]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
Provide option -m for markdown help dump, -h for text dump
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
e30c654b 13#include "proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
902cb3c0 17#include "cmd.h"
9ab7a6c7 18
15c4dc5a 19#include "iso14443crc.h"
534983d7 20#include "iso14443a.h"
20f9a2a1
M
21#include "crapto1.h"
22#include "mifareutil.h"
15c4dc5a 23
534983d7 24static uint32_t iso14a_timeout;
d19929cb 25uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
1e262141 26int rsamples = 0;
7bc95e2e 27int traceLen = 0;
1e262141 28int tracing = TRUE;
29uint8_t trigger = 0;
b0127e65 30// the block number for the ISO14443-4 PCB
31static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 32
7bc95e2e 33//
34// ISO14443 timing:
35//
36// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37#define REQUEST_GUARD_TIME (7000/16 + 1)
38// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40// bool LastCommandWasRequest = FALSE;
41
42//
43// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44//
d714d3ef 45// When the PM acts as reader and is receiving tag data, it takes
46// 3 ticks delay in the AD converter
47// 16 ticks until the modulation detector completes and sets curbit
48// 8 ticks until bit_to_arm is assigned from curbit
49// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 50// 4*16 ticks until we measure the time
51// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 52#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 53
54// When the PM acts as a reader and is sending, it takes
55// 4*16 ticks until we can write data to the sending hold register
56// 8*16 ticks until the SHR is transferred to the Sending Shift Register
57// 8 ticks until the first transfer starts
58// 8 ticks later the FPGA samples the data
59// 1 tick to assign mod_sig_coil
60#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61
62// When the PM acts as tag and is receiving it takes
d714d3ef 63// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 64// 3 ticks for the A/D conversion,
65// 8 ticks on average until the start of the SSC transfer,
66// 8 ticks until the SSC samples the first data
67// 7*16 ticks to complete the transfer from FPGA to ARM
68// 8 ticks until the next ssp_clk rising edge
d714d3ef 69// 4*16 ticks until we measure the time
7bc95e2e 70// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 71#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 72
73// The FPGA will report its internal sending delay in
74uint16_t FpgaSendQueueDelay;
75// the 5 first bits are the number of bits buffered in mod_sig_buf
76// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78
79// When the PM acts as tag and is sending, it takes
d714d3ef 80// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 81// 8*16 ticks until the SHR is transferred to the Sending Shift Register
82// 8 ticks until the first transfer starts
83// 8 ticks later the FPGA samples the data
84// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85// + 1 tick to assign mod_sig_coil
d714d3ef 86#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 87
88// When the PM acts as sniffer and is receiving tag data, it takes
89// 3 ticks A/D conversion
d714d3ef 90// 14 ticks to complete the modulation detection
91// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 92// + the delays in transferring data - which is the same for
93// sniffing reader and tag data and therefore not relevant
d714d3ef 94#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 95
d714d3ef 96// When the PM acts as sniffer and is receiving reader data, it takes
97// 2 ticks delay in analogue RF receiver (for the falling edge of the
98// start bit, which marks the start of the communication)
7bc95e2e 99// 3 ticks A/D conversion
d714d3ef 100// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 101// + the delays in transferring data - which is the same for
102// sniffing reader and tag data and therefore not relevant
d714d3ef 103#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 104
105//variables used for timing purposes:
106//these are in ssp_clk cycles:
107uint32_t NextTransferTime;
108uint32_t LastTimeProxToAirStart;
109uint32_t LastProxToAirDuration;
110
111
112
8f51ddb0 113// CARD TO READER - manchester
72934aa3 114// Sequence D: 11110000 modulation with subcarrier during first half
115// Sequence E: 00001111 modulation with subcarrier during second half
116// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 117// READER TO CARD - miller
72934aa3 118// Sequence X: 00001100 drop after half a period
119// Sequence Y: 00000000 no drop
120// Sequence Z: 11000000 drop at start
121#define SEC_D 0xf0
122#define SEC_E 0x0f
123#define SEC_F 0x00
124#define SEC_X 0x0c
125#define SEC_Y 0x00
126#define SEC_Z 0xc0
15c4dc5a 127
1e262141 128const uint8_t OddByteParity[256] = {
15c4dc5a 129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145};
146
1e262141 147
902cb3c0 148void iso14a_set_trigger(bool enable) {
534983d7 149 trigger = enable;
150}
151
902cb3c0 152void iso14a_clear_trace() {
7bc95e2e 153 memset(trace, 0x44, TRACE_SIZE);
8556b852
M
154 traceLen = 0;
155}
d19929cb 156
902cb3c0 157void iso14a_set_tracing(bool enable) {
8556b852
M
158 tracing = enable;
159}
d19929cb 160
b0127e65 161void iso14a_set_timeout(uint32_t timeout) {
162 iso14a_timeout = timeout;
163}
8556b852 164
15c4dc5a 165//-----------------------------------------------------------------------------
166// Generate the parity value for a byte sequence
e30c654b 167//
15c4dc5a 168//-----------------------------------------------------------------------------
20f9a2a1
M
169byte_t oddparity (const byte_t bt)
170{
5f6d6c90 171 return OddByteParity[bt];
20f9a2a1
M
172}
173
f7e3ed82 174uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
15c4dc5a 175{
5f6d6c90 176 int i;
177 uint32_t dwPar = 0;
72934aa3 178
e691fc45 179 // Generate the parity bits
5f6d6c90 180 for (i = 0; i < iLen; i++) {
e691fc45 181 // and save them to a 32Bit word
5f6d6c90 182 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
183 }
184 return dwPar;
15c4dc5a 185}
186
534983d7 187void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 188{
5f6d6c90 189 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 190}
191
1e262141 192// The function LogTrace() is also used by the iClass implementation in iClass.c
7bc95e2e 193bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool bReader)
15c4dc5a 194{
7bc95e2e 195 // Return when trace is full
196 if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
197 tracing = FALSE; // don't trace any more
198 return FALSE;
199 }
200
201 // Trace the random, i'm curious
202 trace[traceLen++] = ((timestamp >> 0) & 0xff);
203 trace[traceLen++] = ((timestamp >> 8) & 0xff);
204 trace[traceLen++] = ((timestamp >> 16) & 0xff);
205 trace[traceLen++] = ((timestamp >> 24) & 0xff);
206 if (!bReader) {
207 trace[traceLen - 1] |= 0x80;
208 }
209 trace[traceLen++] = ((dwParity >> 0) & 0xff);
210 trace[traceLen++] = ((dwParity >> 8) & 0xff);
211 trace[traceLen++] = ((dwParity >> 16) & 0xff);
212 trace[traceLen++] = ((dwParity >> 24) & 0xff);
213 trace[traceLen++] = iLen;
214 if (btBytes != NULL && iLen != 0) {
215 memcpy(trace + traceLen, btBytes, iLen);
216 }
217 traceLen += iLen;
218 return TRUE;
15c4dc5a 219}
220
7bc95e2e 221//=============================================================================
222// ISO 14443 Type A - Miller decoder
223//=============================================================================
224// Basics:
225// This decoder is used when the PM3 acts as a tag.
226// The reader will generate "pauses" by temporarily switching of the field.
227// At the PM3 antenna we will therefore measure a modulated antenna voltage.
228// The FPGA does a comparison with a threshold and would deliver e.g.:
229// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230// The Miller decoder needs to identify the following sequences:
231// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234// Note 1: the bitstream may start at any time. We therefore need to sync.
235// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 236//-----------------------------------------------------------------------------
b62a5a84 237static tUart Uart;
15c4dc5a 238
d7aa3739 239// Lookup-Table to decide if 4 raw bits are a modulation.
240// We accept two or three consecutive "0" in any position with the rest "1"
241const bool Mod_Miller_LUT[] = {
242 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
243 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
244};
245#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
246#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
247
7bc95e2e 248void UartReset()
15c4dc5a 249{
7bc95e2e 250 Uart.state = STATE_UNSYNCD;
251 Uart.bitCount = 0;
252 Uart.len = 0; // number of decoded data bytes
253 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
254 Uart.parityBits = 0; //
255 Uart.twoBits = 0x0000; // buffer for 2 Bits
256 Uart.highCnt = 0;
257 Uart.startTime = 0;
258 Uart.endTime = 0;
259}
15c4dc5a 260
d714d3ef 261
7bc95e2e 262// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
263static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
264{
15c4dc5a 265
7bc95e2e 266 Uart.twoBits = (Uart.twoBits << 8) | bit;
267
268 if (Uart.state == STATE_UNSYNCD) { // not yet synced
269 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
270 if (Uart.twoBits == 0xffff) {
271 Uart.highCnt++;
272 } else {
273 Uart.highCnt = 0;
15c4dc5a 274 }
7bc95e2e 275 } else {
276 Uart.syncBit = 0xFFFF; // not set
277 // look for 00xx1111 (the start bit)
278 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
279 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
280 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
281 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
282 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
283 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
284 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
285 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
286 if (Uart.syncBit != 0xFFFF) {
287 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
288 Uart.startTime -= Uart.syncBit;
d7aa3739 289 Uart.endTime = Uart.startTime;
7bc95e2e 290 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 291 }
7bc95e2e 292 }
15c4dc5a 293
7bc95e2e 294 } else {
15c4dc5a 295
d7aa3739 296 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
297 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
298 UartReset();
299 Uart.highCnt = 6;
300 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 301 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
302 UartReset();
303 Uart.highCnt = 6;
304 } else {
305 Uart.bitCount++;
306 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
307 Uart.state = STATE_MILLER_Z;
308 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
309 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
310 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
311 Uart.parityBits <<= 1; // make room for the parity bit
312 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
313 Uart.bitCount = 0;
314 Uart.shiftReg = 0;
15c4dc5a 315 }
7bc95e2e 316 }
d7aa3739 317 }
318 } else {
319 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 320 Uart.bitCount++;
321 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
322 Uart.state = STATE_MILLER_X;
323 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
324 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
325 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
326 Uart.parityBits <<= 1; // make room for the new parity bit
327 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
328 Uart.bitCount = 0;
329 Uart.shiftReg = 0;
330 }
d7aa3739 331 } else { // no modulation in both halves - Sequence Y
7bc95e2e 332 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 333 Uart.state = STATE_UNSYNCD;
7bc95e2e 334 if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
335 Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
336 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
337 Uart.parityBits <<= 1; // no parity bit - add "0"
d7aa3739 338 Uart.bitCount--; // last "0" was part of the EOC sequence
7bc95e2e 339 }
15c4dc5a 340 return TRUE;
341 }
7bc95e2e 342 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
343 UartReset();
344 Uart.highCnt = 6;
345 } else { // a logic "0"
346 Uart.bitCount++;
347 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
348 Uart.state = STATE_MILLER_Y;
349 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
350 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
351 Uart.parityBits <<= 1; // make room for the parity bit
352 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
353 Uart.bitCount = 0;
354 Uart.shiftReg = 0;
15c4dc5a 355 }
356 }
d7aa3739 357 }
15c4dc5a 358 }
7bc95e2e 359
360 }
15c4dc5a 361
7bc95e2e 362 return FALSE; // not finished yet, need more data
15c4dc5a 363}
364
7bc95e2e 365
366
15c4dc5a 367//=============================================================================
e691fc45 368// ISO 14443 Type A - Manchester decoder
15c4dc5a 369//=============================================================================
e691fc45 370// Basics:
7bc95e2e 371// This decoder is used when the PM3 acts as a reader.
