e17 3// piwi 2018
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
51d4f6f1 9// Routines to support ISO 14443B. This includes both the reader software and
10// the `fake tag' modes.
15c4dc5a 11//-----------------------------------------------------------------------------
bd20f8f4 12
fc52fbd4 13#include "iso14443b.h"
14
e30c654b 15#include "proxmark3.h"
15c4dc5a 16#include "apps.h"
f7e3ed82 17#include "util.h"
9ab7a6c7 18#include "string.h"
f7e3ed82 19#include "iso14443crc.h"
fc52fbd4 20#include "fpgaloader.h"
15c4dc5a 21
6a5d4e17 22#define RECEIVE_SAMPLES_TIMEOUT 1000 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA. 1000 seems to be much too high?
23#define ISO14443B_DMA_BUFFER_SIZE 128
0d9a86c7 24
4be27083
FM
25// PCB Block number for APDUs
26static uint8_t pcb_blocknum = 0;
27
15c4dc5a 28//=============================================================================
29// An ISO 14443 Type B tag. We listen for commands from the reader, using
30// a UART kind of thing that's implemented in software. When we get a
31// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
32// If it's good, then we can do something appropriate with it, and send
33// a response.
34//=============================================================================
35
36//-----------------------------------------------------------------------------
37// Code up a string of octets at layer 2 (including CRC, we don't generate
38// that here) so that they can be transmitted to the reader. Doesn't transmit
39// them yet, just leaves them ready to send in ToSend[].
40//-----------------------------------------------------------------------------
f7e3ed82 41static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
15c4dc5a 42{
7d5ebac9
MHS
43 int i;
44
45 ToSendReset();
46
47 // Transmit a burst of ones, as the initial thing that lets the
48 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
49 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
50 // so I will too.
51 for(i = 0; i < 20; i++) {
52 ToSendStuffBit(1);
53 ToSendStuffBit(1);
54 ToSendStuffBit(1);
55 ToSendStuffBit(1);
56 }
57
58 // Send SOF.
59 for(i = 0; i < 10; i++) {
60 ToSendStuffBit(0);
61 ToSendStuffBit(0);
62 ToSendStuffBit(0);
63 ToSendStuffBit(0);
64 }
65 for(i = 0; i < 2; i++) {
66 ToSendStuffBit(1);
67 ToSendStuffBit(1);
68 ToSendStuffBit(1);
69 ToSendStuffBit(1);
70 }
71
72 for(i = 0; i < len; i++) {
73 int j;
74 uint8_t b = cmd[i];
75
76 // Start bit
77 ToSendStuffBit(0);
78 ToSendStuffBit(0);
79 ToSendStuffBit(0);
80 ToSendStuffBit(0);
81
82 // Data bits
83 for(j = 0; j < 8; j++) {
84 if(b & 1) {
85 ToSendStuffBit(1);
86 ToSendStuffBit(1);
87 ToSendStuffBit(1);
88 ToSendStuffBit(1);
89 } else {
90 ToSendStuffBit(0);
91 ToSendStuffBit(0);
92 ToSendStuffBit(0);
93 ToSendStuffBit(0);
94 }
95 b >>= 1;
96 }
97
98 // Stop bit
99 ToSendStuffBit(1);
100 ToSendStuffBit(1);
101 ToSendStuffBit(1);
102 ToSendStuffBit(1);
103 }
104
51d4f6f1 105 // Send EOF.
7d5ebac9
MHS
106 for(i = 0; i < 10; i++) {
107 ToSendStuffBit(0);
108 ToSendStuffBit(0);
109 ToSendStuffBit(0);
110 ToSendStuffBit(0);
111 }
51d4f6f1 112 for(i = 0; i < 2; i++) {
7d5ebac9
MHS
113 ToSendStuffBit(1);
114 ToSendStuffBit(1);
115 ToSendStuffBit(1);
116 ToSendStuffBit(1);
117 }
118
119 // Convert from last byte pos to length
120 ToSendMax++;
15c4dc5a 121}
122
123//-----------------------------------------------------------------------------
124// The software UART that receives commands from the reader, and its state
125// variables.
126//-----------------------------------------------------------------------------
127static struct {
7d5ebac9
MHS
128 enum {
129 STATE_UNSYNCD,
130 STATE_GOT_FALLING_EDGE_OF_SOF,
131 STATE_AWAITING_START_BIT,
46734099 132 STATE_RECEIVING_DATA
7d5ebac9
MHS
133 } state;
134 uint16_t shiftReg;
135 int bitCnt;
136 int byteCnt;
137 int byteCntMax;
138 int posCnt;
139 uint8_t *output;
15c4dc5a 140} Uart;
141
142/* Receive & handle a bit coming from the reader.
51d4f6f1 143 *
144 * This function is called 4 times per bit (every 2 subcarrier cycles).
145 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
15c4dc5a 146 *
147 * LED handling:
148 * LED A -> ON once we have received the SOF and are expecting the rest.
