e09f21fa |
1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
3 | // at your option, any later version. See the LICENSE.txt file for the text of |
4 | // the license. |
5 | //----------------------------------------------------------------------------- |
6 | // Miscellaneous routines for low frequency tag operations. |
7 | // Tags supported here so far are Texas Instruments (TI), HID |
8 | // Also routines for raw mode reading/simulating of LF waveform |
9 | //----------------------------------------------------------------------------- |
10 | |
11 | #include "proxmark3.h" |
12 | #include "apps.h" |
13 | #include "util.h" |
14 | #include "hitag2.h" |
15 | #include "crc16.h" |
16 | #include "string.h" |
17 | #include "lfdemod.h" |
18 | #include "lfsampling.h" |
19 | |
20 | |
21 | /** |
22 | * Function to do a modulation and then get samples. |
23 | * @param delay_off |
24 | * @param period_0 |
25 | * @param period_1 |
26 | * @param command |
27 | */ |
28 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) |
29 | { |
30 | |
31 | int divisor_used = 95; // 125 KHz |
32 | // see if 'h' was specified |
33 | |
34 | if (command[strlen((char *) command) - 1] == 'h') |
35 | divisor_used = 88; // 134.8 KHz |
36 | |
37 | sample_config sc = { 0,0,1, divisor_used, 0}; |
38 | setSamplingConfig(&sc); |
39 | |
40 | /* Make sure the tag is reset */ |
41 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
42 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
43 | SpinDelay(2500); |
44 | |
45 | LFSetupFPGAForADC(sc.divisor, 1); |
46 | |
47 | // And a little more time for the tag to fully power up |
48 | SpinDelay(2000); |
49 | |
50 | // now modulate the reader field |
51 | while(*command != '\0' && *command != ' ') { |
52 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
53 | LED_D_OFF(); |
54 | SpinDelayUs(delay_off); |
55 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
56 | |
57 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
58 | LED_D_ON(); |
59 | if(*(command++) == '0') |
60 | SpinDelayUs(period_0); |
61 | else |
62 | SpinDelayUs(period_1); |
63 | } |
64 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
65 | LED_D_OFF(); |
66 | SpinDelayUs(delay_off); |
67 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
68 | |
69 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
70 | |
71 | // now do the read |
72 | DoAcquisition_config(false); |
73 | } |
74 | |
75 | |
76 | |
77 | /* blank r/w tag data stream |
78 | ...0000000000000000 01111111 |
79 | 1010101010101010101010101010101010101010101010101010101010101010 |
80 | 0011010010100001 |
81 | 01111111 |
82 | 101010101010101[0]000... |
83 | |
84 | [5555fe852c5555555555555555fe0000] |
85 | */ |
86 | void ReadTItag(void) |
87 | { |
88 | // some hardcoded initial params |
89 | // when we read a TI tag we sample the zerocross line at 2Mhz |
90 | // TI tags modulate a 1 as 16 cycles of 123.2Khz |
91 | // TI tags modulate a 0 as 16 cycles of 134.2Khz |
92 | #define FSAMPLE 2000000 |
93 | #define FREQLO 123200 |
94 | #define FREQHI 134200 |
95 | |
96 | signed char *dest = (signed char *)BigBuf_get_addr(); |
97 | uint16_t n = BigBuf_max_traceLen(); |
98 | // 128 bit shift register [shift3:shift2:shift1:shift0] |
99 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
100 | |
101 | int i, cycles=0, samples=0; |
102 | // how many sample points fit in 16 cycles of each frequency |
103 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
104 | // when to tell if we're close enough to one freq or another |
105 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
106 | |
107 | // TI tags charge at 134.2Khz |
108 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
109 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
110 | |
111 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
112 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
113 | // whether we're modulating the antenna (high) |
114 | // or listening to the antenna (low) |
115 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
116 | |
117 | // get TI tag data into the buffer |
118 | AcquireTiType(); |
119 | |
120 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
121 | |
122 | for (i=0; i<n-1; i++) { |
123 | // count cycles by looking for lo to hi zero crossings |
124 | if ( (dest[i]<0) && (dest[i+1]>0) ) { |
125 | cycles++; |
126 | // after 16 cycles, measure the frequency |
127 | if (cycles>15) { |
128 | cycles=0; |
129 | samples=i-samples; // number of samples in these 16 cycles |
130 | |
131 | // TI bits are coming to us lsb first so shift them |
132 | // right through our 128 bit right shift register |
133 | shift0 = (shift0>>1) | (shift1 << 31); |
134 | shift1 = (shift1>>1) | (shift2 << 31); |
135 | shift2 = (shift2>>1) | (shift3 << 31); |
136 | shift3 >>= 1; |
137 | |
138 | // check if the cycles fall close to the number |
139 | // expected for either the low or high frequency |
140 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { |
141 | // low frequency represents a 1 |
142 | shift3 |= (1<<31); |
143 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { |
144 | // high frequency represents a 0 |
145 | } else { |
146 | // probably detected a gay waveform or noise |
147 | // use this as gaydar or discard shift register and start again |
148 | shift3 = shift2 = shift1 = shift0 = 0; |
149 | } |
150 | samples = i; |
151 | |
152 | // for each bit we receive, test if we've detected a valid tag |
153 | |
154 | // if we see 17 zeroes followed by 6 ones, we might have a tag |
155 | // remember the bits are backwards |
156 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { |
157 | // if start and end bytes match, we have a tag so break out of the loop |
158 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { |
159 | cycles = 0xF0B; //use this as a flag (ugly but whatever) |
160 | break; |
161 | } |
162 | } |
163 | } |
164 | } |
165 | } |
166 | |
167 | // if flag is set we have a tag |
168 | if (cycles!=0xF0B) { |
169 | DbpString("Info: No valid tag detected."); |
170 | } else { |
171 | // put 64 bit data into shift1 and shift0 |
172 | shift0 = (shift0>>24) | (shift1 << 8); |
173 | shift1 = (shift1>>24) | (shift2 << 8); |
174 | |
175 | // align 16 bit crc into lower half of shift2 |
176 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; |
177 | |
178 | // if r/w tag, check ident match |
179 | if (shift3 & (1<<15) ) { |
180 | DbpString("Info: TI tag is rewriteable"); |
181 | // only 15 bits compare, last bit of ident is not valid |
182 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
183 | DbpString("Error: Ident mismatch!"); |
184 | } else { |
185 | DbpString("Info: TI tag ident is valid"); |
186 | } |
187 | } else { |
188 | DbpString("Info: TI tag is readonly"); |
189 | } |
190 | |
191 | // WARNING the order of the bytes in which we calc crc below needs checking |
192 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the |
193 | // bytes in reverse or something |
194 | // calculate CRC |
195 | uint32_t crc=0; |
196 | |
197 | crc = update_crc16(crc, (shift0)&0xff); |
198 | crc = update_crc16(crc, (shift0>>8)&0xff); |
199 | crc = update_crc16(crc, (shift0>>16)&0xff); |
200 | crc = update_crc16(crc, (shift0>>24)&0xff); |
201 | crc = update_crc16(crc, (shift1)&0xff); |
202 | crc = update_crc16(crc, (shift1>>8)&0xff); |
203 | crc = update_crc16(crc, (shift1>>16)&0xff); |
204 | crc = update_crc16(crc, (shift1>>24)&0xff); |
205 | |
206 | Dbprintf("Info: Tag data: %x%08x, crc=%x", |
207 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); |
208 | if (crc != (shift2&0xffff)) { |
209 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); |
210 | } else { |
211 | DbpString("Info: CRC is good"); |
212 | } |
213 | } |
214 | } |
215 | |
216 | void WriteTIbyte(uint8_t b) |
217 | { |
218 | int i = 0; |
219 | |
220 | // modulate 8 bits out to the antenna |
221 | for (i=0; i<8; i++) |
222 | { |
223 | if (b&(1<<i)) { |
224 | // stop modulating antenna |
225 | LOW(GPIO_SSC_DOUT); |
226 | SpinDelayUs(1000); |
227 | // modulate antenna |
228 | HIGH(GPIO_SSC_DOUT); |
229 | SpinDelayUs(1000); |
230 | } else { |
231 | // stop modulating antenna |
232 | LOW(GPIO_SSC_DOUT); |
233 | SpinDelayUs(300); |
234 | // modulate antenna |
235 | HIGH(GPIO_SSC_DOUT); |
236 | SpinDelayUs(1700); |
237 | } |
238 | } |
239 | } |
240 | |
241 | void AcquireTiType(void) |
242 | { |
243 | int i, j, n; |
244 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max |
245 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
246 | #define TIBUFLEN 1250 |
247 | |
248 | // clear buffer |
249 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); |
250 | memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); |
251 | |
252 | // Set up the synchronous serial port |
253 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; |
254 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; |
255 | |
256 | // steal this pin from the SSP and use it to control the modulation |
257 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
258 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
259 | |
260 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; |
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; |
262 | |
263 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long |
264 | // 48/2 = 24 MHz clock must be divided by 12 |
265 | AT91C_BASE_SSC->SSC_CMR = 12; |
266 | |
267 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); |
268 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; |
269 | AT91C_BASE_SSC->SSC_TCMR = 0; |
270 | AT91C_BASE_SSC->SSC_TFMR = 0; |
271 | |
272 | LED_D_ON(); |
273 | |
274 | // modulate antenna |
275 | HIGH(GPIO_SSC_DOUT); |
276 | |
277 | // Charge TI tag for 50ms. |
278 | SpinDelay(50); |
279 | |
280 | // stop modulating antenna and listen |
281 | LOW(GPIO_SSC_DOUT); |
282 | |
283 | LED_D_OFF(); |
284 | |
285 | i = 0; |
286 | for(;;) { |
287 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
288 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer |
289 | i++; if(i >= TIBUFLEN) break; |
290 | } |
291 | WDT_HIT(); |
292 | } |
293 | |
294 | // return stolen pin to SSP |
295 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; |
296 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; |
297 | |
298 | char *dest = (char *)BigBuf_get_addr(); |
299 | n = TIBUFLEN*32; |
300 | // unpack buffer |
301 | for (i=TIBUFLEN-1; i>=0; i--) { |
302 | for (j=0; j<32; j++) { |
303 | if(BigBuf[i] & (1 << j)) { |
304 | dest[--n] = 1; |
305 | } else { |
306 | dest[--n] = -1; |
307 | } |
308 | } |
309 | } |
310 | } |
311 | |
312 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc |
313 | // if crc provided, it will be written with the data verbatim (even if bogus) |
314 | // if not provided a valid crc will be computed from the data and written. |
315 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
316 | { |
317 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
318 | if(crc == 0) { |
319 | crc = update_crc16(crc, (idlo)&0xff); |
320 | crc = update_crc16(crc, (idlo>>8)&0xff); |
321 | crc = update_crc16(crc, (idlo>>16)&0xff); |
322 | crc = update_crc16(crc, (idlo>>24)&0xff); |
323 | crc = update_crc16(crc, (idhi)&0xff); |