e691fc45 372// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
373// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
374// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
375// The Manchester decoder needs to identify the following sequences:
376// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
377// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
378// 8 ticks unmodulated: Sequence F = end of communication
379// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 380// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 381// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 382static tDemod Demod;
15c4dc5a 383
d7aa3739 384// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 385// We accept three or four "1" in any position
7bc95e2e 386const bool Mod_Manchester_LUT[] = {
d7aa3739 387 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 388 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 389};
390
391#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
392#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 393
2f2d9fc5 394
7bc95e2e 395void DemodReset()
e691fc45 396{
7bc95e2e 397 Demod.state = DEMOD_UNSYNCD;
398 Demod.len = 0; // number of decoded data bytes
399 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
400 Demod.parityBits = 0; //
401 Demod.collisionPos = 0; // Position of collision bit
402 Demod.twoBits = 0xffff; // buffer for 2 Bits
403 Demod.highCnt = 0;
404 Demod.startTime = 0;
405 Demod.endTime = 0;
e691fc45 406}
15c4dc5a 407
7bc95e2e 408// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
409static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 410{
7bc95e2e 411
412 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 413
7bc95e2e 414 if (Demod.state == DEMOD_UNSYNCD) {
415
416 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
417 if (Demod.twoBits == 0x0000) {
418 Demod.highCnt++;
419 } else {
420 Demod.highCnt = 0;
421 }
422 } else {
423 Demod.syncBit = 0xFFFF; // not set
424 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
425 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
426 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
427 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
428 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
429 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
430 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
431 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 432 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 433 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
434 Demod.startTime -= Demod.syncBit;
435 Demod.bitCount = offset; // number of decoded data bits
e691fc45 436 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 437 }
7bc95e2e 438 }
15c4dc5a 439
7bc95e2e 440 } else {
15c4dc5a 441
7bc95e2e 442 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
443 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 444 if (!Demod.collisionPos) {
445 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
446 }
447 } // modulation in first half only - Sequence D = 1
7bc95e2e 448 Demod.bitCount++;
449 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
450 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 451 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 452 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 453 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
454 Demod.bitCount = 0;
455 Demod.shiftReg = 0;
15c4dc5a 456 }
7bc95e2e 457 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
458 } else { // no modulation in first half
459 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 460 Demod.bitCount++;
7bc95e2e 461 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 462 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 463 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 464 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 465 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
466 Demod.bitCount = 0;
467 Demod.shiftReg = 0;
15c4dc5a 468 }
7bc95e2e 469 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 470 } else { // no modulation in both halves - End of communication
d7aa3739 471 if (Demod.len > 0 || Demod.bitCount > 0) { // received something
472 if(Demod.bitCount > 0) { // if we decoded bits
473 Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
474 Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
475 // No parity bit, so just shift a 0
476 Demod.parityBits <<= 1;
477 }
478 return TRUE; // we are finished with decoding the raw data sequence
479 } else { // nothing received. Start over
480 DemodReset();
e691fc45 481 }
15c4dc5a 482 }
7bc95e2e 483 }
e691fc45 484
485 }
15c4dc5a 486
e691fc45 487 return FALSE; // not finished yet, need more data
15c4dc5a 488}
489
490//=============================================================================
491// Finally, a `sniffer' for ISO 14443 Type A
492// Both sides of communication!
493//=============================================================================
494
495//-----------------------------------------------------------------------------
496// Record the sequence of commands sent by the reader to the tag, with
497// triggering so that we start recording at the point that the tag is moved
498// near the reader.
499//-----------------------------------------------------------------------------
5cd9ec01
M
500void RAMFUNC SnoopIso14443a(uint8_t param) {
501 // param:
502 // bit 0 - trigger from first card answer
503 // bit 1 - trigger from first reader 7-bit request
504
505 LEDsoff();
506 // init trace buffer
5f6d6c90 507 iso14a_clear_trace();
5cd9ec01
M
508
509 // We won't start recording the frames that we acquire until we trigger;
510 // a good trigger condition to get started is probably when we see a
511 // response from the tag.
512 // triggered == FALSE -- to wait first for card
7bc95e2e 513 bool triggered = !(param & 0x03);
514
5cd9ec01 515 // The command (reader -> tag) that we're receiving.
15c4dc5a 516 // The length of a received command will in most cases be no more than 18 bytes.
517 // So 32 should be enough!
5cd9ec01
M
518 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
519 // The response (tag -> reader) that we're receiving.
520 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
15c4dc5a 521
5cd9ec01
M
522 // As we receive stuff, we copy it from receivedCmd or receivedResponse
523 // into trace, along with its length and other annotations.
524 //uint8_t *trace = (uint8_t *)BigBuf;
525
526 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 527 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
528 uint8_t *data = dmaBuf;
529 uint8_t previous_data = 0;
5cd9ec01
M
530 int maxDataLen = 0;
531 int dataLen = 0;
7bc95e2e 532 bool TagIsActive = FALSE;
533 bool ReaderIsActive = FALSE;
534
535 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 536
5cd9ec01
M
537 // Set up the demodulator for tag -> reader responses.
538 Demod.output = receivedResponse;
15c4dc5a 539
5cd9ec01 540 // Set up the demodulator for the reader -> tag commands
5cd9ec01 541 Uart.output = receivedCmd;
15c4dc5a 542
7bc95e2e 543 // Setup and start DMA.
5cd9ec01 544 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 545
5cd9ec01 546 // And now we loop, receiving samples.
7bc95e2e 547 for(uint32_t rsamples = 0; TRUE; ) {
548
5cd9ec01
M
549 if(BUTTON_PRESS()) {
550 DbpString("cancelled by button");
7bc95e2e 551 break;
5cd9ec01 552 }
15c4dc5a 553
5cd9ec01
M
554 LED_A_ON();
555 WDT_HIT();
15c4dc5a 556
5cd9ec01
M
557 int register readBufDataP = data - dmaBuf;
558 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
559 if (readBufDataP <= dmaBufDataP){
560 dataLen = dmaBufDataP - readBufDataP;
561 } else {
7bc95e2e 562 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
563 }
564 // test for length of buffer
565 if(dataLen > maxDataLen) {
566 maxDataLen = dataLen;
567 if(dataLen > 400) {
7bc95e2e 568 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
569 break;
5cd9ec01
M
570 }
571 }
572 if(dataLen < 1) continue;
573
574 // primary buffer was stopped( <-- we lost data!
575 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
576 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
577 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 578 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
579 }
580 // secondary buffer sets as primary, secondary buffer was stopped
581 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
582 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
583 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
584 }
585
586 LED_A_OFF();
7bc95e2e 587
588 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 589
7bc95e2e 590 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
591 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
592 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
593 LED_C_ON();
5cd9ec01 594
7bc95e2e 595 // check - if there is a short 7bit request from reader
596 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 597
7bc95e2e 598 if(triggered) {
599 if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
600 if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
601 }
602 /* And ready to receive another command. */
603 UartReset();
604 /* And also reset the demod code, which might have been */
605 /* false-triggered by the commands from the reader. */
606 DemodReset();
607 LED_B_OFF();
608 }
609 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 610 }
3be2a5ae 611
7bc95e2e 612 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
613 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
614 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
615 LED_B_ON();
5cd9ec01 616
7bc95e2e 617 if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
618 if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
5cd9ec01 619
7bc95e2e 620 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 621
7bc95e2e 622 // And ready to receive another response.
623 DemodReset();
624 LED_C_OFF();
625 }
626 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
627 }
5cd9ec01
M
628 }
629
7bc95e2e 630 previous_data = *data;
631 rsamples++;
5cd9ec01 632 data++;
d714d3ef 633 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
634 data = dmaBuf;
635 }
636 } // main cycle
637
638 DbpString("COMMAND FINISHED");
15c4dc5a 639
7bc95e2e 640 FpgaDisableSscDma();
641 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
642 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 643 LEDsoff();
15c4dc5a 644}
645
15c4dc5a 646//-----------------------------------------------------------------------------
647// Prepare tag messages
648//-----------------------------------------------------------------------------
8f51ddb0 649static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
15c4dc5a 650{
8f51ddb0 651 int i;
15c4dc5a 652
8f51ddb0 653 ToSendReset();
15c4dc5a 654
655 // Correction bit, might be removed when not needed
656 ToSendStuffBit(0);
657 ToSendStuffBit(0);
658 ToSendStuffBit(0);
659 ToSendStuffBit(0);
660 ToSendStuffBit(1); // 1
661 ToSendStuffBit(0);
662 ToSendStuffBit(0);
663 ToSendStuffBit(0);
8f51ddb0 664
15c4dc5a 665 // Send startbit
72934aa3 666 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 667 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 668
8f51ddb0
M
669 for(i = 0; i < len; i++) {
670 int j;
671 uint8_t b = cmd[i];
15c4dc5a 672
673 // Data bits
15c4dc5a 674 for(j = 0; j < 8; j++) {
15c4dc5a 675 if(b & 1) {
72934aa3 676 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 677 } else {
72934aa3 678 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
679 }
680 b >>= 1;
681 }
15c4dc5a 682
0014cb46 683 // Get the parity bit
8f51ddb0
M
684 if ((dwParity >> i) & 0x01) {
685 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 686 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 687 } else {
72934aa3 688 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 689 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 690 }
8f51ddb0 691 }
15c4dc5a 692
8f51ddb0
M
693 // Send stopbit
694 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 695
8f51ddb0
M
696 // Convert from last byte pos to length
697 ToSendMax++;
8f51ddb0
M
698}
699
700static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
701 CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
15c4dc5a 702}
703
15c4dc5a 704
8f51ddb0
M
705static void Code4bitAnswerAsTag(uint8_t cmd)
706{
707 int i;
708
5f6d6c90 709 ToSendReset();
8f51ddb0
M
710
711 // Correction bit, might be removed when not needed
712 ToSendStuffBit(0);
713 ToSendStuffBit(0);
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(1); // 1
717 ToSendStuffBit(0);
718 ToSendStuffBit(0);
719 ToSendStuffBit(0);
720
721 // Send startbit
722 ToSend[++ToSendMax] = SEC_D;
723
724 uint8_t b = cmd;
725 for(i = 0; i < 4; i++) {
726 if(b & 1) {
727 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 728 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
729 } else {
730 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 731 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
732 }
733 b >>= 1;
734 }
735
736 // Send stopbit
737 ToSend[++ToSendMax] = SEC_F;
738
5f6d6c90 739 // Convert from last byte pos to length
740 ToSendMax++;
15c4dc5a 741}
742
743//-----------------------------------------------------------------------------
744// Wait for commands from reader
745// Stop when button is pressed
746// Or return TRUE when command is captured
747//-----------------------------------------------------------------------------
f7e3ed82 748static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
15c4dc5a 749{
750 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
751 // only, since we are receiving, not transmitting).