149 * LED A -> OFF once we have received EOF or are in error state or unsynced
150 *
151 * Returns: true if we received a EOF
152 * false if we are still waiting for some more
153 */
46734099 154static RAMFUNC int Handle14443bUartBit(uint8_t bit)
15c4dc5a 155{
7d5ebac9 156 switch(Uart.state) {
03dc1740 157 case STATE_UNSYNCD:
7d5ebac9
MHS
158 if(!bit) {
159 // we went low, so this could be the beginning
160 // of an SOF
161 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
162 Uart.posCnt = 0;
163 Uart.bitCnt = 0;
164 }
165 break;
166
167 case STATE_GOT_FALLING_EDGE_OF_SOF:
168 Uart.posCnt++;
51d4f6f1 169 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
7d5ebac9 170 if(bit) {
51d4f6f1 171 if(Uart.bitCnt > 9) {
7d5ebac9
MHS
172 // we've seen enough consecutive
173 // zeros that it's a valid SOF
174 Uart.posCnt = 0;
175 Uart.byteCnt = 0;
176 Uart.state = STATE_AWAITING_START_BIT;
177 LED_A_ON(); // Indicate we got a valid SOF
178 } else {
179 // didn't stay down long enough
180 // before going high, error
46734099 181 Uart.state = STATE_UNSYNCD;
7d5ebac9
MHS
182 }
183 } else {
184 // do nothing, keep waiting
185 }
186 Uart.bitCnt++;
187 }
188 if(Uart.posCnt >= 4) Uart.posCnt = 0;
51d4f6f1 189 if(Uart.bitCnt > 12) {
7d5ebac9
MHS
190 // Give up if we see too many zeros without
191 // a one, too.
46734099 192 LED_A_OFF();
193 Uart.state = STATE_UNSYNCD;
7d5ebac9
MHS
194 }
195 break;
196
197 case STATE_AWAITING_START_BIT:
198 Uart.posCnt++;
199 if(bit) {
51d4f6f1 200 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
7d5ebac9
MHS
201 // stayed high for too long between
202 // characters, error
46734099 203 Uart.state = STATE_UNSYNCD;
7d5ebac9
MHS
204 }
205 } else {
206 // falling edge, this starts the data byte
207 Uart.posCnt = 0;
208 Uart.bitCnt = 0;
209 Uart.shiftReg = 0;
210 Uart.state = STATE_RECEIVING_DATA;
7d5ebac9
MHS
211 }
212 break;
213
214 case STATE_RECEIVING_DATA:
215 Uart.posCnt++;
216 if(Uart.posCnt == 2) {
217 // time to sample a bit
218 Uart.shiftReg >>= 1;
219 if(bit) {
220 Uart.shiftReg |= 0x200;
221 }
222 Uart.bitCnt++;
223 }
224 if(Uart.posCnt >= 4) {
225 Uart.posCnt = 0;
226 }
227 if(Uart.bitCnt == 10) {
228 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
229 {
230 // this is a data byte, with correct
231 // start and stop bits
232 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
233 Uart.byteCnt++;
234
235 if(Uart.byteCnt >= Uart.byteCntMax) {
236 // Buffer overflowed, give up
46734099 237 LED_A_OFF();
238 Uart.state = STATE_UNSYNCD;
7d5ebac9
MHS
239 } else {
240 // so get the next byte now
241 Uart.posCnt = 0;
242 Uart.state = STATE_AWAITING_START_BIT;
243 }
46734099 244 } else if (Uart.shiftReg == 0x000) {
7d5ebac9
MHS
245 // this is an EOF byte
246 LED_A_OFF(); // Finished receiving
46734099 247 Uart.state = STATE_UNSYNCD;
132a0217 248 if (Uart.byteCnt != 0) {
44964fd1 249 return true;
132a0217 250 }
7d5ebac9
MHS
251 } else {
252 // this is an error
46734099 253 LED_A_OFF();
254 Uart.state = STATE_UNSYNCD;
7d5ebac9
MHS
255 }
256 }
257 break;
258
7d5ebac9 259 default:
46734099 260 LED_A_OFF();
7d5ebac9
MHS
261 Uart.state = STATE_UNSYNCD;
262 break;
263 }
264
44964fd1 265 return false;
15c4dc5a 266}
267
46734099 268
269static void UartReset()
270{
271 Uart.byteCntMax = MAX_FRAME_SIZE;
272 Uart.state = STATE_UNSYNCD;
273 Uart.byteCnt = 0;
274 Uart.bitCnt = 0;
275}
276
277
278static void UartInit(uint8_t *data)
279{
280 Uart.output = data;
281 UartReset();
282}
283
284
15c4dc5a 285//-----------------------------------------------------------------------------
286// Receive a command (from the reader to us, where we are the simulated tag),
287// and store it in the given buffer, up to the given maximum length. Keeps
288// spinning, waiting for a well-framed command, until either we get one
44964fd1 289// (returns true) or someone presses the pushbutton on the board (false).
15c4dc5a 290//
291// Assume that we're called with the SSC (to the FPGA) and ADC path set
292// correctly.
293//-----------------------------------------------------------------------------
46734099 294static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
15c4dc5a 295{
51d4f6f1 296 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
7d5ebac9
MHS
297 // only, since we are receiving, not transmitting).
298 // Signal field is off with the appropriate LED
299 LED_D_OFF();
300 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
301
7d5ebac9 302 // Now run a `software UART' on the stream of incoming samples.
46734099 303 UartInit(received);
7d5ebac9
MHS
304
305 for(;;) {
306 WDT_HIT();
307
44964fd1 308 if(BUTTON_PRESS()) return false;
7d5ebac9 309
7d5ebac9
MHS
310 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
311 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
46734099 312 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
313 if(Handle14443bUartBit(b & mask)) {
7d5ebac9 314 *len = Uart.byteCnt;
44964fd1 315 return true;
7d5ebac9
MHS
316 }
317 }
318 }
319 }
bee99bbf 320
44964fd1 321 return false;
15c4dc5a 322}
323
324//-----------------------------------------------------------------------------
325// Main loop of simulated tag: receive commands from reader, decide what
326// response to send, and send it.