324 | crc = update_crc16(crc, (idhi>>8)&0xff); |
325 | crc = update_crc16(crc, (idhi>>16)&0xff); |
326 | crc = update_crc16(crc, (idhi>>24)&0xff); |
327 | } |
328 | Dbprintf("Writing to tag: %x%08x, crc=%x", |
329 | (unsigned int) idhi, (unsigned int) idlo, crc); |
330 | |
331 | // TI tags charge at 134.2Khz |
332 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
333 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line |
334 | // connects to SSP_DIN and the SSP_DOUT logic level controls |
335 | // whether we're modulating the antenna (high) |
336 | // or listening to the antenna (low) |
337 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); |
338 | LED_A_ON(); |
339 | |
340 | // steal this pin from the SSP and use it to control the modulation |
341 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; |
342 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
343 | |
344 | // writing algorithm: |
345 | // a high bit consists of a field off for 1ms and field on for 1ms |
346 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms |
347 | // initiate a charge time of 50ms (field on) then immediately start writing bits |
348 | // start by writing 0xBB (keyword) and 0xEB (password) |
349 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) |
350 | // finally end with 0x0300 (write frame) |
351 | // all data is sent lsb firts |
352 | // finish with 15ms programming time |
353 | |
354 | // modulate antenna |
355 | HIGH(GPIO_SSC_DOUT); |
356 | SpinDelay(50); // charge time |
357 | |
358 | WriteTIbyte(0xbb); // keyword |
359 | WriteTIbyte(0xeb); // password |
360 | WriteTIbyte( (idlo )&0xff ); |
361 | WriteTIbyte( (idlo>>8 )&0xff ); |
362 | WriteTIbyte( (idlo>>16)&0xff ); |
363 | WriteTIbyte( (idlo>>24)&0xff ); |
364 | WriteTIbyte( (idhi )&0xff ); |
365 | WriteTIbyte( (idhi>>8 )&0xff ); |
366 | WriteTIbyte( (idhi>>16)&0xff ); |
367 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo |
368 | WriteTIbyte( (crc )&0xff ); // crc lo |
369 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi |
370 | WriteTIbyte(0x00); // write frame lo |
371 | WriteTIbyte(0x03); // write frame hi |
372 | HIGH(GPIO_SSC_DOUT); |
373 | SpinDelay(50); // programming time |
374 | |
375 | LED_A_OFF(); |
376 | |
377 | // get TI tag data into the buffer |
378 | AcquireTiType(); |
379 | |
380 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
381 | DbpString("Now use tiread to check"); |
382 | } |
383 | |
384 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) |
385 | { |
386 | int i; |
387 | uint8_t *tab = BigBuf_get_addr(); |
388 | |
389 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
390 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); |
391 | |
392 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
393 | |
394 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
395 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
396 | |
397 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
398 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
399 | |
400 | i = 0; |
401 | for(;;) { |
402 | //wait until SSC_CLK goes HIGH |
403 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
404 | if(BUTTON_PRESS()) { |
405 | DbpString("Stopped"); |
406 | return; |
407 | } |
408 | WDT_HIT(); |
409 | } |
410 | if (ledcontrol) |
411 | LED_D_ON(); |
412 | |
413 | if(tab[i]) |
414 | OPEN_COIL(); |
415 | else |
416 | SHORT_COIL(); |
417 | |
418 | if (ledcontrol) |
419 | LED_D_OFF(); |
420 | //wait until SSC_CLK goes LOW |
421 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
422 | if(BUTTON_PRESS()) { |
423 | DbpString("Stopped"); |
424 | return; |
425 | } |
426 | WDT_HIT(); |
427 | } |
428 | |
429 | i++; |
430 | if(i == period) { |
431 | |
432 | i = 0; |
433 | if (gap) { |
434 | SHORT_COIL(); |
435 | SpinDelayUs(gap); |
436 | } |
437 | } |
438 | } |
439 | } |
440 | |
441 | //Testing to fix timing issues by marshmellow (MM) |
442 | void SimulateTagLowFrequencyMM(int period, int gap, int ledcontrol) |
443 | { |
444 | int i; |
445 | uint8_t *tab = BigBuf_get_addr(); |
446 | |
447 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
448 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); |
449 | |
450 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
451 | |
452 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
453 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; |
454 | |
455 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
456 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) |
457 | |
458 | i = 0; |
459 | while(!BUTTON_PRESS()) { |
460 | |
461 | WDT_HIT(); |
462 | //wait until reader carrier is HIGH |
463 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { |
464 | WDT_HIT(); |
465 | } |
466 | if (i>0){ |
467 | if (tab[i]!=tab[i-1]){ |
468 | // transition |
469 | if (ledcontrol) |
470 | LED_D_ON(); |
471 | |
472 | // modulate coil |
473 | if(tab[i]) |
474 | OPEN_COIL(); |
475 | else |
476 | SHORT_COIL(); |
477 | |
478 | if (ledcontrol) |
479 | LED_D_OFF(); |
480 | |
481 | } else { //no transition |
482 | //NOTE: it appears the COIL transition messes with the detection of the carrier, so if a transition happened |
483 | // skip test for readers Carrier = LOW, otherwise we get a bit behind |
484 | |
485 | //wait until reader carrier is LOW |
486 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { |
487 | WDT_HIT(); |
488 | } |
489 | } |
490 | } else { |
491 | // transition |
492 | if (ledcontrol) |
493 | LED_D_ON(); |
494 | |
495 | // modulate coil |
496 | if(tab[i]) |
497 | OPEN_COIL(); |
498 | else |
499 | SHORT_COIL(); |
500 | |
501 | if (ledcontrol) |