752 // Signal field is off with the appropriate LED
753 LED_D_OFF();
754 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
755
756 // Now run a `software UART' on the stream of incoming samples.
7bc95e2e 757 UartReset();
15c4dc5a 758 Uart.output = received;
7bc95e2e 759
760 // clear RXRDY:
761 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 762
763 for(;;) {
764 WDT_HIT();
765
766 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 767
15c4dc5a 768 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 769 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
770 if(MillerDecoding(b, 0)) {
771 *len = Uart.len;
15c4dc5a 772 return TRUE;
773 }
7bc95e2e 774 }
15c4dc5a 775 }
776}
28afbd2b 777
7bc95e2e 778static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
779int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 780int EmSend4bit(uint8_t resp);
7bc95e2e 781int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
782int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
783int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
28afbd2b 784int EmSendCmd(uint8_t *resp, int respLen);
785int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
7bc95e2e 786bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
787 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
15c4dc5a 788
ce02f6f9 789static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
790
791typedef struct {
792 uint8_t* response;
793 size_t response_n;
794 uint8_t* modulation;
795 size_t modulation_n;
7bc95e2e 796 uint32_t ProxToAirDuration;
ce02f6f9 797} tag_response_info_t;
798
799void reset_free_buffer() {
800 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
801}
802
803bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 804 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 805 // This will need the following byte array for a modulation sequence
806 // 144 data bits (18 * 8)
807 // 18 parity bits
808 // 2 Start and stop
809 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
810 // 1 just for the case
811 // ----------- +
812 // 166 bytes, since every bit that needs to be send costs us a byte
813 //
814
815 // Prepare the tag modulation bits from the message
816 CodeIso14443aAsTag(response_info->response,response_info->response_n);
817
818 // Make sure we do not exceed the free buffer space
819 if (ToSendMax > max_buffer_size) {
820 Dbprintf("Out of memory, when modulating bits for tag answer:");
821 Dbhexdump(response_info->response_n,response_info->response,false);
822 return false;
823 }
824
825 // Copy the byte array, used for this modulation to the buffer position
826 memcpy(response_info->modulation,ToSend,ToSendMax);
827
7bc95e2e 828 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 829 response_info->modulation_n = ToSendMax;
7bc95e2e 830 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 831
832 return true;
833}
834
835bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
836 // Retrieve and store the current buffer index
837 response_info->modulation = free_buffer_pointer;
838
839 // Determine the maximum size we can use from our buffer
840 size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
841
842 // Forward the prepare tag modulation function to the inner function
843 if (prepare_tag_modulation(response_info,max_buffer_size)) {
844 // Update the free buffer offset
845 free_buffer_pointer += ToSendMax;
846 return true;
847 } else {
848 return false;
849 }
850}
851
15c4dc5a 852//-----------------------------------------------------------------------------
853// Main loop of simulated tag: receive commands from reader, decide what
854// response to send, and send it.
855//-----------------------------------------------------------------------------
28afbd2b 856void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 857{
5f6d6c90 858 // Enable and clear the trace
5f6d6c90 859 iso14a_clear_trace();
7bc95e2e 860 iso14a_set_tracing(TRUE);
81cd0474 861
81cd0474 862 uint8_t sak;
863
864 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
865 uint8_t response1[2];
866
867 switch (tagType) {
868 case 1: { // MIFARE Classic
869 // Says: I am Mifare 1k - original line
870 response1[0] = 0x04;
871 response1[1] = 0x00;
872 sak = 0x08;
873 } break;
874 case 2: { // MIFARE Ultralight
875 // Says: I am a stupid memory tag, no crypto
876 response1[0] = 0x04;
877 response1[1] = 0x00;
878 sak = 0x00;
879 } break;
880 case 3: { // MIFARE DESFire
881 // Says: I am a DESFire tag, ph33r me
882 response1[0] = 0x04;
883 response1[1] = 0x03;
884 sak = 0x20;
885 } break;
886 case 4: { // ISO/IEC 14443-4
887 // Says: I am a javacard (JCOP)
888 response1[0] = 0x04;
889 response1[1] = 0x00;
890 sak = 0x28;
891 } break;
892 default: {
893 Dbprintf("Error: unkown tagtype (%d)",tagType);
894 return;
895 } break;
896 }
897
898 // The second response contains the (mandatory) first 24 bits of the UID
899 uint8_t response2[5];
900
901 // Check if the uid uses the (optional) part
902 uint8_t response2a[5];
903 if (uid_2nd) {
904 response2[0] = 0x88;
905 num_to_bytes(uid_1st,3,response2+1);
906 num_to_bytes(uid_2nd,4,response2a);
907 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
908
909 // Configure the ATQA and SAK accordingly
910 response1[0] |= 0x40;
911 sak |= 0x04;
912 } else {
913 num_to_bytes(uid_1st,4,response2);
914 // Configure the ATQA and SAK accordingly
915 response1[0] &= 0xBF;
916 sak &= 0xFB;
917 }
918
919 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
920 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
921
922 // Prepare the mandatory SAK (for 4 and 7 byte UID)
923 uint8_t response3[3];
924 response3[0] = sak;
925 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
926
927 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
928 uint8_t response3a[3];
929 response3a[0] = sak & 0xFB;
930 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
931
254b70a4 932 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
ce02f6f9 933 uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
934 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
935
7bc95e2e 936 #define TAG_RESPONSE_COUNT 7
937 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
938 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
939 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
940 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
941 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
942 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
943 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
944 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
945 };
946
947 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
948 // Such a response is less time critical, so we can prepare them on the fly
949 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
950 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
951 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
952 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
953 tag_response_info_t dynamic_response_info = {
954 .response = dynamic_response_buffer,
955 .response_n = 0,
956 .modulation = dynamic_modulation_buffer,
957 .modulation_n = 0
958 };
ce02f6f9 959
7bc95e2e 960 // Reset the offset pointer of the free buffer
961 reset_free_buffer();
ce02f6f9 962
7bc95e2e 963 // Prepare the responses of the anticollision phase
ce02f6f9 964 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 965 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
966 prepare_allocated_tag_modulation(&responses[i]);
967 }
15c4dc5a 968
254b70a4 969 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
7bc95e2e 970 int len = 0;
15c4dc5a 971
972 // To control where we are in the protocol
973 int order = 0;
974 int lastorder;
975
976 // Just to allow some checks
977 int happened = 0;
978 int happened2 = 0;
81cd0474 979 int cmdsRecvd = 0;
15c4dc5a 980
254b70a4 981 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 982 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 983
254b70a4 984 cmdsRecvd = 0;
7bc95e2e 985 tag_response_info_t* p_response;
15c4dc5a 986
254b70a4 987 LED_A_ON();
988 for(;;) {
7bc95e2e 989 // Clean receive command buffer
990
81cd0474 991 if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
ce02f6f9 992 DbpString("Button press");
254b70a4 993 break;
994 }
7bc95e2e 995
996 p_response = NULL;
997
254b70a4 998 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
999 // Okay, look at the command now.