327//-----------------------------------------------------------------------------
51d4f6f1 328void SimulateIso14443bTag(void)
15c4dc5a 329{
ca8a3478 330 LED_A_ON();
14660057 331 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
332 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
333 // ... and REQB, AFI=0, Normal Request, N=1:
f3b83bee 334 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
f3b83bee 335 // ... and HLTB
14660057 336 static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
f3b83bee 337 // ... and ATTRIB
14660057 338 static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
46734099 339
340 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
51d4f6f1 341 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
342 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
7d5ebac9
MHS
343 static const uint8_t response1[] = {
344 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
345 0x00, 0x21, 0x85, 0x5e, 0xd7
346 };
f3b83bee 347 // response to HLTB and ATTRIB
348 static const uint8_t response2[] = {0x00, 0x78, 0xF0};
349
15c4dc5a 350
5f605b8f 351 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
352
46734099 353 clear_trace();
44964fd1 354 set_tracing(true);
46734099 355
356 const uint8_t *resp;
357 uint8_t *respCode;
358 uint16_t respLen, respCodeLen;
15c4dc5a 359
51d4f6f1 360 // allocate command receive buffer
361 BigBuf_free();
362 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
15c4dc5a 363
46734099 364 uint16_t len;
365 uint16_t cmdsRecvd = 0;
15c4dc5a 366
51d4f6f1 367 // prepare the (only one) tag answer:
7d5ebac9 368 CodeIso14443bAsTag(response1, sizeof(response1));
46734099 369 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
dd57061c 370 memcpy(resp1Code, ToSend, ToSendMax);
46734099 371 uint16_t resp1CodeLen = ToSendMax;
15c4dc5a 372
f3b83bee 373 // prepare the (other) tag answer:
374 CodeIso14443bAsTag(response2, sizeof(response2));
375 uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
dd57061c 376 memcpy(resp2Code, ToSend, ToSendMax);
f3b83bee 377 uint16_t resp2CodeLen = ToSendMax;
378
7d5ebac9
MHS
379 // We need to listen to the high-frequency, peak-detected path.
380 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
6a5d4e17 381 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
15c4dc5a 382
7d5ebac9 383 cmdsRecvd = 0;
15c4dc5a 384
7d5ebac9 385 for(;;) {
15c4dc5a 386
46734099 387 if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
51d4f6f1 388 Dbprintf("button pressed, received %d commands", cmdsRecvd);
389 break;
46734099 390 }
7d5ebac9 391
d9de20fa 392 LogTrace(receivedCmd, len, 0, 0, NULL, true);
7d5ebac9 393
46734099 394 // Good, look at the command now.
395 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
14660057 396 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
dd57061c 397 resp = response1;
46734099 398 respLen = sizeof(response1);
dd57061c 399 respCode = resp1Code;
46734099 400 respCodeLen = resp1CodeLen;
14660057 401 } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
402 || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
dd57061c 403 resp = response2;
f3b83bee 404 respLen = sizeof(response2);
dd57061c 405 respCode = resp2Code;
f3b83bee 406 respCodeLen = resp2CodeLen;
7d5ebac9
MHS
407 } else {
408 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
409 // And print whether the CRC fails, just for good measure
46734099 410 uint8_t b1, b2;
f3b83bee 411 if (len >= 3){ // if crc exists
412 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
413 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
414 // Not so good, try again.
415 DbpString("+++CRC fail");
14660057 416
f3b83bee 417 } else {
418 DbpString("CRC passes");
419 }
7d5ebac9 420 }
f3b83bee 421 //get rid of compiler warning
422 respCodeLen = 0;
423 resp = response1;
424 respLen = 0;
425 respCode = resp1Code;
426 //don't crash at new command just wait and see if reader will send other new cmds.
427 //break;
7d5ebac9
MHS
428 }
429
7d5ebac9
MHS
430 cmdsRecvd++;
431
432 if(cmdsRecvd > 0x30) {
433 DbpString("many commands later...");
434 break;
435 }
436
46734099 437 if(respCodeLen <= 0) continue;
7d5ebac9
MHS
438
439 // Modulate BPSK
440 // Signal field is off with the appropriate LED
441 LED_D_OFF();
442 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
443 AT91C_BASE_SSC->SSC_THR = 0xff;
6a5d4e17 444 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
7d5ebac9
MHS
445
446 // Transmit the response.
46734099 447 uint16_t i = 0;
7d5ebac9
MHS
448 for(;;) {
449 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
46734099 450 uint8_t b = respCode[i];
7d5ebac9
MHS
451
452 AT91C_BASE_SSC->SSC_THR = b;
453
454 i++;
46734099 455 if(i > respCodeLen) {
7d5ebac9
MHS
456 break;
457 }
458 }
459 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
460 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
461 (void)b;
462 }
463 }
dd57061c 464
46734099 465 // trace the response:
d9de20fa 466 LogTrace(resp, respLen, 0, 0, NULL, false);
dd57061c 467
7d5ebac9 468 }
ca8a3478 469
470 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
471 LED_A_OFF();
15c4dc5a 472}
473
474//=============================================================================
475// An ISO 14443 Type B reader. We take layer two commands, code them
476// appropriately, and then send them to the tag. We then listen for the
477// tag's response, which we leave in the buffer to be demodulated on the
478// PC side.
479//=============================================================================
480
481static struct {
7d5ebac9
MHS
482 enum {
483 DEMOD_UNSYNCD,
484 DEMOD_PHASE_REF_TRAINING,
485 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
486 DEMOD_GOT_FALLING_EDGE_OF_SOF,
487 DEMOD_AWAITING_START_BIT,
46734099 488 DEMOD_RECEIVING_DATA
7d5ebac9
MHS
489 } state;
490 int bitCount;
491 int posCount;
492 int thisBit;
51d4f6f1 493/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
7d5ebac9
MHS
494 int metric;
495 int metricN;
51d4f6f1 496*/
7d5ebac9
MHS
497 uint16_t shiftReg;
498 uint8_t *output;
499 int len;
500 int sumI;
501 int sumQ;
15c4dc5a 502} Demod;
503
504/*
505 * Handles reception of a bit from the tag
506 *
51d4f6f1 507 * This function is called 2 times per bit (every 4 subcarrier cycles).