502 | LED_D_OFF(); |
503 | } |
504 | WDT_HIT(); |
505 | |
506 | |
507 | i++; |
508 | if(i == period) { |
509 | // end of data stream, gap then repeat |
510 | i = 0; |
511 | if (gap) { |
512 | SHORT_COIL(); |
513 | SpinDelayUs(gap); |
514 | } |
515 | } |
516 | } |
517 | DbpString("Stopped"); |
518 | return; |
519 | } |
520 | |
521 | #define DEBUG_FRAME_CONTENTS 1 |
522 | void SimulateTagLowFrequencyBidir(int divisor, int t0) |
523 | { |
524 | } |
525 | |
526 | // compose fc/8 fc/10 waveform (FSK2) |
527 | static void fc(int c, int *n) |
528 | { |
529 | uint8_t *dest = BigBuf_get_addr(); |
530 | int idx; |
531 | |
532 | // for when we want an fc8 pattern every 4 logical bits |
533 | if(c==0) { |
534 | dest[((*n)++)]=1; |
535 | dest[((*n)++)]=1; |
536 | dest[((*n)++)]=1; |
537 | dest[((*n)++)]=1; |
538 | dest[((*n)++)]=0; |
539 | dest[((*n)++)]=0; |
540 | dest[((*n)++)]=0; |
541 | dest[((*n)++)]=0; |
542 | } |
543 | |
544 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples |
545 | if(c==8) { |
546 | for (idx=0; idx<6; idx++) { |
547 | dest[((*n)++)]=1; |
548 | dest[((*n)++)]=1; |
549 | dest[((*n)++)]=1; |
550 | dest[((*n)++)]=1; |
551 | dest[((*n)++)]=0; |
552 | dest[((*n)++)]=0; |
553 | dest[((*n)++)]=0; |
554 | dest[((*n)++)]=0; |
555 | } |
556 | } |
557 | |
558 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples |
559 | if(c==10) { |
560 | for (idx=0; idx<5; idx++) { |
561 | dest[((*n)++)]=1; |
562 | dest[((*n)++)]=1; |
563 | dest[((*n)++)]=1; |
564 | dest[((*n)++)]=1; |
565 | dest[((*n)++)]=1; |
566 | dest[((*n)++)]=0; |
567 | dest[((*n)++)]=0; |
568 | dest[((*n)++)]=0; |
569 | dest[((*n)++)]=0; |
570 | dest[((*n)++)]=0; |
571 | } |
572 | } |
573 | } |
574 | // compose fc/X fc/Y waveform (FSKx) |
575 | static void fcAll(uint8_t c, int *n, uint8_t clock, uint16_t *modCnt) |
576 | { |
577 | uint8_t *dest = BigBuf_get_addr(); |
578 | uint8_t idx; |
579 | uint8_t fcCnt; |
580 | // c = count of field clock for this bit |
581 | uint8_t mod = clock % c; |
582 | uint8_t modAdj = c/mod; |
583 | bool modAdjOk=FALSE; |
584 | if (c % mod==0) modAdjOk=TRUE; |
585 | // loop through clock - step field clock |
586 | for (idx=0; idx < (uint8_t) clock/c; idx++){ |
587 | // loop through field clock length - put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) |
588 | for (fcCnt=0; fcCnt < c; fcCnt++){ //fudge slow transition from low to high - shorten wave by 1 |
589 | if (fcCnt < c/2+1){ |
590 | dest[((*n)++)]=0; |
591 | } else { |
592 | //fudge low to high transition |
593 | //if (idx==clock/c && dest[*n-1]==1 && mod>0) dest[((*n++))]=0; |
594 | //if (c==8 && fcCnt==5) continue; |
595 | dest[((*n)++)]=1; |
596 | } |
597 | } |
598 | } |
599 | if (mod>0) (*modCnt)++; |
600 | if ((mod>0) && modAdjOk){ //fsk2 |
601 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave |
602 | for (fcCnt=0; fcCnt < c; fcCnt++){ //fudge slow transition from low to high - shorten wave by 1 |
603 | if (fcCnt < c/2+1){ |
604 | dest[((*n)++)]=0; |
605 | } else { |
606 | //if (c==8 && fcCnt==5) continue; |
607 | dest[((*n)++)]=1; |
608 | } |
609 | } |
610 | } |
611 | } |
612 | //Dbprintf("mod: %d, modAdj %d, modc %d",mod, modAdj, c % mod); |
613 | if (mod>0 && !modAdjOk){ //fsk1 |
614 | for (idx=0; idx < mod; idx++){ |
615 | if (idx < mod/2) { |
616 | dest[((*n)++)]=0; |
617 | } else { |
618 | dest[((*n)++)]=1; |
619 | } |
620 | } |
621 | } |
622 | } |
623 | |
624 | // prepare a waveform pattern in the buffer based on the ID given then |
625 | // simulate a HID tag until the button is pressed |
626 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) |
627 | { |
628 | int n=0, i=0; |
629 | /* |
630 | HID tag bitstream format |
631 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits |
632 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns |
633 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns |
634 | A fc8 is inserted before every 4 bits |
635 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 |
636 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) |
637 | */ |
638 | |
639 | if (hi>0xFFF) { |
640 | DbpString("Tags can only have 44 bits."); |
641 | return; |
642 | } |
643 | fc(0,&n); |
644 | // special start of frame marker containing invalid bit sequences |
645 | fc(8, &n); fc(8, &n); // invalid |
646 | fc(8, &n); fc(10, &n); // logical 0 |
647 | fc(10, &n); fc(10, &n); // invalid |
648 | fc(8, &n); fc(10, &n); // logical 0 |
649 | |
650 | WDT_HIT(); |
651 | // manchester encode bits 43 to 32 |
652 | for (i=11; i>=0; i--) { |
653 | if ((i%4)==3) fc(0,&n); |
654 | if ((hi>>i)&1) { |
655 | fc(10, &n); fc(8, &n); // low-high transition |
656 | } else { |
657 | fc(8, &n); fc(10, &n); // high-low transition |
658 | } |
659 | } |
660 | |
661 | WDT_HIT(); |
662 | // manchester encode bits 31 to 0 |
663 | for (i=31; i>=0; i--) { |
664 | if ((i%4)==3) fc(0,&n); |
665 | if ((lo>>i)&1) { |
666 | fc(10, &n); fc(8, &n); // low-high transition |
667 | } else { |
668 | fc(8, &n); fc(10, &n); // high-low transition |
669 | } |
670 | } |
671 | |
672 | if (ledcontrol) |
673 | LED_A_ON(); |
674 | SimulateTagLowFrequency(n, 0, ledcontrol); |
675 | |
676 | if (ledcontrol) |
677 | LED_A_OFF(); |
678 | } |
679 | |
680 | // prepare a waveform pattern in the buffer based on the ID given then |
681 | // simulate a FSK tag until the button is pressed |
682 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock |
683 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
684 | { |
685 | int ledcontrol=1; |
686 | int n=0, i=0; |
687 | uint8_t fcHigh = arg1 >> 8; |
688 | uint8_t fcLow = arg1 & 0xFF; |