1000 lastorder = order;
1001 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1002 p_response = &responses[0]; order = 1;
254b70a4 1003 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1004 p_response = &responses[0]; order = 6;
254b70a4 1005 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1006 p_response = &responses[1]; order = 2;
254b70a4 1007 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1008 p_response = &responses[2]; order = 20;
254b70a4 1009 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1010 p_response = &responses[3]; order = 3;
254b70a4 1011 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1012 p_response = &responses[4]; order = 30;
254b70a4 1013 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
5f6d6c90 1014 EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
7bc95e2e 1015 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1016 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1017 p_response = NULL;
254b70a4 1018 } else if(receivedCmd[0] == 0x50) { // Received a HALT
17331e14 1019// DbpString("Reader requested we HALT!:");
7bc95e2e 1020 if (tracing) {
1021 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1022 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1023 }
1024 p_response = NULL;
254b70a4 1025 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1026 p_response = &responses[5]; order = 7;
254b70a4 1027 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1028 if (tagType == 1 || tagType == 2) { // RATS not supported
1029 EmSend4bit(CARD_NACK_NA);
1030 p_response = NULL;
1031 } else {
1032 p_response = &responses[6]; order = 70;
1033 }
1034 } else if (order == 7 && len == 8) { // Received authentication request
1035 if (tracing) {
1036 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1037 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1038 }
1039 uint32_t nr = bytes_to_num(receivedCmd,4);
1040 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1041 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1042 } else {
1043 // Check for ISO 14443A-4 compliant commands, look at left nibble
1044 switch (receivedCmd[0]) {
1045
1046 case 0x0B:
1047 case 0x0A: { // IBlock (command)
1048 dynamic_response_info.response[0] = receivedCmd[0];
1049 dynamic_response_info.response[1] = 0x00;
1050 dynamic_response_info.response[2] = 0x90;
1051 dynamic_response_info.response[3] = 0x00;
1052 dynamic_response_info.response_n = 4;
1053 } break;
1054
1055 case 0x1A:
1056 case 0x1B: { // Chaining command
1057 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1058 dynamic_response_info.response_n = 2;
1059 } break;
1060
1061 case 0xaa:
1062 case 0xbb: {
1063 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1064 dynamic_response_info.response_n = 2;
1065 } break;
1066
1067 case 0xBA: { //
1068 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1069 dynamic_response_info.response_n = 2;
1070 } break;
1071
1072 case 0xCA:
1073 case 0xC2: { // Readers sends deselect command
1074 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1075 dynamic_response_info.response_n = 2;
1076 } break;
1077
1078 default: {
1079 // Never seen this command before
1080 if (tracing) {
1081 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1082 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1083 }
1084 Dbprintf("Received unknown command (len=%d):",len);
1085 Dbhexdump(len,receivedCmd,false);
1086 // Do not respond
1087 dynamic_response_info.response_n = 0;
1088 } break;
1089 }
ce02f6f9 1090
7bc95e2e 1091 if (dynamic_response_info.response_n > 0) {
1092 // Copy the CID from the reader query
1093 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1094
7bc95e2e 1095 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1096 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1097 dynamic_response_info.response_n += 2;
ce02f6f9 1098
7bc95e2e 1099 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1100 Dbprintf("Error preparing tag response");
1101 if (tracing) {
1102 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1103 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1104 }
1105 break;
1106 }
1107 p_response = &dynamic_response_info;
1108 }
81cd0474 1109 }
15c4dc5a 1110
1111 // Count number of wakeups received after a halt
1112 if(order == 6 && lastorder == 5) { happened++; }
1113
1114 // Count number of other messages after a halt
1115 if(order != 6 && lastorder == 5) { happened2++; }
1116
15c4dc5a 1117 if(cmdsRecvd > 999) {
1118 DbpString("1000 commands later...");
254b70a4 1119 break;
15c4dc5a 1120 }
ce02f6f9 1121 cmdsRecvd++;
1122
1123 if (p_response != NULL) {
7bc95e2e 1124 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1125 // do the tracing for the previous reader request and this tag answer:
1126 EmLogTrace(Uart.output,
1127 Uart.len,
1128 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1129 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1130 Uart.parityBits,
1131 p_response->response,
1132 p_response->response_n,
1133 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1134 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1135 SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
1136 }
1137
1138 if (!tracing) {
1139 Dbprintf("Trace Full. Simulation stopped.");
1140 break;
1141 }
1142 }
15c4dc5a 1143
1144 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1145 LED_A_OFF();
1146}
1147
9492e0b0 1148
1149// prepare a delayed transfer. This simply shifts ToSend[] by a number
1150// of bits specified in the delay parameter.
1151void PrepareDelayedTransfer(uint16_t delay)
1152{
1153 uint8_t bitmask = 0;
1154 uint8_t bits_to_shift = 0;
1155 uint8_t bits_shifted = 0;
1156
1157 delay &= 0x07;
1158 if (delay) {
1159 for (uint16_t i = 0; i < delay; i++) {
1160 bitmask |= (0x01 << i);
1161 }
7bc95e2e 1162 ToSend[ToSendMax++] = 0x00;
9492e0b0 1163 for (uint16_t i = 0; i < ToSendMax; i++) {
1164 bits_to_shift = ToSend[i] & bitmask;
1165 ToSend[i] = ToSend[i] >> delay;
1166 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1167 bits_shifted = bits_to_shift;
1168 }
1169 }
1170}
1171
7bc95e2e 1172
1173//-------------------------------------------------------------------------------------
15c4dc5a 1174// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1175// Parameter timing:
7bc95e2e 1176// if NULL: transfer at next possible time, taking into account
1177// request guard time and frame delay time
1178// if == 0: transfer immediately and return time of transfer
9492e0b0 1179// if != 0: delay transfer until time specified
7bc95e2e 1180//-------------------------------------------------------------------------------------
9492e0b0 1181static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
15c4dc5a 1182{
7bc95e2e 1183
9492e0b0 1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1185
7bc95e2e 1186 uint32_t ThisTransferTime = 0;
e30c654b 1187
9492e0b0 1188 if (timing) {
1189 if(*timing == 0) { // Measure time
7bc95e2e 1190 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1191 } else {
1192 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1193 }
7bc95e2e 1194 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1195 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1196 LastTimeProxToAirStart = *timing;
1197 } else {
1198 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1199 while(GetCountSspClk() < ThisTransferTime);
1200 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1201 }
1202
7bc95e2e 1203 // clear TXRDY
1204 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1205
1206 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1207 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1208 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1209 // c++;
1210 // }
1211 // }
1212
1213 uint16_t c = 0;
9492e0b0 1214 for(;;) {
1215 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1216 AT91C_BASE_SSC->SSC_THR = cmd[c];
1217 c++;
1218 if(c >= len) {
1219 break;
1220 }
1221 }
1222 }
7bc95e2e 1223
1224 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1225
15c4dc5a 1226}
1227
7bc95e2e 1228
15c4dc5a 1229//-----------------------------------------------------------------------------
195af472 1230// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1231//-----------------------------------------------------------------------------
195af472 1232void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
15c4dc5a 1233{
7bc95e2e 1234 int i, j;
1235 int last;
1236 uint8_t b;
e30c654b 1237
7bc95e2e 1238 ToSendReset();
e30c654b 1239
7bc95e2e 1240 // Start of Communication (Seq. Z)
1241 ToSend[++ToSendMax] = SEC_Z;
1242 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1243 last = 0;
1244
1245 size_t bytecount = nbytes(bits);
1246 // Generate send structure for the data bits
1247 for (i = 0; i < bytecount; i++) {
1248 // Get the current byte to send
1249 b = cmd[i];
1250 size_t bitsleft = MIN((bits-(i*8)),8);
1251
1252 for (j = 0; j < bitsleft; j++) {
1253 if (b & 1) {
1254 // Sequence X
1255 ToSend[++ToSendMax] = SEC_X;
1256 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1257 last = 1;
1258 } else {
1259 if (last == 0) {
1260 // Sequence Z
1261 ToSend[++ToSendMax] = SEC_Z;
1262 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1263 } else {
1264 // Sequence Y
1265 ToSend[++ToSendMax] = SEC_Y;
1266 last = 0;
1267 }
1268 }
1269 b >>= 1;
1270 }
1271
1272 // Only transmit (last) parity bit if we transmitted a complete byte
1273 if (j == 8) {
1274 // Get the parity bit
1275 if ((dwParity >> i) & 0x01) {
1276 // Sequence X
1277 ToSend[++ToSendMax] = SEC_X;
1278 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1279 last = 1;
1280 } else {
1281 if (last == 0) {
1282 // Sequence Z
1283 ToSend[++ToSendMax] = SEC_Z;
1284 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1285 } else {
1286 // Sequence Y
1287 ToSend[++ToSendMax] = SEC_Y;
1288 last = 0;
1289 }
1290 }
1291 }
1292 }
e30c654b 1293
7bc95e2e 1294 // End of Communication: Logic 0 followed by Sequence Y
1295 if (last == 0) {
1296 // Sequence Z
1297 ToSend[++ToSendMax] = SEC_Z;
1298 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1299 } else {
1300 // Sequence Y
1301 ToSend[++ToSendMax] = SEC_Y;
1302 last = 0;
1303 }
1304 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1305
7bc95e2e 1306 // Convert to length of command:
1307 ToSendMax++;
15c4dc5a 1308}
1309
195af472 1310//-----------------------------------------------------------------------------
1311// Prepare reader command to send to FPGA
1312//-----------------------------------------------------------------------------
1313void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1314{
1315 CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
1316}
1317
9ca155ba
M
1318//-----------------------------------------------------------------------------
1319// Wait for commands from reader
1320// Stop when button is pressed (return 1) or field was gone (return 2)
1321// Or return 0 when command is captured
1322//-----------------------------------------------------------------------------
7bc95e2e 1323static int EmGetCmd(uint8_t *received, int *len)
9ca155ba
M
1324{
1325 *len = 0;
1326
1327 uint32_t timer = 0, vtime = 0;
1328 int analogCnt = 0;
1329 int analogAVG = 0;
1330
1331 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1332 // only, since we are receiving, not transmitting).
1333 // Signal field is off with the appropriate LED
1334 LED_D_OFF();
1335 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1336
1337 // Set ADC to read field strength
1338 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1339 AT91C_BASE_ADC->ADC_MR =
1340 ADC_MODE_PRESCALE(32) |
1341 ADC_MODE_STARTUP_TIME(16) |
1342 ADC_MODE_SAMPLE_HOLD_TIME(8);
1343 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1344 // start ADC
1345 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1346
1347 // Now run a 'software UART' on the stream of incoming samples.