508 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
509 *
15c4dc5a 510 * LED handling:
511 * LED C -> ON once we have received the SOF and are expecting the rest.
512 * LED C -> OFF once we have received EOF or are unsynced
513 *
514 * Returns: true if we received a EOF
515 * false if we are still waiting for some more
516 *
517 */
51d4f6f1 518static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
15c4dc5a 519{
7d5ebac9 520 int v;
15c4dc5a 521
51d4f6f1 522// The soft decision on the bit uses an estimate of just the
523// quadrant of the reference angle, not the exact angle.
15c4dc5a 524#define MAKE_SOFT_DECISION() { \
7d5ebac9
MHS
525 if(Demod.sumI > 0) { \
526 v = ci; \
527 } else { \
528 v = -ci; \
529 } \
530 if(Demod.sumQ > 0) { \
531 v += cq; \
532 } else { \
533 v -= cq; \
534 } \
535 }
15c4dc5a 536
51d4f6f1 537#define SUBCARRIER_DETECT_THRESHOLD 8
538
51d4f6f1 539// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
6a5d4e17 540#define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2))
7d5ebac9
MHS
541 switch(Demod.state) {
542 case DEMOD_UNSYNCD:
6a5d4e17 543 if(AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
7d5ebac9 544 Demod.state = DEMOD_PHASE_REF_TRAINING;
51d4f6f1 545 Demod.sumI = ci;
546 Demod.sumQ = cq;
547 Demod.posCount = 1;
548 }
7d5ebac9
MHS
549 break;
550
551 case DEMOD_PHASE_REF_TRAINING:
552 if(Demod.posCount < 8) {
6a5d4e17 553 if (AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) {
51d4f6f1 554 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
555 // note: synchronization time > 80 1/fs
556 Demod.sumI += ci;
557 Demod.sumQ += cq;
558 Demod.posCount++;
559 } else { // subcarrier lost
560 Demod.state = DEMOD_UNSYNCD;
7d5ebac9 561 }
51d4f6f1 562 } else {
563 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
7d5ebac9 564 }
7d5ebac9
MHS
565 break;
566
567 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
568 MAKE_SOFT_DECISION();
51d4f6f1 569 if(v < 0) { // logic '0' detected
7d5ebac9 570 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
51d4f6f1 571 Demod.posCount = 0; // start of SOF sequence
7d5ebac9 572 } else {
51d4f6f1 573 if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
7d5ebac9
MHS
574 Demod.state = DEMOD_UNSYNCD;
575 }
576 }
577 Demod.posCount++;
578 break;
579
580 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
51d4f6f1 581 Demod.posCount++;
7d5ebac9
MHS
582 MAKE_SOFT_DECISION();
583 if(v > 0) {
51d4f6f1 584 if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
7d5ebac9
MHS
585 Demod.state = DEMOD_UNSYNCD;
586 } else {
587 LED_C_ON(); // Got SOF
588 Demod.state = DEMOD_AWAITING_START_BIT;
589 Demod.posCount = 0;
590 Demod.len = 0;
51d4f6f1 591/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
7d5ebac9
MHS
592 Demod.metricN = 0;
593 Demod.metric = 0;
51d4f6f1 594*/
7d5ebac9
MHS
595 }
596 } else {
51d4f6f1 597 if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
7d5ebac9 598 Demod.state = DEMOD_UNSYNCD;
09c66f1f 599 LED_C_OFF();
7d5ebac9
MHS
600 }
601 }
7d5ebac9
MHS
602 break;
603
604 case DEMOD_AWAITING_START_BIT:
51d4f6f1 605 Demod.posCount++;
7d5ebac9
MHS
606 MAKE_SOFT_DECISION();
607 if(v > 0) {
51d4f6f1 608 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
7d5ebac9 609 Demod.state = DEMOD_UNSYNCD;
09c66f1f 610 LED_C_OFF();
7d5ebac9 611 }
51d4f6f1 612 } else { // start bit detected
7d5ebac9 613 Demod.bitCount = 0;
51d4f6f1 614 Demod.posCount = 1; // this was the first half
7d5ebac9
MHS
615 Demod.thisBit = v;
616 Demod.shiftReg = 0;
617 Demod.state = DEMOD_RECEIVING_DATA;
618 }
619 break;
620
621 case DEMOD_RECEIVING_DATA:
622 MAKE_SOFT_DECISION();
51d4f6f1 623 if(Demod.posCount == 0) { // first half of bit
7d5ebac9
MHS
624 Demod.thisBit = v;
625 Demod.posCount = 1;
51d4f6f1 626 } else { // second half of bit
7d5ebac9
MHS
627 Demod.thisBit += v;
628
51d4f6f1 629/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
7d5ebac9
MHS
630 if(Demod.thisBit > 0) {
631 Demod.metric += Demod.thisBit;
632 } else {
633 Demod.metric -= Demod.thisBit;
634 }
635 (Demod.metricN)++;
dd57061c 636*/
7d5ebac9
MHS
637
638 Demod.shiftReg >>= 1;
51d4f6f1 639 if(Demod.thisBit > 0) { // logic '1'
7d5ebac9
MHS
640 Demod.shiftReg |= 0x200;
641 }
642
643 Demod.bitCount++;
644 if(Demod.bitCount == 10) {
645 uint16_t s = Demod.shiftReg;
51d4f6f1 646 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
7d5ebac9
MHS
647 uint8_t b = (s >> 1);
648 Demod.output[Demod.len] = b;
649 Demod.len++;
650 Demod.state = DEMOD_AWAITING_START_BIT;
7d5ebac9
MHS
651 } else {
652 Demod.state = DEMOD_UNSYNCD;
09c66f1f 653 LED_C_OFF();
654 if(s == 0x000) {
51d4f6f1 655 // This is EOF (start, stop and all data bits == '0'
44964fd1 656 return true;
09c66f1f 657 }
7d5ebac9
MHS
658 }
659 }
660 Demod.posCount = 0;
661 }
662 break;
663
664 default:
665 Demod.state = DEMOD_UNSYNCD;
09c66f1f 666 LED_C_OFF();
7d5ebac9
MHS
667 break;
668 }
669
44964fd1 670 return false;
7d5ebac9 671}
67ac4bf7 672
673
aeadbdb2
MHS
674static void DemodReset()
675{
676 // Clear out the state of the "UART" that receives from the tag.