689 | uint16_t modCnt = 0; |
690 | //spacer bit |
691 | uint8_t clk = arg2 & 0xFF; |
692 | uint8_t invert = (arg2 >> 8) & 1; |
693 | //fcAll(0, &n, clk); |
694 | |
695 | WDT_HIT(); |
696 | for (i=0; i<size; i++){ |
697 | if (BitStream[i] == invert){ |
698 | fcAll(fcLow, &n, clk, &modCnt); |
699 | } else { |
700 | fcAll(fcHigh, &n, clk, &modCnt); |
701 | } |
702 | } |
703 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); |
704 | Dbprintf("First 64:"); |
705 | uint8_t *dest = BigBuf_get_addr(); |
706 | i=0; |
707 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
708 | i+=16; |
709 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
710 | i+=16; |
711 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
712 | i+=16; |
713 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
714 | i+=16; |
715 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
716 | i+=16; |
717 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
718 | i+=16; |
719 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
720 | i+=16; |
721 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
722 | i+=16; |
723 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
724 | i+=16; |
725 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
726 | i+=16; |
727 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
728 | i+=16; |
729 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
730 | i+=16; |
731 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
732 | i+=16; |
733 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
734 | i+=16; |
735 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
736 | |
737 | if (ledcontrol) |
738 | LED_A_ON(); |
739 | SimulateTagLowFrequencyMM(n, 0, ledcontrol); |
740 | |
741 | if (ledcontrol) |
742 | LED_A_OFF(); |
743 | } |
744 | |
745 | // compose ask waveform for one bit(ASK) |
746 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
747 | { |
748 | uint8_t *dest = BigBuf_get_addr(); |
749 | uint8_t idx; |
750 | // c = current bit 1 or 0 |
751 | int i = 0; |
752 | // for when we want a separator |
753 | if (c==2) { //separator |
754 | for (i=0; i<clock/2; i++){ |
755 | dest[((*n)++)]=0; |
756 | } |
757 | } else { |
758 | if (manchester){ |
759 | for (idx=0; idx < (uint8_t) clock/2; idx++){ |
760 | dest[((*n)++)]=c; |
761 | } |
762 | for (idx=0; idx < (uint8_t) clock/2; idx++){ |
763 | dest[((*n)++)]=c^1; |
764 | } |
765 | } else { |
766 | for (idx=0; idx < (uint8_t) clock; idx++){ |
767 | dest[((*n)++)]=c; |
768 | } |
769 | } |
770 | } |
771 | } |
772 | |
773 | // args clock, ask/man or askraw, invert, transmission separator |
774 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
775 | { |
776 | int ledcontrol = 1; |
777 | int n=0, i=0; |
778 | uint8_t clk = (arg1 >> 8) & 0xFF; |
779 | uint8_t manchester = arg1 & 1; |
780 | uint8_t separator = arg2 & 1; |
781 | uint8_t invert = (arg2 >> 8) & 1; |
782 | WDT_HIT(); |
783 | for (i=0; i<size; i++){ |
784 | askSimBit(BitStream[i]^invert, &n, clk, manchester); |
785 | } |
786 | if (separator==1) Dbprintf("sorry but separator option not yet available"); //askSimBit(2, &n, clk, manchester); |
787 | |
788 | Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n); |
789 | //DEBUG |
790 | //Dbprintf("First 64:"); |
791 | //uint8_t *dest = BigBuf_get_addr(); |
792 | //i=0; |
793 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
794 | //i+=16; |
795 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
796 | //i+=16; |
797 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
798 | //i+=16; |
799 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
800 | |
801 | |
802 | if (ledcontrol) |
803 | LED_A_ON(); |
804 | SimulateTagLowFrequencyMM(n, 0, ledcontrol); |
805 | |
806 | if (ledcontrol) |
807 | LED_A_OFF(); |
808 | } |
809 | |
810 | //carrier can be 2,4 or 8 |
811 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) |
812 | { |
813 | uint8_t *dest = BigBuf_get_addr(); |
814 | uint8_t idx; |
815 | int i = 0; |
816 | if (phaseChg){ |
817 | // write phase change |
818 | for (i=0; i < waveLen/2; i++){ |
819 | dest[((*n)++)] = *curPhase^1; |
820 | } |
821 | for (i=0; i < waveLen/2; i++){ |
822 | dest[((*n)++)] = *curPhase; |
823 | } |
824 | *curPhase ^= 1; |
825 | } |
826 | //write each normal clock wave for the clock duration |
827 | for (; i < clk; i+=waveLen){ |
828 | for (idx=0; idx<waveLen/2; idx++){ |
829 | dest[((*n)++)] = *curPhase; |
830 | } |
831 | for (idx=0; idx<waveLen/2; idx++){ |
832 | dest[((*n)++)] = *curPhase^1; |
833 | } |
834 | } |
835 | } |
836 | |
837 | // args clock, carrier, invert, |
838 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) |
839 | { |
840 | int ledcontrol=1; |
841 | int n=0, i=0; |
842 | uint8_t clk = arg1 >> 8; |
843 | uint8_t carrier = arg1 & 0xFF; |
844 | uint8_t invert = arg2 & 0xFF; |
845 | //uint8_t phase = carrier/2; //extra phase changing bits = 1/2 a carrier wave to change the phase |
846 | //uint8_t invert = (arg2 >> 8) & 1; |
847 | uint8_t curPhase = 0; |
848 | WDT_HIT(); |
849 | for (i=0; i<size; i++){ |
850 | if (BitStream[i] == curPhase){ |
851 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); |
852 | } else { |
853 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); |
854 | } |
855 | } |
856 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); |
857 | Dbprintf("First 128:"); |
858 | uint8_t *dest = BigBuf_get_addr(); |
859 | i=0; |
860 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
861 | i+=16; |
862 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
863 | i+=16; |
864 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
865 | i+=16; |