7bc95e2e 1348 UartReset();
9ca155ba 1349 Uart.output = received;
7bc95e2e 1350
1351 // Clear RXRDY:
1352 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba
M
1353
1354 for(;;) {
1355 WDT_HIT();
1356
1357 if (BUTTON_PRESS()) return 1;
1358
1359 // test if the field exists
1360 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1361 analogCnt++;
1362 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1363 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1364 if (analogCnt >= 32) {
1365 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1366 vtime = GetTickCount();
1367 if (!timer) timer = vtime;
1368 // 50ms no field --> card to idle state
1369 if (vtime - timer > 50) return 2;
1370 } else
1371 if (timer) timer = 0;
1372 analogCnt = 0;
1373 analogAVG = 0;
1374 }
1375 }
7bc95e2e 1376
9ca155ba 1377 // receive and test the miller decoding
7bc95e2e 1378 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1379 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1380 if(MillerDecoding(b, 0)) {
1381 *len = Uart.len;
9ca155ba
M
1382 return 0;
1383 }
7bc95e2e 1384 }
1385
9ca155ba
M
1386 }
1387}
1388
9ca155ba 1389
7bc95e2e 1390static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
1391{
1392 uint8_t b;
1393 uint16_t i = 0;
1394 uint32_t ThisTransferTime;
1395
9ca155ba
M
1396 // Modulate Manchester
1397 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1398
1399 // include correction bit if necessary
1400 if (Uart.parityBits & 0x01) {
1401 correctionNeeded = TRUE;
1402 }
1403 if(correctionNeeded) {
9ca155ba
M
1404 // 1236, so correction bit needed
1405 i = 0;
7bc95e2e 1406 } else {
1407 i = 1;
9ca155ba 1408 }
7bc95e2e 1409
d714d3ef 1410 // clear receiving shift register and holding register
7bc95e2e 1411 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1412 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1413 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1414 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1415
7bc95e2e 1416 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1417 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1418 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1419 if (AT91C_BASE_SSC->SSC_RHR) break;
1420 }
1421
1422 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1423
1424 // Clear TXRDY:
1425 AT91C_BASE_SSC->SSC_THR = SEC_F;
1426
9ca155ba 1427 // send cycle
7bc95e2e 1428 for(; i <= respLen; ) {
9ca155ba 1429 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1430 AT91C_BASE_SSC->SSC_THR = resp[i++];
1431 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1432 }
7bc95e2e 1433
9ca155ba
M
1434 if(BUTTON_PRESS()) {
1435 break;
1436 }
1437 }
1438
7bc95e2e 1439 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1440 for (i = 0; i < 2 ; ) {
1441 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1442 AT91C_BASE_SSC->SSC_THR = SEC_F;
1443 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1444 i++;
1445 }
1446 }
1447
1448 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1449
9ca155ba
M
1450 return 0;
1451}
1452
7bc95e2e 1453int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1454 Code4bitAnswerAsTag(resp);
0a39986e 1455 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1456 // do the tracing for the previous reader request and this tag answer:
1457 EmLogTrace(Uart.output,
1458 Uart.len,
1459 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1460 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1461 Uart.parityBits,
1462 &resp,
1463 1,
1464 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1465 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1466 SwapBits(GetParity(&resp, 1), 1));
0a39986e 1467 return res;
9ca155ba
M
1468}
1469
8f51ddb0 1470int EmSend4bit(uint8_t resp){
7bc95e2e 1471 return EmSend4bitEx(resp, false);
8f51ddb0
M
1472}
1473
7bc95e2e 1474int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
1475 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1476 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1477 // do the tracing for the previous reader request and this tag answer:
1478 EmLogTrace(Uart.output,
1479 Uart.len,
1480 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1481 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1482 Uart.parityBits,
1483 resp,
1484 respLen,
1485 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1486 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1487 SwapBits(GetParity(resp, respLen), respLen));
8f51ddb0
M
1488 return res;
1489}
1490
7bc95e2e 1491int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
8f51ddb0
M
1492 return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
1493}
1494
1495int EmSendCmd(uint8_t *resp, int respLen){
7bc95e2e 1496 return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
8f51ddb0
M
1497}
1498
1499int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
7bc95e2e 1500 return EmSendCmdExPar(resp, respLen, false, par);
1501}
1502
1503bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
1504 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
1505{
1506 if (tracing) {
1507 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1508 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1509 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1510 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1511 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1512 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1513 reader_EndTime = tag_StartTime - exact_fdt;
1514 reader_StartTime = reader_EndTime - reader_modlen;
1515 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
1516 return FALSE;
1517 } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
1518 return FALSE;
1519 } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
1520 return FALSE;
1521 } else {
1522 return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
1523 }
1524 } else {
1525 return TRUE;
1526 }
9ca155ba
M
1527}
1528
15c4dc5a 1529//-----------------------------------------------------------------------------
1530// Wait a certain time for tag response
1531// If a response is captured return TRUE
e691fc45 1532// If it takes too long return FALSE
15c4dc5a 1533//-----------------------------------------------------------------------------
7bc95e2e 1534static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
15c4dc5a 1535{
7bc95e2e 1536 uint16_t c;
e691fc45 1537
15c4dc5a 1538 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1539 // only, since we are receiving, not transmitting).
1540 // Signal field is on with the appropriate LED
1541 LED_D_ON();
1542 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1543
534983d7 1544 // Now get the answer from the card
7bc95e2e 1545 DemodReset();
534983d7 1546 Demod.output = receivedResponse;
15c4dc5a 1547
7bc95e2e 1548 // clear RXRDY:
1549 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1550
15c4dc5a 1551 c = 0;
1552 for(;;) {
534983d7 1553 WDT_HIT();
15c4dc5a 1554
534983d7 1555 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1556 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1557 if(ManchesterDecoding(b, offset, 0)) {
1558 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1559 return TRUE;
7bc95e2e 1560 } else if(c++ > iso14a_timeout) {
1561 return FALSE;
15c4dc5a 1562 }
534983d7 1563 }
1564 }
15c4dc5a 1565}
1566
9492e0b0 1567void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
15c4dc5a 1568{
981bd429 1569
7bc95e2e 1570 CodeIso14443aBitsAsReaderPar(frame,bits,par);
dfc3c505 1571
7bc95e2e 1572 // Send command to tag
1573 TransmitFor14443a(ToSend, ToSendMax, timing);
1574 if(trigger)
1575 LED_A_ON();
dfc3c505 1576
7bc95e2e 1577 // Log reader command in trace buffer
1578 if (tracing) {
1579 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1580 LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
1581 }
15c4dc5a 1582}
1583
9492e0b0 1584void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
dfc3c505 1585{
9492e0b0 1586 ReaderTransmitBitsPar(frame,len*8,par, timing);
dfc3c505 1587}
15c4dc5a 1588
e691fc45 1589void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
1590{
1591 // Generate parity and redirect
1592 ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
1593}
1594
9492e0b0 1595void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
15c4dc5a 1596{
1597 // Generate parity and redirect
9492e0b0 1598 ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
15c4dc5a 1599}
1600
e691fc45 1601int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
1602{
7bc95e2e 1603 if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
1604 if (tracing) {
1605 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1606 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1607 }
e691fc45 1608 return Demod.len;
1609}
1610
f7e3ed82 1611int ReaderReceive(uint8_t* receivedAnswer)
15c4dc5a 1612{
e691fc45 1613 return ReaderReceiveOffset(receivedAnswer, 0);
15c4dc5a 1614}
1615
e691fc45 1616int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
f89c7050 1617{
7bc95e2e 1618 if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
1619 if (tracing) {
1620 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1621 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1622 }
f89c7050 1623 *parptr = Demod.parityBits;
e691fc45 1624 return Demod.len;
f89c7050
M
1625}
1626
e691fc45 1627/* performs iso14443a anticollision procedure
534983d7 1628 * fills the uid pointer unless NULL
1629 * fills resp_data unless NULL */
79a73ab2 1630int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
ed258538 1631 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1632 uint8_t sel_all[] = { 0x93,0x20 };
e691fc45 1633 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
ed258538 1634 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1635 uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
79a73ab2 1636 byte_t uid_resp[4];
1637 size_t uid_resp_len;
15c4dc5a 1638
ed258538 1639 uint8_t sak = 0x04; // cascade uid
1640 int cascade_level = 0;
1641 int len;
79a73ab2 1642
ed258538 1643 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1644 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1645
ed258538 1646 // Receive the ATQA
1647 if(!ReaderReceive(resp)) return 0;
e691fc45 1648 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1c611bbd 1649
ed258538 1650 if(p_hi14a_card) {
1651 memcpy(p_hi14a_card->atqa, resp, 2);
79a73ab2 1652 p_hi14a_card->uidlen = 0;
1653 memset(p_hi14a_card->uid,0,10);
1654 }
5f6d6c90 1655
79a73ab2 1656 // clear uid
1657 if (uid_ptr) {
1c611bbd 1658 memset(uid_ptr,0,10);
79a73ab2 1659 }
1660
ed258538 1661 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1662 // which case we need to make a cascade 2 request and select - this is a long UID
1663 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1664 for(; sak & 0x04; cascade_level++) {
1665 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1666 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1667
1668 // SELECT_ALL
9492e0b0 1669 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
ed258538 1670 if (!ReaderReceive(resp)) return 0;
5f6d6c90 1671
e691fc45 1672 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1673 memset(uid_resp, 0, 4);
1674 uint16_t uid_resp_bits = 0;
1675 uint16_t collision_answer_offset = 0;
1676 // anti-collision-loop:
1677 while (Demod.collisionPos) {
1678 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1679 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1680 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1681 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1682 }
1683 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1684 uid_resp_bits++;
1685 // construct anticollosion command:
1686 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1687 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1688 sel_uid[2+i] = uid_resp[i];
1689 }
1690 collision_answer_offset = uid_resp_bits%8;
1691 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1692 if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
1693 }
1694 // finally, add the last bits and BCC of the UID
1695 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1696 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1697 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1698 }
1699
1700 } else { // no collision, use the response to SELECT_ALL as current uid
1701 memcpy(uid_resp,resp,4);
1702 }
1703 uid_resp_len = 4;
7bc95e2e 1704 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
5f6d6c90 1705
e691fc45 1706 // calculate crypto UID. Always use last 4 Bytes.