aeadbdb2
MHS
677 Demod.len = 0;
678 Demod.state = DEMOD_UNSYNCD;
51d4f6f1 679 Demod.posCount = 0;
aeadbdb2 680 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
7d5ebac9 681}
67ac4bf7 682
683
7d5ebac9
MHS
684static void DemodInit(uint8_t *data)
685{
686 Demod.output = data;
687 DemodReset();
aeadbdb2
MHS
688}
689
67ac4bf7 690
15c4dc5a 691/*
355c8b4a 692 * Demodulate the samples we received from the tag, also log to tracebuffer
44964fd1 693 * quiet: set to 'true' to disable debug output
15c4dc5a 694 */
51d4f6f1 695static void GetSamplesFor14443bDemod(int n, bool quiet)
15c4dc5a 696{
6a5d4e17 697 int maxBehindBy = 0;
44964fd1 698 bool gotFrame = false;
6a5d4e17 699 int lastRxCounter, samples = 0;
700 int8_t ci, cq;
701
7d5ebac9
MHS
702 // Allocate memory from BigBuf for some buffers
703 // free all previous allocations first
704 BigBuf_free();
dd57061c 705
7d5ebac9
MHS
706 // The response (tag -> reader) that we're receiving.
707 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
dd57061c 708
7d5ebac9 709 // The DMA buffer, used to stream samples from the FPGA
6a5d4e17 710 uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t));
15c4dc5a 711
7d5ebac9
MHS
712 // Set up the demodulator for tag -> reader responses.
713 DemodInit(receivedResponse);
15c4dc5a 714
6a5d4e17 715 // wait for last transfer to complete
716 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY))
717
7d5ebac9 718 // Setup and start DMA.
6a5d4e17 719 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
705bfa10 720 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
15c4dc5a 721
6a5d4e17 722 uint16_t *upTo = dmaBuf;
705bfa10 723 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
15c4dc5a 724
7d5ebac9 725 // Signal field is ON with the appropriate LED:
51d4f6f1 726 LED_D_ON();
7d5ebac9 727 // And put the FPGA in the appropriate mode
da586b17 728 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
15c4dc5a 729
7d5ebac9 730 for(;;) {
6a5d4e17 731 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1);
732 if(behindBy > maxBehindBy) {
733 maxBehindBy = behindBy;
734 }
15c4dc5a 735
6a5d4e17 736 if(behindBy < 1) continue;
15c4dc5a 737
6a5d4e17 738 ci = *upTo >> 8;
739 cq = *upTo;
740 upTo++;
741 lastRxCounter--;
742 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
743 upTo = dmaBuf; // start reading the circular buffer from the beginning
744 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
745 }
746 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
747 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
748 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers
749 }
750 samples++;
751
752 if(Handle14443bSamplesDemod(ci, cq)) {
753 gotFrame = true;
754 break;
7d5ebac9 755 }
15c4dc5a 756
6a5d4e17 757 if(samples > n) {
7d5ebac9
MHS
758 break;
759 }
760 }
51d4f6f1 761
6a5d4e17 762 FpgaDisableSscDma();
51d4f6f1 763
6a5d4e17 764 if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", maxBehindBy, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
355c8b4a 765 //Tracing
d9de20fa 766 if (Demod.len > 0) {
767 LogTrace(Demod.output, Demod.len, 0, 0, NULL, false);
355c8b4a 768 }
15c4dc5a 769}
770
67ac4bf7 771
15c4dc5a 772//-----------------------------------------------------------------------------
773// Transmit the command (to the tag) that was placed in ToSend[].
774//-----------------------------------------------------------------------------
51d4f6f1 775static void TransmitFor14443b(void)
15c4dc5a 776{
7d5ebac9 777 int c;
15c4dc5a 778
6a5d4e17 779 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
15c4dc5a 780
7d5ebac9 781 // Signal field is ON with the appropriate Red LED
15c4dc5a 782 LED_D_ON();
783 // Signal we are transmitting with the Green LED
784 LED_B_ON();
51d4f6f1 785 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
7d5ebac9 786
7d5ebac9
MHS
787 c = 0;
788 for(;;) {
789 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
6a5d4e17 790 AT91C_BASE_SSC->SSC_THR = ~ToSend[c];
7d5ebac9
MHS
791 c++;
792 if(c >= ToSendMax) {
793 break;
794 }
795 }
7d5ebac9
MHS
796 WDT_HIT();
797 }
798 LED_B_OFF(); // Finished sending
15c4dc5a 799}
800
67ac4bf7 801
15c4dc5a 802//-----------------------------------------------------------------------------
803// Code a layer 2 command (string of octets, including CRC) into ToSend[],
51d4f6f1 804// so that it is ready to transmit to the tag using TransmitFor14443b().