866 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
867 | i+=16; |
868 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
869 | i+=16; |
870 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
871 | i+=16; |
872 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
873 | i+=16; |
874 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); |
875 | |
876 | if (ledcontrol) |
877 | LED_A_ON(); |
878 | SimulateTagLowFrequencyMM(n, 0, ledcontrol); |
879 | |
880 | if (ledcontrol) |
881 | LED_A_OFF(); |
882 | } |
883 | |
884 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
885 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
886 | { |
887 | uint8_t *dest = BigBuf_get_addr(); |
888 | const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
889 | size_t size = 0; |
890 | uint32_t hi2=0, hi=0, lo=0; |
891 | int idx=0; |
892 | // Configure to go in 125Khz listen mode |
893 | LFSetupFPGAForADC(95, true); |
894 | |
895 | while(!BUTTON_PRESS()) { |
896 | |
897 | WDT_HIT(); |
898 | if (ledcontrol) LED_A_ON(); |
899 | |
900 | DoAcquisition_default(-1,true); |
901 | // FSK demodulator |
902 | size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
903 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
904 | |
905 | if (idx>0 && lo>0){ |
906 | // final loop, go over previously decoded manchester data and decode into usable tag ID |
907 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 |
908 | if (hi2 != 0){ //extra large HID tags |
909 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
910 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
911 | }else { //standard HID tags <38 bits |
912 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
913 | uint8_t bitlen = 0; |
914 | uint32_t fc = 0; |
915 | uint32_t cardnum = 0; |
916 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
917 | uint32_t lo2=0; |
918 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit |
919 | uint8_t idx3 = 1; |
920 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
921 | lo2=lo2 >> 1; |
922 | idx3++; |
923 | } |
924 | bitlen = idx3+19; |
925 | fc =0; |
926 | cardnum=0; |
927 | if(bitlen == 26){ |
928 | cardnum = (lo>>1)&0xFFFF; |
929 | fc = (lo>>17)&0xFF; |
930 | } |
931 | if(bitlen == 37){ |
932 | cardnum = (lo>>1)&0x7FFFF; |
933 | fc = ((hi&0xF)<<12)|(lo>>20); |
934 | } |
935 | if(bitlen == 34){ |
936 | cardnum = (lo>>1)&0xFFFF; |
937 | fc= ((hi&1)<<15)|(lo>>17); |
938 | } |
939 | if(bitlen == 35){ |
940 | cardnum = (lo>>1)&0xFFFFF; |
941 | fc = ((hi&1)<<11)|(lo>>21); |
942 | } |
943 | } |
944 | else { //if bit 38 is not set then 37 bit format is used |
945 | bitlen= 37; |
946 | fc =0; |
947 | cardnum=0; |
948 | if(bitlen==37){ |
949 | cardnum = (lo>>1)&0x7FFFF; |
950 | fc = ((hi&0xF)<<12)|(lo>>20); |
951 | } |
952 | } |
953 | //Dbprintf("TAG ID: %x%08x (%d)", |
954 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); |
955 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", |
956 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, |
957 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); |
958 | } |
959 | if (findone){ |
960 | if (ledcontrol) LED_A_OFF(); |
961 | *high = hi; |
962 | *low = lo; |
963 | return; |
964 | } |
965 | // reset |
966 | hi2 = hi = lo = 0; |
967 | } |
968 | WDT_HIT(); |
969 | } |
970 | DbpString("Stopped"); |
971 | if (ledcontrol) LED_A_OFF(); |
972 | } |
973 | |
974 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
975 | { |
976 | uint8_t *dest = BigBuf_get_addr(); |
977 | |
978 | size_t size=0, idx=0; |
979 | int clk=0, invert=0, errCnt=0, maxErr=20; |
980 | uint64_t lo=0; |
981 | // Configure to go in 125Khz listen mode |
982 | LFSetupFPGAForADC(95, true); |
983 | |
984 | while(!BUTTON_PRESS()) { |
985 | |
986 | WDT_HIT(); |
987 | if (ledcontrol) LED_A_ON(); |
988 | |
989 | DoAcquisition_default(-1,true); |
990 | size = BigBuf_max_traceLen(); |
991 | //Dbprintf("DEBUG: Buffer got"); |
992 | //askdemod and manchester decode |
993 | errCnt = askmandemod(dest, &size, &clk, &invert, maxErr); |
994 | //Dbprintf("DEBUG: ASK Got"); |
995 | WDT_HIT(); |
996 | |
997 | if (errCnt>=0){ |
998 | lo = Em410xDecode(dest, &size, &idx); |
999 | //Dbprintf("DEBUG: EM GOT"); |
1000 | if (lo>0){ |
1001 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", |
1002 | (uint32_t)(lo>>32), |
1003 | (uint32_t)lo, |
1004 | (uint32_t)(lo&0xFFFF), |
1005 | (uint32_t)((lo>>16LL) & 0xFF), |
1006 | (uint32_t)(lo & 0xFFFFFF)); |
1007 | } |
1008 | if (findone){ |
1009 | if (ledcontrol) LED_A_OFF(); |
1010 | *high=lo>>32; |
1011 | *low=lo & 0xFFFFFFFF; |
1012 | return; |
1013 | } |
1014 | } else{ |
1015 | //Dbprintf("DEBUG: No Tag"); |
1016 | } |
1017 | WDT_HIT(); |
1018 | lo = 0; |
1019 | clk=0; |
1020 | invert=0; |
1021 | errCnt=0; |
1022 | size=0; |
1023 | } |
1024 | DbpString("Stopped"); |
1025 | if (ledcontrol) LED_A_OFF(); |
1026 | } |
1027 | |
1028 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) |
1029 | { |
1030 | uint8_t *dest = BigBuf_get_addr(); |
1031 | int idx=0; |
1032 | uint32_t code=0, code2=0; |
1033 | uint8_t version=0; |
1034 | uint8_t facilitycode=0; |
1035 | uint16_t number=0; |
1036 | // Configure to go in 125Khz listen mode |
1037 | LFSetupFPGAForADC(95, true); |
1038 | |
1039 | while(!BUTTON_PRESS()) { |
1040 | WDT_HIT(); |
1041 | if (ledcontrol) LED_A_ON(); |
1042 | DoAcquisition_default(-1,true); |
1043 | //fskdemod and get start index |
1044 | WDT_HIT(); |
1045 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); |
1046 | if (idx>0){ |
1047 | //valid tag found |
1048 | |
1049 | //Index map |
1050 | //0 10 20 30 40 50 60 |
1051 | //| | | | | | | |