5f6d6c90 1707 if(cuid_ptr) {
1708 *cuid_ptr = bytes_to_num(uid_resp, 4);
79a73ab2 1709 }
e30c654b 1710
ed258538 1711 // Construct SELECT UID command
e691fc45 1712 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1713 memcpy(sel_uid+2,uid_resp,4); // the UID
1714 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1715 AppendCrc14443a(sel_uid,7); // calculate and add CRC
9492e0b0 1716 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
534983d7 1717
ed258538 1718 // Receive the SAK
1719 if (!ReaderReceive(resp)) return 0;
1720 sak = resp[0];
79a73ab2 1721
1722 // Test if more parts of the uid are comming
e691fc45 1723 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
79a73ab2 1724 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1725 // http://www.nxp.com/documents/application_note/AN10927.pdf
ed258538 1726 memcpy(uid_resp, uid_resp + 1, 3);
79a73ab2 1727 uid_resp_len = 3;
1728 }
5f6d6c90 1729
79a73ab2 1730 if(uid_ptr) {
1731 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1732 }
5f6d6c90 1733
79a73ab2 1734 if(p_hi14a_card) {
1735 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1736 p_hi14a_card->uidlen += uid_resp_len;
1737 }
ed258538 1738 }
79a73ab2 1739
ed258538 1740 if(p_hi14a_card) {
1741 p_hi14a_card->sak = sak;
1742 p_hi14a_card->ats_len = 0;
1743 }
534983d7 1744
ed258538 1745 if( (sak & 0x20) == 0) {
1746 return 2; // non iso14443a compliant tag
79a73ab2 1747 }
534983d7 1748
ed258538 1749 // Request for answer to select
5191b3d1 1750 AppendCrc14443a(rats, 2);
9492e0b0 1751 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1752
5191b3d1 1753 if (!(len = ReaderReceive(resp))) return 0;
1754
1755 if(p_hi14a_card) {
ed258538 1756 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1757 p_hi14a_card->ats_len = len;
1758 }
5f6d6c90 1759
ed258538 1760 // reset the PCB block number
1761 iso14_pcb_blocknum = 0;
1762 return 1;
7e758047 1763}
15c4dc5a 1764
7bc95e2e 1765void iso14443a_setup(uint8_t fpga_minor_mode) {
9492e0b0 1766 // Set up the synchronous serial port
1767 FpgaSetupSsc();
7bc95e2e 1768 // connect Demodulated Signal to ADC:
7e758047 1769 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1770
7e758047 1771 // Signal field is on with the appropriate LED
7bc95e2e 1772 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1773 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1774 LED_D_ON();
1775 } else {
1776 LED_D_OFF();
1777 }
1778 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1779
7bc95e2e 1780 // Start the timer
1781 StartCountSspClk();
1782
1783 DemodReset();
1784 UartReset();
1785 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1786 iso14a_set_timeout(1050); // 10ms default
7e758047 1787}
15c4dc5a 1788
534983d7 1789int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1790 uint8_t real_cmd[cmd_len+4];
1791 real_cmd[0] = 0x0a; //I-Block
b0127e65 1792 // put block number into the PCB
1793 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1794 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1795 memcpy(real_cmd+2, cmd, cmd_len);
1796 AppendCrc14443a(real_cmd,cmd_len+2);
1797
9492e0b0 1798 ReaderTransmit(real_cmd, cmd_len+4, NULL);
534983d7 1799 size_t len = ReaderReceive(data);
b0127e65 1800 uint8_t * data_bytes = (uint8_t *) data;
1801 if (!len)
1802 return 0; //DATA LINK ERROR
1803 // if we received an I- or R(ACK)-Block with a block number equal to the
1804 // current block number, toggle the current block number
1805 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1806 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1807 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1808 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1809 {
1810 iso14_pcb_blocknum ^= 1;
1811 }
1812
534983d7 1813 return len;
1814}
1815
7e758047 1816//-----------------------------------------------------------------------------
1817// Read an ISO 14443a tag. Send out commands and store answers.
1818//
1819//-----------------------------------------------------------------------------
7bc95e2e 1820void ReaderIso14443a(UsbCommand *c)
7e758047 1821{
534983d7 1822 iso14a_command_t param = c->arg[0];
7bc95e2e 1823 uint8_t *cmd = c->d.asBytes;
534983d7 1824 size_t len = c->arg[1];
5f6d6c90 1825 size_t lenbits = c->arg[2];
9492e0b0 1826 uint32_t arg0 = 0;
1827 byte_t buf[USB_CMD_DATA_SIZE];
902cb3c0 1828
5f6d6c90 1829 if(param & ISO14A_CONNECT) {
1830 iso14a_clear_trace();
1831 }
e691fc45 1832
7bc95e2e 1833 iso14a_set_tracing(TRUE);
e30c654b 1834
79a73ab2 1835 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1836 iso14a_set_trigger(TRUE);
9492e0b0 1837 }
15c4dc5a 1838
534983d7 1839 if(param & ISO14A_CONNECT) {
7bc95e2e 1840 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1841 if(!(param & ISO14A_NO_SELECT)) {
1842 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1843 arg0 = iso14443a_select_card(NULL,card,NULL);
1844 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1845 }
534983d7 1846 }
e30c654b 1847
534983d7 1848 if(param & ISO14A_SET_TIMEOUT) {
1849 iso14a_timeout = c->arg[2];
1850 }
e30c654b 1851
534983d7 1852 if(param & ISO14A_APDU) {
902cb3c0 1853 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1854 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1855 }
e30c654b 1856
534983d7 1857 if(param & ISO14A_RAW) {
1858 if(param & ISO14A_APPEND_CRC) {
1859 AppendCrc14443a(cmd,len);
1860 len += 2;
15c4dc5a 1861 }
5f6d6c90 1862 if(lenbits>0) {
1863 ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
1864 } else {
1865 ReaderTransmit(cmd,len, NULL);
1866 }
902cb3c0 1867 arg0 = ReaderReceive(buf);
9492e0b0 1868 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1869 }
15c4dc5a 1870
79a73ab2 1871 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1872 iso14a_set_trigger(FALSE);
9492e0b0 1873 }
15c4dc5a 1874
79a73ab2 1875 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1876 return;
9492e0b0 1877 }
15c4dc5a 1878
15c4dc5a 1879 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1880 LEDsoff();
15c4dc5a 1881}
b0127e65 1882
1c611bbd 1883
1c611bbd 1884// Determine the distance between two nonces.
1885// Assume that the difference is small, but we don't know which is first.
1886// Therefore try in alternating directions.
1887int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1888
1889 uint16_t i;
1890 uint32_t nttmp1, nttmp2;
e772353f 1891
1c611bbd 1892 if (nt1 == nt2) return 0;
1893
1894 nttmp1 = nt1;
1895 nttmp2 = nt2;
1896
1897 for (i = 1; i < 32768; i++) {
1898 nttmp1 = prng_successor(nttmp1, 1);
1899 if (nttmp1 == nt2) return i;
1900 nttmp2 = prng_successor(nttmp2, 1);
1901 if (nttmp2 == nt1) return -i;
1902 }
1903
1904 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 1905}
1906
e772353f 1907
1c611bbd 1908//-----------------------------------------------------------------------------
1909// Recover several bits of the cypher stream. This implements (first stages of)
1910// the algorithm described in "The Dark Side of Security by Obscurity and
1911// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1912// (article by Nicolas T. Courtois, 2009)
1913//-----------------------------------------------------------------------------
1914void ReaderMifare(bool first_try)
1915{
1916 // Mifare AUTH
1917 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1918 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1919 static uint8_t mf_nr_ar3;
e772353f 1920
1c611bbd 1921 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
7bc95e2e 1922
d2f487af 1923 iso14a_clear_trace();
7bc95e2e 1924 iso14a_set_tracing(TRUE);
e772353f 1925
1c611bbd 1926 byte_t nt_diff = 0;
1927 byte_t par = 0;
1928 //byte_t par_mask = 0xff;
1929 static byte_t par_low = 0;
1930 bool led_on = TRUE;
1931 uint8_t uid[10];
1932 uint32_t cuid;
e772353f 1933
1c611bbd 1934 uint32_t nt, previous_nt;
1935 static uint32_t nt_attacked = 0;
1936 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1937 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
e772353f 1938
1c611bbd 1939 static uint32_t sync_time;
1940 static uint32_t sync_cycles;
1941 int catch_up_cycles = 0;
1942 int last_catch_up = 0;
1943 uint16_t consecutive_resyncs = 0;
1944 int isOK = 0;
e772353f 1945
e772353f 1946
e772353f 1947
1c611bbd 1948 if (first_try) {
1c611bbd 1949 mf_nr_ar3 = 0;
7bc95e2e 1950 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
1951 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 1952 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1953 nt_attacked = 0;
1954 nt = 0;
1955 par = 0;
1956 }
1957 else {
1958 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1959 // nt_attacked = prng_successor(nt_attacked, 1);
1960 mf_nr_ar3++;
1961 mf_nr_ar[3] = mf_nr_ar3;
1962 par = par_low;
1963 }
e30c654b 1964
15c4dc5a 1965 LED_A_ON();
1966 LED_B_OFF();
1967 LED_C_OFF();
1c611bbd 1968
7bc95e2e 1969
1c611bbd 1970 for(uint16_t i = 0; TRUE; i++) {
1971
1972 WDT_HIT();
e30c654b 1973
1c611bbd 1974 // Test if the action was cancelled
1975 if(BUTTON_PRESS()) {
1976 break;
1977 }
1978
1979 LED_C_ON();
e30c654b 1980
1c611bbd 1981 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 1982 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 1983 continue;
1984 }
1985
9492e0b0 1986 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 1987 catch_up_cycles = 0;
1988
1989 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 1990 while(GetCountSspClk() > sync_time) {
9492e0b0 1991 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 1992 }
e30c654b 1993
9492e0b0 1994 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1995 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 1996
1c611bbd 1997 // Receive the (4 Byte) "random" nonce
1998 if (!ReaderReceive(receivedAnswer)) {
9492e0b0 1999 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2000 continue;
2001 }
2002
1c611bbd 2003 previous_nt = nt;
2004 nt = bytes_to_num(receivedAnswer, 4);
2005
2006 // Transmit reader nonce with fake par
9492e0b0 2007 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2008
2009 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2010 int nt_distance = dist_nt(previous_nt, nt);
2011 if (nt_distance == 0) {
2012 nt_attacked = nt;
2013 }
2014 else {
2015 if (nt_distance == -99999) { // invalid nonce received, try again
2016 continue;
2017 }
2018 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2019 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2020 continue;
2021 }
2022 }
2023
2024 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2025 catch_up_cycles = -dist_nt(nt_attacked, nt);
2026 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2027 catch_up_cycles = 0;
2028 continue;
2029 }
2030 if (catch_up_cycles == last_catch_up) {
2031 consecutive_resyncs++;
2032 }
2033 else {
2034 last_catch_up = catch_up_cycles;
2035 consecutive_resyncs = 0;
2036 }
2037 if (consecutive_resyncs < 3) {
9492e0b0 2038 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2039 }
2040 else {
2041 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2042 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2043 }
2044 continue;
2045 }
2046
2047 consecutive_resyncs = 0;
2048
2049 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2050 if (ReaderReceive(receivedAnswer))
2051 {
9492e0b0 2052 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2053
2054 if (nt_diff == 0)
2055 {
2056 par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2057 }
2058
2059 led_on = !led_on;
2060 if(led_on) LED_B_ON(); else LED_B_OFF();
2061
2062 par_list[nt_diff] = par;
2063 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2064
2065 // Test if the information is complete
2066 if (nt_diff == 0x07) {
2067 isOK = 1;
2068 break;
2069 }
2070
2071 nt_diff = (nt_diff + 1) & 0x07;
2072 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2073 par = par_low;
2074 } else {
2075 if (nt_diff == 0 && first_try)
2076 {
2077 par++;
2078 } else {
2079 par = (((par >> 3) + 1) << 3) | par_low;
2080 }
2081 }
2082 }
2083
1c611bbd 2084
2085 mf_nr_ar[3] &= 0x1F;
2086
2087 byte_t buf[28];
2088 memcpy(buf + 0, uid, 4);
2089 num_to_bytes(nt, 4, buf + 4);
2090 memcpy(buf + 8, par_list, 8);
2091 memcpy(buf + 16, ks_list, 8);
2092 memcpy(buf + 24, mf_nr_ar, 4);
2093
2094 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2095
2096 // Thats it...