15c4dc5a 805//-----------------------------------------------------------------------------
7cf3ef20 806static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
15c4dc5a 807{
7d5ebac9
MHS
808 int i, j;
809 uint8_t b;
810
811 ToSendReset();
812
7d5ebac9
MHS
813 // Send SOF
814 for(i = 0; i < 10; i++) {
815 ToSendStuffBit(0);
816 }
6a5d4e17 817 ToSendStuffBit(1);
818 ToSendStuffBit(1);
7d5ebac9
MHS
819
820 for(i = 0; i < len; i++) {
7d5ebac9
MHS
821 // Start bit
822 ToSendStuffBit(0);
823 // Data bits
824 b = cmd[i];
825 for(j = 0; j < 8; j++) {
826 if(b & 1) {
827 ToSendStuffBit(1);
828 } else {
829 ToSendStuffBit(0);
830 }
831 b >>= 1;
832 }
6a5d4e17 833 // Stop bit
834 ToSendStuffBit(1);
7d5ebac9 835 }
6a5d4e17 836
7d5ebac9 837 // Send EOF
7d5ebac9
MHS
838 for(i = 0; i < 10; i++) {
839 ToSendStuffBit(0);
840 }
6a5d4e17 841 ToSendStuffBit(1);
7d5ebac9 842
6a5d4e17 843 // ensure that last byte is filled up
844 for(i = 0; i < 8; i++) {
7d5ebac9
MHS
845 ToSendStuffBit(1);
846 }
847
848 // Convert from last character reference to length
849 ToSendMax++;
15c4dc5a 850}
851
67ac4bf7 852
355c8b4a
MHS
853/**
854 Convenience function to encode, transmit and trace iso 14443b comms
855 **/
856static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
857{
858 CodeIso14443bAsReader(cmd, len);
51d4f6f1 859 TransmitFor14443b();
d9de20fa 860 LogTrace(cmd,len, 0, 0, NULL, true);
355c8b4a
MHS
861}
862
4be27083
FM
863/* Sends an APDU to the tag
864 * TODO: check CRC and preamble
865 */
866int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response)
867{
ca8a3478 868 LED_A_ON();
4be27083
FM
869 uint8_t message_frame[message_length + 4];
870 // PCB
871 message_frame[0] = 0x0A | pcb_blocknum;
872 pcb_blocknum ^= 1;
873 // CID
874 message_frame[1] = 0;
875 // INF
876 memcpy(message_frame + 2, message, message_length);
877 // EDC (CRC)
878 ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
879 // send
880 CodeAndTransmit14443bAsReader(message_frame, message_length + 4);
881 // get response
6a5d4e17 882 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
ca8a3478 883 FpgaDisableTracing();
4be27083
FM
884 if(Demod.len < 3)
885 {
ca8a3478 886 LED_A_OFF();
4be27083
FM
887 return 0;
888 }
889 // TODO: Check CRC
890 // copy response contents
891 if(response != NULL)
892 {
893 memcpy(response, Demod.output, Demod.len);
894 }
ca8a3478 895 LED_A_OFF();
4be27083
FM
896 return Demod.len;
897}
898
899/* Perform the ISO 14443 B Card Selection procedure
900 * Currently does NOT do any collision handling.
901 * It expects 0-1 cards in the device's range.
902 * TODO: Support multiple cards (perform anticollision)
903 * TODO: Verify CRC checksums
904 */
905int iso14443b_select_card()
906{
907 // WUPB command (including CRC)
908 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
909 static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
910 // ATTRIB command (with space for CRC)
911 uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
912
913 // first, wake up the tag
914 CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
44964fd1 915 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
4be27083
FM
916 // ATQB too short?
917 if (Demod.len < 14)
918 {
919 return 2;
920 }
921
922 // select the tag
923 // copy the PUPI to ATTRIB
924 memcpy(attrib + 1, Demod.output + 1, 4);
925 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
926 ATTRIB (Param 3) */
927 attrib[7] = Demod.output[10] & 0x0F;
928 ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
929 CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
44964fd1 930 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
4be27083
FM
931 // Answer to ATTRIB too short?
932 if(Demod.len < 3)
933 {
934 return 2;
935 }
936 // reset PCB block number
937 pcb_blocknum = 0;
938 return 1;
939}
940
941// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
942void iso14443b_setup() {
943 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
944 // Set up the synchronous serial port
6a5d4e17 945 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
4be27083
FM
946 // connect Demodulated Signal to ADC:
947 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
948
949 // Signal field is on with the appropriate LED
950 LED_D_ON();
951 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
952
4be27083
FM
953 DemodReset();
954 UartReset();
955}
67ac4bf7 956
15c4dc5a 957//-----------------------------------------------------------------------------
51d4f6f1 958// Read a SRI512 ISO 14443B tag.
15c4dc5a 959//
960// SRI512 tags are just simple memory tags, here we're looking at making a dump
961// of the contents of the memory. No anticollision algorithm is done, we assume
962// we have a single tag in the field.
963//
964// I tried to be systematic and check every answer of the tag, every CRC, etc...
965//-----------------------------------------------------------------------------
51d4f6f1 966void ReadSTMemoryIso14443b(uint32_t dwLast)
15c4dc5a 967{
ca8a3478 968 LED_A_ON();
7d5ebac9 969 uint8_t i = 0x00;
15c4dc5a 970
7d5ebac9
MHS
971 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
972 // Make sure that we start from off, since the tags are stateful;
973 // confusing things will happen if we don't reset them between reads.
974 LED_D_OFF();
975 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
976 SpinDelay(200);
15c4dc5a 977
7d5ebac9 978 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
6a5d4e17 979 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
15c4dc5a 980
7d5ebac9
MHS
981 // Now give it time to spin up.