1052 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
1053 | //----------------------------------------------------------------------------- |
1054 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 |
1055 | // |
1056 | //XSF(version)facility:codeone+codetwo |
1057 | //Handle the data |
1058 | if(findone){ //only print binary if we are doing one |
1059 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); |
1060 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); |
1061 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); |
1062 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); |
1063 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); |
1064 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); |
1065 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); |
1066 | } |
1067 | code = bytebits_to_byte(dest+idx,32); |
1068 | code2 = bytebits_to_byte(dest+idx+32,32); |
1069 | version = bytebits_to_byte(dest+idx+27,8); //14,4 |
1070 | facilitycode = bytebits_to_byte(dest+idx+18,8) ; |
1071 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 |
1072 | |
1073 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); |
1074 | // if we're only looking for one tag |
1075 | if (findone){ |
1076 | if (ledcontrol) LED_A_OFF(); |
1077 | //LED_A_OFF(); |
1078 | *high=code; |
1079 | *low=code2; |
1080 | return; |
1081 | } |
1082 | code=code2=0; |
1083 | version=facilitycode=0; |
1084 | number=0; |
1085 | idx=0; |
1086 | } |
1087 | WDT_HIT(); |
1088 | } |
1089 | DbpString("Stopped"); |
1090 | if (ledcontrol) LED_A_OFF(); |
1091 | } |
1092 | |
1093 | /*------------------------------ |
1094 | * T5555/T5557/T5567 routines |
1095 | *------------------------------ |
1096 | */ |
1097 | |
1098 | /* T55x7 configuration register definitions */ |
1099 | #define T55x7_POR_DELAY 0x00000001 |
1100 | #define T55x7_ST_TERMINATOR 0x00000008 |
1101 | #define T55x7_PWD 0x00000010 |
1102 | #define T55x7_MAXBLOCK_SHIFT 5 |
1103 | #define T55x7_AOR 0x00000200 |
1104 | #define T55x7_PSKCF_RF_2 0 |
1105 | #define T55x7_PSKCF_RF_4 0x00000400 |
1106 | #define T55x7_PSKCF_RF_8 0x00000800 |
1107 | #define T55x7_MODULATION_DIRECT 0 |
1108 | #define T55x7_MODULATION_PSK1 0x00001000 |
1109 | #define T55x7_MODULATION_PSK2 0x00002000 |
1110 | #define T55x7_MODULATION_PSK3 0x00003000 |
1111 | #define T55x7_MODULATION_FSK1 0x00004000 |
1112 | #define T55x7_MODULATION_FSK2 0x00005000 |
1113 | #define T55x7_MODULATION_FSK1a 0x00006000 |
1114 | #define T55x7_MODULATION_FSK2a 0x00007000 |
1115 | #define T55x7_MODULATION_MANCHESTER 0x00008000 |
1116 | #define T55x7_MODULATION_BIPHASE 0x00010000 |
1117 | #define T55x7_BITRATE_RF_8 0 |
1118 | #define T55x7_BITRATE_RF_16 0x00040000 |
1119 | #define T55x7_BITRATE_RF_32 0x00080000 |
1120 | #define T55x7_BITRATE_RF_40 0x000C0000 |
1121 | #define T55x7_BITRATE_RF_50 0x00100000 |
1122 | #define T55x7_BITRATE_RF_64 0x00140000 |
1123 | #define T55x7_BITRATE_RF_100 0x00180000 |
1124 | #define T55x7_BITRATE_RF_128 0x001C0000 |
1125 | |
1126 | /* T5555 (Q5) configuration register definitions */ |
1127 | #define T5555_ST_TERMINATOR 0x00000001 |
1128 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
1129 | #define T5555_MODULATION_MANCHESTER 0 |
1130 | #define T5555_MODULATION_PSK1 0x00000010 |
1131 | #define T5555_MODULATION_PSK2 0x00000020 |
1132 | #define T5555_MODULATION_PSK3 0x00000030 |
1133 | #define T5555_MODULATION_FSK1 0x00000040 |
1134 | #define T5555_MODULATION_FSK2 0x00000050 |
1135 | #define T5555_MODULATION_BIPHASE 0x00000060 |
1136 | #define T5555_MODULATION_DIRECT 0x00000070 |
1137 | #define T5555_INVERT_OUTPUT 0x00000080 |
1138 | #define T5555_PSK_RF_2 0 |
1139 | #define T5555_PSK_RF_4 0x00000100 |
1140 | #define T5555_PSK_RF_8 0x00000200 |
1141 | #define T5555_USE_PWD 0x00000400 |
1142 | #define T5555_USE_AOR 0x00000800 |
1143 | #define T5555_BITRATE_SHIFT 12 |
1144 | #define T5555_FAST_WRITE 0x00004000 |
1145 | #define T5555_PAGE_SELECT 0x00008000 |
1146 | |
1147 | /* |
1148 | * Relevant times in microsecond |
1149 | * To compensate antenna falling times shorten the write times |
1150 | * and enlarge the gap ones. |
1151 | */ |
1152 | #define START_GAP 250 |
1153 | #define WRITE_GAP 160 |
1154 | #define WRITE_0 144 // 192 |
1155 | #define WRITE_1 400 // 432 for T55x7; 448 for E5550 |
1156 | |
1157 | // Write one bit to card |
1158 | void T55xxWriteBit(int bit) |
1159 | { |
1160 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1161 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1162 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1163 | if (bit == 0) |
1164 | SpinDelayUs(WRITE_0); |
1165 | else |
1166 | SpinDelayUs(WRITE_1); |
1167 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1168 | SpinDelayUs(WRITE_GAP); |
1169 | } |
1170 | |
1171 | // Write one card block in page 0, no lock |
1172 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
1173 | { |
1174 | //unsigned int i; //enio adjustment 12/10/14 |
1175 | uint32_t i; |
1176 | |
1177 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1178 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1179 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1180 | |
1181 | // Give it a bit of time for the resonant antenna to settle. |
1182 | // And for the tag to fully power up |
1183 | SpinDelay(150); |
1184 | |
1185 | // Now start writting |
1186 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1187 | SpinDelayUs(START_GAP); |
1188 | |
1189 | // Opcode |
1190 | T55xxWriteBit(1); |
1191 | T55xxWriteBit(0); //Page 0 |
1192 | if (PwdMode == 1){ |
1193 | // Pwd |
1194 | for (i = 0x80000000; i != 0; i >>= 1) |