2097 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2098 LEDsoff();
7bc95e2e 2099
2100 iso14a_set_tracing(FALSE);
20f9a2a1 2101}
1c611bbd 2102
d2f487af 2103/**
2104 *MIFARE 1K simulate.
2105 *
2106 *@param flags :
2107 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2108 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2109 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2110 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2111 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2112 */
2113void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2114{
50193c1e 2115 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2116 int _7BUID = 0;
9ca155ba 2117 int vHf = 0; // in mV
8f51ddb0 2118 int res;
0a39986e
M
2119 uint32_t selTimer = 0;
2120 uint32_t authTimer = 0;
2121 uint32_t par = 0;
9ca155ba 2122 int len = 0;
8f51ddb0 2123 uint8_t cardWRBL = 0;
9ca155ba
M
2124 uint8_t cardAUTHSC = 0;
2125 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2126 uint32_t cardRr = 0;
9ca155ba 2127 uint32_t cuid = 0;
d2f487af 2128 //uint32_t rn_enc = 0;
51969283 2129 uint32_t ans = 0;
0014cb46
M
2130 uint32_t cardINTREG = 0;
2131 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2132 struct Crypto1State mpcs = {0, 0};
2133 struct Crypto1State *pcs;
2134 pcs = &mpcs;
d2f487af 2135 uint32_t numReads = 0;//Counts numer of times reader read a block
8f51ddb0
M
2136 uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
2137 uint8_t *response = eml_get_bigbufptr_sendbuf();
9ca155ba 2138
d2f487af 2139 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2140 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2141 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2142 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2143 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2144
d2f487af 2145 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2146 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2147
d2f487af 2148 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2149 // This can be used in a reader-only attack.
2150 // (it can also be retrieved via 'hf 14a list', but hey...
2151 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2152 uint8_t ar_nr_collected = 0;
0014cb46 2153
0a39986e 2154 // clear trace
7bc95e2e 2155 iso14a_clear_trace();
2156 iso14a_set_tracing(TRUE);
51969283 2157
7bc95e2e 2158 // Authenticate response - nonce
51969283 2159 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2160
d2f487af 2161 //-- Determine the UID
2162 // Can be set from emulator memory, incoming data
2163 // and can be 7 or 4 bytes long
7bc95e2e 2164 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2165 {
2166 // 4B uid comes from data-portion of packet
2167 memcpy(rUIDBCC1,datain,4);
8556b852 2168 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2169
7bc95e2e 2170 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2171 // 7B uid comes from data-portion of packet
2172 memcpy(&rUIDBCC1[1],datain,3);
2173 memcpy(rUIDBCC2, datain+3, 4);
2174 _7BUID = true;
7bc95e2e 2175 } else {
d2f487af 2176 // get UID from emul memory
2177 emlGetMemBt(receivedCmd, 7, 1);
2178 _7BUID = !(receivedCmd[0] == 0x00);
2179 if (!_7BUID) { // ---------- 4BUID
2180 emlGetMemBt(rUIDBCC1, 0, 4);
2181 } else { // ---------- 7BUID
2182 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2183 emlGetMemBt(rUIDBCC2, 3, 4);
2184 }
2185 }
7bc95e2e 2186
d2f487af 2187 /*
2188 * Regardless of what method was used to set the UID, set fifth byte and modify
2189 * the ATQA for 4 or 7-byte UID
2190 */
d2f487af 2191 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2192 if (_7BUID) {
d2f487af 2193 rATQA[0] = 0x44;
8556b852 2194 rUIDBCC1[0] = 0x88;
8556b852
M
2195 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2196 }
2197
9ca155ba 2198 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2199 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2200
9ca155ba 2201
d2f487af 2202 if (MF_DBGLEVEL >= 1) {
2203 if (!_7BUID) {
2204 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
7bc95e2e 2205 } else {
d2f487af 2206 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
2207 }
2208 }
7bc95e2e 2209
2210 bool finished = FALSE;
d2f487af 2211 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2212 WDT_HIT();
9ca155ba
M
2213
2214 // find reader field
2215 // Vref = 3300mV, and an 10:1 voltage divider on the input
2216 // can measure voltages up to 33000 mV
2217 if (cardSTATE == MFEMUL_NOFIELD) {
2218 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2219 if (vHf > MF_MINFIELDV) {
0014cb46 2220 cardSTATE_TO_IDLE();
9ca155ba
M
2221 LED_A_ON();
2222 }
2223 }
d2f487af 2224 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2225
d2f487af 2226 //Now, get data
2227
7bc95e2e 2228 res = EmGetCmd(receivedCmd, &len);
d2f487af 2229 if (res == 2) { //Field is off!
2230 cardSTATE = MFEMUL_NOFIELD;
2231 LEDsoff();
2232 continue;
7bc95e2e 2233 } else if (res == 1) {
2234 break; //return value 1 means button press
2235 }
2236
d2f487af 2237 // REQ or WUP request in ANY state and WUP in HALTED state
2238 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2239 selTimer = GetTickCount();
2240 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2241 cardSTATE = MFEMUL_SELECT1;
2242
2243 // init crypto block
2244 LED_B_OFF();
2245 LED_C_OFF();
2246 crypto1_destroy(pcs);
2247 cardAUTHKEY = 0xff;
2248 continue;
0a39986e 2249 }
7bc95e2e 2250
50193c1e 2251 switch (cardSTATE) {
d2f487af 2252 case MFEMUL_NOFIELD:
2253 case MFEMUL_HALTED:
50193c1e 2254 case MFEMUL_IDLE:{
7bc95e2e 2255 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2256 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
50193c1e
M
2257 break;
2258 }
2259 case MFEMUL_SELECT1:{
9ca155ba
M
2260 // select all
2261 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2262 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2263 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2264 break;
9ca155ba
M
2265 }
2266
d2f487af 2267 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2268 {
2269 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2270 }
9ca155ba 2271 // select card
0a39986e
M
2272 if (len == 9 &&
2273 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
7bc95e2e 2274 EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK));
9ca155ba 2275 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2276 if (!_7BUID) {
2277 cardSTATE = MFEMUL_WORK;
0014cb46
M
2278 LED_B_ON();
2279 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2280 break;
8556b852
M
2281 } else {
2282 cardSTATE = MFEMUL_SELECT2;
8556b852 2283 }
9ca155ba 2284 }
50193c1e
M
2285 break;
2286 }
d2f487af 2287 case MFEMUL_AUTH1:{
2288 if( len != 8)
2289 {
2290 cardSTATE_TO_IDLE();
7bc95e2e 2291 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2292 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
d2f487af 2293 break;
2294 }
2295 uint32_t ar = bytes_to_num(receivedCmd, 4);
2296 uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
2297
2298 //Collect AR/NR
2299 if(ar_nr_collected < 2){
273b57a7 2300 if(ar_nr_responses[2] != ar)
2301 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2302 ar_nr_responses[ar_nr_collected*4] = cuid;
2303 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2304 ar_nr_responses[ar_nr_collected*4+2] = ar;
2305 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2306 ar_nr_collected++;
d2f487af 2307 }
2308 }
2309
2310 // --- crypto
2311 crypto1_word(pcs, ar , 1);
2312 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2313
2314 // test if auth OK
2315 if (cardRr != prng_successor(nonce, 64)){
2316 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
7bc95e2e 2317 // Shouldn't we respond anything here?
d2f487af 2318 // Right now, we don't nack or anything, which causes the
2319 // reader to do a WUPA after a while. /Martin
2320 cardSTATE_TO_IDLE();
7bc95e2e 2321 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2322 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
d2f487af 2323 break;
2324 }
2325
2326 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2327
2328 num_to_bytes(ans, 4, rAUTH_AT);
2329 // --- crypto
2330 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2331 LED_C_ON();
2332 cardSTATE = MFEMUL_WORK;
2333 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
2334 break;
2335 }
50193c1e 2336 case MFEMUL_SELECT2:{
7bc95e2e 2337 if (!len) {
2338 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2339 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2340 break;
2341 }
8556b852 2342 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2343 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2344 break;
2345 }
9ca155ba 2346
8556b852
M
2347 // select 2 card
2348 if (len == 9 &&
2349 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2350 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2351 cuid = bytes_to_num(rUIDBCC2, 4);
2352 cardSTATE = MFEMUL_WORK;
2353 LED_B_ON();
0014cb46 2354 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2355 break;
2356 }
0014cb46
M
2357
2358 // i guess there is a command). go into the work state.