982 // Signal field is on with the appropriate LED
983 LED_D_ON();
705bfa10 984 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
7d5ebac9 985 SpinDelay(200);
15c4dc5a 986
5f605b8f 987 clear_trace();
44964fd1 988 set_tracing(true);
5f605b8f 989
7d5ebac9 990 // First command: wake up the tag using the INITIATE command
51d4f6f1 991 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
355c8b4a 992 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
44964fd1 993 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
15c4dc5a 994
7d5ebac9 995 if (Demod.len == 0) {
6a5d4e17 996 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 997 DbpString("No response from tag");
998 LEDsoff();
705bfa10 999 return;
7d5ebac9 1000 } else {
705bfa10 1001 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1002 Demod.output[0], Demod.output[1], Demod.output[2]);
7d5ebac9 1003 }
705bfa10 1004
7d5ebac9
MHS
1005 // There is a response, SELECT the uid
1006 DbpString("Now SELECT tag:");
1007 cmd1[0] = 0x0E; // 0x0E is SELECT
1008 cmd1[1] = Demod.output[0];
1009 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
355c8b4a 1010 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
44964fd1 1011 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
7d5ebac9 1012 if (Demod.len != 3) {
6a5d4e17 1013 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1014 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
1015 LEDsoff();
51d4f6f1 1016 return;
7d5ebac9
MHS
1017 }
1018 // Check the CRC of the answer:
1019 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
1020 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
6a5d4e17 1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1022 DbpString("CRC Error reading select response.");
1023 LEDsoff();
51d4f6f1 1024 return;
7d5ebac9
MHS
1025 }
1026 // Check response from the tag: should be the same UID as the command we just sent:
1027 if (cmd1[1] != Demod.output[0]) {
6a5d4e17 1028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1029 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
1030 LEDsoff();
51d4f6f1 1031 return;
7d5ebac9 1032 }
705bfa10 1033
7d5ebac9
MHS
1034 // Tag is now selected,
1035 // First get the tag's UID:
1036 cmd1[0] = 0x0B;
1037 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
355c8b4a 1038 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
44964fd1 1039 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
7d5ebac9 1040 if (Demod.len != 10) {
6a5d4e17 1041 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1042 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
1043 LEDsoff();
51d4f6f1 1044 return;
7d5ebac9
MHS
1045 }
1046 // The check the CRC of the answer (use cmd1 as temporary variable):
1047 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
51d4f6f1 1048 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
132a0217 1049 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 1050 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
51d4f6f1 1051 // Do not return;, let's go on... (we should retry, maybe ?)
7d5ebac9
MHS
1052 }
1053 Dbprintf("Tag UID (64 bits): %08x %08x",
705bfa10 1054 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1055 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
15c4dc5a 1056
7d5ebac9 1057 // Now loop to read all 16 blocks, address from 0 to last block
132a0217 1058 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
7d5ebac9
MHS
1059 cmd1[0] = 0x08;
1060 i = 0x00;
1061 dwLast++;
1062 for (;;) {
51d4f6f1 1063 if (i == dwLast) {
7d5ebac9
MHS
1064 DbpString("System area block (0xff):");
1065 i = 0xff;
1066 }
1067 cmd1[1] = i;
1068 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
355c8b4a 1069 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
44964fd1 1070 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
7d5ebac9 1071 if (Demod.len != 6) { // Check if we got an answer from the tag
6a5d4e17 1072 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1073 DbpString("Expected 6 bytes from tag, got less...");
1074 LEDsoff();
51d4f6f1 1075 return;
7d5ebac9
MHS
1076 }
1077 // The check the CRC of the answer (use cmd1 as temporary variable):
1078 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
51d4f6f1 1079 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
132a0217 1080 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 1081 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
51d4f6f1 1082 // Do not return;, let's go on... (we should retry, maybe ?)
7d5ebac9
MHS
1083 }
1084 // Now print out the memory location:
132a0217 1085 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
705bfa10 1086 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
1087 (Demod.output[4]<<8)+Demod.output[5]);
7d5ebac9 1088 if (i == 0xff) {
51d4f6f1 1089 break;
7d5ebac9
MHS
1090 }
1091 i++;
1092 }
6a5d4e17 1093
6a5d4e17 1094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ca8a3478 1095 LEDsoff();
15c4dc5a 1096}
1097
1098
1099//=============================================================================
1100// Finally, the `sniffer' combines elements from both the reader and
1101// simulated tag, to show both sides of the conversation.
1102//=============================================================================
1103
1104//-----------------------------------------------------------------------------
1105// Record the sequence of commands sent by the reader to the tag, with
1106// triggering so that we start recording at the point that the tag is moved
1107// near the reader.
1108//-----------------------------------------------------------------------------
1109/*
1110 * Memory usage for this function, (within BigBuf)
5b95953d 1111 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1112 * Last Received command (tag->reader) - MAX_FRAME_SIZE
705bfa10 1113 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
5b95953d 1114 * Demodulated samples received - all the rest
15c4dc5a 1115 */
51d4f6f1 1116void RAMFUNC SnoopIso14443b(void)
15c4dc5a 1117{
ca8a3478 1118 LED_A_ON();
7d5ebac9 1119 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
f71f4deb 1120 BigBuf_free();
15c4dc5a 1121
aeadbdb2 1122 clear_trace();
44964fd1 1123 set_tracing(true);
aeadbdb2 1124
7d5ebac9 1125 // The DMA buffer, used to stream samples from the FPGA
6a5d4e17 1126 uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t));
7d5ebac9 1127 int lastRxCounter;
6a5d4e17 1128 uint16_t *upTo;
1129 int8_t ci, cq;
7d5ebac9
MHS
1130 int maxBehindBy = 0;
1131
1132 // Count of samples received so far, so that we can include timing
1133 // information in the trace buffer.