7bc95e2e 2359 if (len != 4) {
2360 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2361 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2362 break;
2363 }
0014cb46 2364 cardSTATE = MFEMUL_WORK;
d2f487af 2365 //goto lbWORK;
2366 //intentional fall-through to the next case-stmt
50193c1e 2367 }
51969283 2368
7bc95e2e 2369 case MFEMUL_WORK:{
2370 if (len == 0) {
2371 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2372 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2373 break;
2374 }
2375
d2f487af 2376 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2377
7bc95e2e 2378 if(encrypted_data) {
51969283
M
2379 // decrypt seqence
2380 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2381 }
7bc95e2e 2382
d2f487af 2383 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2384 authTimer = GetTickCount();
2385 cardAUTHSC = receivedCmd[1] / 4; // received block num
2386 cardAUTHKEY = receivedCmd[0] - 0x60;
2387 crypto1_destroy(pcs);//Added by martin
2388 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2389
d2f487af 2390 if (!encrypted_data) { // first authentication
2391 if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2392
d2f487af 2393 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2394 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2395 } else { // nested authentication
d2f487af 2396 if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2397 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2398 num_to_bytes(ans, 4, rAUTH_AT);
2399 }
2400 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2401 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2402 cardSTATE = MFEMUL_AUTH1;
2403 break;
51969283 2404 }
7bc95e2e 2405
8f51ddb0
M
2406 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2407 // BUT... ACK --> NACK
2408 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2409 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2410 break;
2411 }
2412
2413 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2414 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2415 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2416 break;
0a39986e
M
2417 }
2418
7bc95e2e 2419 if(len != 4) {
2420 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2421 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2422 break;
2423 }
d2f487af 2424
2425 if(receivedCmd[0] == 0x30 // read block
2426 || receivedCmd[0] == 0xA0 // write block
2427 || receivedCmd[0] == 0xC0
2428 || receivedCmd[0] == 0xC1
2429 || receivedCmd[0] == 0xC2 // inc dec restore
7bc95e2e 2430 || receivedCmd[0] == 0xB0) { // transfer
2431 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2432 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2433 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2434 break;
2435 }
2436
7bc95e2e 2437 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2438 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2439 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2440 break;
2441 }
d2f487af 2442 }
2443 // read block
2444 if (receivedCmd[0] == 0x30) {
2445 if (MF_DBGLEVEL >= 2) {
2446 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2447 }
8f51ddb0
M
2448 emlGetMem(response, receivedCmd[1], 1);
2449 AppendCrc14443a(response, 16);
2450 mf_crypto1_encrypt(pcs, response, 18, &par);
2451 EmSendCmdPar(response, 18, par);
d2f487af 2452 numReads++;
7bc95e2e 2453 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2454 Dbprintf("%d reads done, exiting", numReads);
2455 finished = true;
2456 }
0a39986e
M
2457 break;
2458 }
0a39986e 2459 // write block
d2f487af 2460 if (receivedCmd[0] == 0xA0) {
2461 if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2462 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2463 cardSTATE = MFEMUL_WRITEBL2;
2464 cardWRBL = receivedCmd[1];
0a39986e 2465 break;
7bc95e2e 2466 }
0014cb46 2467 // increment, decrement, restore
d2f487af 2468 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2469 if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2470 if (emlCheckValBl(receivedCmd[1])) {
2471 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2472 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2473 break;
2474 }
2475 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2476 if (receivedCmd[0] == 0xC1)
2477 cardSTATE = MFEMUL_INTREG_INC;
2478 if (receivedCmd[0] == 0xC0)
2479 cardSTATE = MFEMUL_INTREG_DEC;
2480 if (receivedCmd[0] == 0xC2)
2481 cardSTATE = MFEMUL_INTREG_REST;
2482 cardWRBL = receivedCmd[1];
0014cb46
M
2483 break;
2484 }
0014cb46 2485 // transfer
d2f487af 2486 if (receivedCmd[0] == 0xB0) {
2487 if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2488 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2489 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2490 else
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2492 break;
2493 }
9ca155ba 2494 // halt
d2f487af 2495 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2496 LED_B_OFF();
0a39986e 2497 LED_C_OFF();
0014cb46
M
2498 cardSTATE = MFEMUL_HALTED;
2499 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
7bc95e2e 2500 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2501 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0a39986e 2502 break;
9ca155ba 2503 }
d2f487af 2504 // RATS
2505 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2506 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2507 break;
2508 }
d2f487af 2509 // command not allowed
2510 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2511 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2512 break;
8f51ddb0
M
2513 }
2514 case MFEMUL_WRITEBL2:{
2515 if (len == 18){
2516 mf_crypto1_decrypt(pcs, receivedCmd, len);
2517 emlSetMem(receivedCmd, cardWRBL, 1);
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2519 cardSTATE = MFEMUL_WORK;
51969283 2520 } else {
0014cb46 2521 cardSTATE_TO_IDLE();
7bc95e2e 2522 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2523 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
8f51ddb0 2524 }
8f51ddb0 2525 break;
50193c1e 2526 }
0014cb46
M
2527
2528 case MFEMUL_INTREG_INC:{
2529 mf_crypto1_decrypt(pcs, receivedCmd, len);
2530 memcpy(&ans, receivedCmd, 4);
2531 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2532 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2533 cardSTATE_TO_IDLE();
2534 break;
7bc95e2e 2535 }
2536 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2537 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2538 cardINTREG = cardINTREG + ans;
2539 cardSTATE = MFEMUL_WORK;
2540 break;
2541 }
2542 case MFEMUL_INTREG_DEC:{
2543 mf_crypto1_decrypt(pcs, receivedCmd, len);
2544 memcpy(&ans, receivedCmd, 4);
2545 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2546 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2547 cardSTATE_TO_IDLE();
2548 break;
2549 }
7bc95e2e 2550 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2551 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2552 cardINTREG = cardINTREG - ans;
2553 cardSTATE = MFEMUL_WORK;
2554 break;
2555 }
2556 case MFEMUL_INTREG_REST:{
2557 mf_crypto1_decrypt(pcs, receivedCmd, len);
2558 memcpy(&ans, receivedCmd, 4);
2559 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2560 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2561 cardSTATE_TO_IDLE();
2562 break;
2563 }
7bc95e2e 2564 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2565 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2566 cardSTATE = MFEMUL_WORK;
2567 break;
2568 }
50193c1e 2569 }
50193c1e
M
2570 }
2571
9ca155ba
M
2572 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2573 LEDsoff();
2574
d2f487af 2575 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2576 {
2577 //May just aswell send the collected ar_nr in the response aswell
2578 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2579 }
d714d3ef 2580
d2f487af 2581 if(flags & FLAG_NR_AR_ATTACK)
2582 {
7bc95e2e 2583 if(ar_nr_collected > 1) {
d2f487af 2584 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2585 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
d2f487af 2586 ar_nr_responses[0], // UID
2587 ar_nr_responses[1], //NT
2588 ar_nr_responses[2], //AR1
2589 ar_nr_responses[3], //NR1
2590 ar_nr_responses[6], //AR2
2591 ar_nr_responses[7] //NR2
2592 );
7bc95e2e 2593 } else {
d2f487af 2594 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2595 if(ar_nr_collected >0) {
d714d3ef 2596 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2597 ar_nr_responses[0], // UID
2598 ar_nr_responses[1], //NT
2599 ar_nr_responses[2], //AR1
2600 ar_nr_responses[3] //NR1
2601 );
2602 }
2603 }
2604 }
0014cb46 2605 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
15c4dc5a 2606}
b62a5a84 2607
d2f487af 2608
2609
b62a5a84
M
2610//-----------------------------------------------------------------------------
2611// MIFARE sniffer.
2612//
2613//-----------------------------------------------------------------------------
5cd9ec01
M
2614void RAMFUNC SniffMifare(uint8_t param) {
2615 // param:
2616 // bit 0 - trigger from first card answer
2617 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2618
2619 // C(red) A(yellow) B(green)
b62a5a84
M
2620 LEDsoff();
2621 // init trace buffer
d19929cb 2622 iso14a_clear_trace();
b62a5a84 2623
b62a5a84
M
2624 // The command (reader -> tag) that we're receiving.
2625 // The length of a received command will in most cases be no more than 18 bytes.
2626 // So 32 should be enough!
2627 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2628 // The response (tag -> reader) that we're receiving.
2629 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
2630
2631 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2632 // into trace, along with its length and other annotations.
2633 //uint8_t *trace = (uint8_t *)BigBuf;
2634
2635 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 2636 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2637 uint8_t *data = dmaBuf;
2638 uint8_t previous_data = 0;
5cd9ec01
M
2639 int maxDataLen = 0;
2640 int dataLen = 0;
7bc95e2e 2641 bool ReaderIsActive = FALSE;
2642 bool TagIsActive = FALSE;
2643
2644 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2645
2646 // Set up the demodulator for tag -> reader responses.
2647 Demod.output = receivedResponse;
b62a5a84
M
2648
2649 // Set up the demodulator for the reader -> tag commands
b62a5a84 2650 Uart.output = receivedCmd;
b62a5a84
M
2651
2652 // Setup for the DMA.
7bc95e2e 2653 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2654
b62a5a84 2655 LED_D_OFF();
39864b0b
M
2656
2657 // init sniffer
2658 MfSniffInit();
b62a5a84 2659
b62a5a84 2660 // And now we loop, receiving samples.
7bc95e2e 2661 for(uint32_t sniffCounter = 0; TRUE; ) {
2662
5cd9ec01
M
2663 if(BUTTON_PRESS()) {
2664 DbpString("cancelled by button");
7bc95e2e 2665 break;
5cd9ec01
M
2666 }
2667
b62a5a84
M
2668 LED_A_ON();
2669 WDT_HIT();
39864b0b 2670
7bc95e2e 2671 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2672 // check if a transaction is completed (timeout after 2000ms).
2673 // if yes, stop the DMA transfer and send what we have so far to the client
2674 if (MfSniffSend(2000)) {
2675 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2676 sniffCounter = 0;
2677 data = dmaBuf;
2678 maxDataLen = 0;
2679 ReaderIsActive = FALSE;
2680 TagIsActive = FALSE;
2681 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2682 }
39864b0b 2683 }
7bc95e2e 2684
2685 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2686 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2687 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2688 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2689 } else {
2690 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2691 }
2692 // test for length of buffer
7bc95e2e 2693 if(dataLen > maxDataLen) { // we are more behind than ever...
2694 maxDataLen = dataLen;
5cd9ec01
M
2695 if(dataLen > 400) {
2696 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2697 break;
b62a5a84
M
2698 }
2699 }
5cd9ec01 2700 if(dataLen < 1) continue;
b62a5a84 2701
7bc95e2e 2702 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2703 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2704 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2705 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2706 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2707 }
2708 // secondary buffer sets as primary, secondary buffer was stopped
2709 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2710 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2711 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2712 }
5cd9ec01
M
2713
2714 LED_A_OFF();
b62a5a84 2715
7bc95e2e 2716 if (sniffCounter & 0x01) {
b62a5a84 2717
7bc95e2e 2718 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2719 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2720 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2721 LED_C_INV();
2722 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
b62a5a84 2723
7bc95e2e 2724 /* And ready to receive another command. */
2725 UartReset();
2726
2727 /* And also reset the demod code */
2728 DemodReset();
2729 }
2730 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2731 }
2732
2733 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2734 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2735 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2736 LED_C_INV();
b62a5a84 2737
7bc95e2e 2738 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
39864b0b 2739
7bc95e2e 2740 // And ready to receive another response.
2741 DemodReset();
2742 }
2743 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2744 }
b62a5a84
M
2745 }
2746
7bc95e2e 2747 previous_data = *data;
2748 sniffCounter++;
5cd9ec01 2749 data++;
d714d3ef 2750 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2751 data = dmaBuf;
b62a5a84 2752 }
7bc95e2e 2753
b62a5a84
M
2754 } // main cycle
2755
2756 DbpString("COMMAND FINISHED");
2757
55acbb2a 2758 FpgaDisableSscDma();
39864b0b
M
2759 MfSniffEnd();
2760
7bc95e2e 2761 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2762 LEDsoff();
3803d529 2763}
Impressum, Datenschutz