1134 int samples = 0;
15c4dc5a 1135
7d5ebac9
MHS
1136 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1137 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
15c4dc5a 1138
7d5ebac9
MHS
1139 // Print some debug information about the buffer sizes
1140 Dbprintf("Snooping buffers initialized:");
1141 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
aeadbdb2
MHS
1142 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1143 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
705bfa10 1144 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
e30c654b 1145
51d4f6f1 1146 // Signal field is off, no reader signal, no tag signal
1147 LEDsoff();
aeadbdb2
MHS
1148
1149 // And put the FPGA in the appropriate mode
da586b17 1150 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
7d5ebac9
MHS
1151 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1152
1153 // Setup for the DMA.
6a5d4e17 1154 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
7d5ebac9 1155 upTo = dmaBuf;
705bfa10 1156 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1157 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
5b95953d 1158
44964fd1 1159 bool TagIsActive = false;
1160 bool ReaderIsActive = false;
6a5d4e17 1161 // We won't start recording the frames that we acquire until we trigger.
1162 // A good trigger condition to get started is probably when we see a
1163 // reader command
1164 bool triggered = false;
dd57061c 1165
7d5ebac9
MHS
1166 // And now we loop, receiving samples.
1167 for(;;) {
6a5d4e17 1168 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1);
7d5ebac9
MHS
1169 if(behindBy > maxBehindBy) {
1170 maxBehindBy = behindBy;
7d5ebac9 1171 }
51d4f6f1 1172
6a5d4e17 1173 if(behindBy < 1) continue;
7d5ebac9 1174
6a5d4e17 1175 ci = *upTo>>8;
1176 cq = *upTo;
1177 upTo++;
1178 lastRxCounter--;
1179 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1180 upTo = dmaBuf; // start reading the circular buffer from the beginning again
705bfa10 1181 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
6a5d4e17 1182 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) {
1183 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
51d4f6f1 1184 break;
1185 }
6a5d4e17 1186 }
1187 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1188 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1189 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers
1190 WDT_HIT();
51d4f6f1 1191 if(BUTTON_PRESS()) {
1192 DbpString("cancelled");
1193 break;
1194 }
7d5ebac9 1195 }
15c4dc5a 1196
6a5d4e17 1197 samples++;
15c4dc5a 1198
5b95953d 1199 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
51d4f6f1 1200 if(Handle14443bUartBit(ci & 0x01)) {
6a5d4e17 1201 triggered = true;
d9de20fa 1202 LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true);
5b95953d 1203 /* And ready to receive another command. */
1204 UartReset();
1205 /* And also reset the demod code, which might have been */
1206 /* false-triggered by the commands from the reader. */
1207 DemodReset();
aeadbdb2 1208 }
51d4f6f1 1209 if(Handle14443bUartBit(cq & 0x01)) {
6a5d4e17 1210 triggered = true;
d9de20fa 1211 LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true);
5b95953d 1212 /* And ready to receive another command. */
1213 UartReset();
1214 /* And also reset the demod code, which might have been */
1215 /* false-triggered by the commands from the reader. */
1216 DemodReset();
1217 }
46734099 1218 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
aeadbdb2 1219 }
15c4dc5a 1220
6a5d4e17 1221 if(!ReaderIsActive && triggered) { // no need to try decoding tag data if the reader is sending or not yet triggered
1222 if(Handle14443bSamplesDemod(ci/2, cq/2)) {
5b95953d 1223 //Use samples as a time measurement
d9de20fa 1224 LogTrace(Demod.output, Demod.len, samples, samples, NULL, false);
5b95953d 1225 // And ready to receive another response.
1226 DemodReset();
1227 }
d5875804 1228 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
aeadbdb2 1229 }
15c4dc5a 1230
7d5ebac9 1231 }
51d4f6f1 1232
aeadbdb2 1233 FpgaDisableSscDma();
15c4dc5a 1234 DbpString("Snoop statistics:");
355c8b4a 1235 Dbprintf(" Max behind by: %i", maxBehindBy);
15c4dc5a 1236 Dbprintf(" Uart State: %x", Uart.state);
1237 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1238 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
3000dc4e 1239 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
ca8a3478 1240 LEDsoff();
15c4dc5a 1241}
7cf3ef20 1242
67ac4bf7 1243
7cf3ef20 1244/*
1245 * Send raw command to tag ISO14443B
1246 * @Input
1247 * datalen len of buffer data
1248 * recv bool when true wait for data from tag and send to client
1249 * powerfield bool leave the field on when true
1250 * data buffer with byte to send
1251 *
1252 * @Output
1253 * none
1254 *
1255 */
67ac4bf7 1256void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
7cf3ef20 1257{
7d5ebac9 1258 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
51d4f6f1 1259 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
6a5d4e17 1260
1261 // switch field on and give tag some time to power up
1262 LED_D_ON();
1263 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
1264 SpinDelay(10);
5f605b8f 1265
9d84e689 1266 if (datalen){
44964fd1 1267 set_tracing(true);
9d84e689 1268
1269 CodeAndTransmit14443bAsReader(data, datalen);
1270
1271 if(recv) {
44964fd1 1272 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
ca8a3478 1273 FpgaDisableTracing();
9d84e689 1274 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1275 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
1276 }
ca8a3478 1277
1278 FpgaDisableTracing();
dd57061c 1279 }
355c8b4a 1280
51d4f6f1 1281 if(!powerfield) {
7d5ebac9
MHS
1282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1283 LED_D_OFF();
1284 }
7cf3ef20 1285}
1286
Impressum, Datenschutz