1195 | T55xxWriteBit(Pwd & i); |
1196 | } |
1197 | // Lock bit |
1198 | T55xxWriteBit(0); |
1199 | |
1200 | // Data |
1201 | for (i = 0x80000000; i != 0; i >>= 1) |
1202 | T55xxWriteBit(Data & i); |
1203 | |
1204 | // Block |
1205 | for (i = 0x04; i != 0; i >>= 1) |
1206 | T55xxWriteBit(Block & i); |
1207 | |
1208 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
1209 | // so wait a little more) |
1210 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1211 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1212 | SpinDelay(20); |
1213 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1214 | } |
1215 | |
1216 | // Read one card block in page 0 |
1217 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
1218 | { |
1219 | uint8_t *dest = BigBuf_get_addr(); |
1220 | //int m=0, i=0; //enio adjustment 12/10/14 |
1221 | uint32_t m=0, i=0; |
1222 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1223 | m = BigBuf_max_traceLen(); |
1224 | // Clear destination buffer before sending the command |
1225 | memset(dest, 128, m); |
1226 | // Connect the A/D to the peak-detected low-frequency path. |
1227 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
1228 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
1229 | FpgaSetupSsc(); |
1230 | |
1231 | LED_D_ON(); |
1232 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1233 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1234 | |
1235 | // Give it a bit of time for the resonant antenna to settle. |
1236 | // And for the tag to fully power up |
1237 | SpinDelay(150); |
1238 | |
1239 | // Now start writting |
1240 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1241 | SpinDelayUs(START_GAP); |
1242 | |
1243 | // Opcode |
1244 | T55xxWriteBit(1); |
1245 | T55xxWriteBit(0); //Page 0 |
1246 | if (PwdMode == 1){ |
1247 | // Pwd |
1248 | for (i = 0x80000000; i != 0; i >>= 1) |
1249 | T55xxWriteBit(Pwd & i); |
1250 | } |
1251 | // Lock bit |
1252 | T55xxWriteBit(0); |
1253 | // Block |
1254 | for (i = 0x04; i != 0; i >>= 1) |
1255 | T55xxWriteBit(Block & i); |
1256 | |
1257 | // Turn field on to read the response |
1258 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1259 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1260 | |
1261 | // Now do the acquisition |
1262 | i = 0; |
1263 | for(;;) { |
1264 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1265 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1266 | } |
1267 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1268 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1269 | // we don't care about actual value, only if it's more or less than a |
1270 | // threshold essentially we capture zero crossings for later analysis |
1271 | // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; |
1272 | i++; |
1273 | if (i >= m) break; |
1274 | } |
1275 | } |
1276 | |
1277 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1278 | LED_D_OFF(); |
1279 | DbpString("DONE!"); |
1280 | } |
1281 | |
1282 | // Read card traceability data (page 1) |
1283 | void T55xxReadTrace(void){ |
1284 | uint8_t *dest = BigBuf_get_addr(); |
1285 | int m=0, i=0; |
1286 | |
1287 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
1288 | m = BigBuf_max_traceLen(); |
1289 | // Clear destination buffer before sending the command |
1290 | memset(dest, 128, m); |
1291 | // Connect the A/D to the peak-detected low-frequency path. |
1292 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
1293 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
1294 | FpgaSetupSsc(); |
1295 | |
1296 | LED_D_ON(); |
1297 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1298 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1299 | |
1300 | // Give it a bit of time for the resonant antenna to settle. |
1301 | // And for the tag to fully power up |
1302 | SpinDelay(150); |
1303 | |
1304 | // Now start writting |
1305 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1306 | SpinDelayUs(START_GAP); |
1307 | |
1308 | // Opcode |
1309 | T55xxWriteBit(1); |
1310 | T55xxWriteBit(1); //Page 1 |
1311 | |
1312 | // Turn field on to read the response |
1313 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
1314 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
1315 | |
1316 | // Now do the acquisition |
1317 | i = 0; |
1318 | for(;;) { |
1319 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
1320 | AT91C_BASE_SSC->SSC_THR = 0x43; |
1321 | } |
1322 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
1323 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
1324 | i++; |
1325 | if (i >= m) break; |
1326 | } |
1327 | } |
1328 | |
1329 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1330 | LED_D_OFF(); |
1331 | DbpString("DONE!"); |
1332 | } |
1333 | |
1334 | /*-------------- Cloning routines -----------*/ |
1335 | // Copy HID id to card and setup block 0 config |
1336 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) |
1337 | { |
1338 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format |
1339 | int last_block = 0; |
1340 | |
1341 | if (longFMT){ |
1342 | // Ensure no more than 84 bits supplied |
1343 | if (hi2>0xFFFFF) { |
1344 | DbpString("Tags can only have 84 bits."); |
1345 | return; |
1346 | } |
1347 | // Build the 6 data blocks for supplied 84bit ID |
1348 | last_block = 6; |
1349 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) |
1350 | for (int i=0;i<4;i++) { |
1351 | if (hi2 & (1<<(19-i))) |
1352 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 |
1353 | else |
1354 | data1 |= (1<<((3-i)*2)); // 0 -> 01 |
1355 | } |
1356 | |
1357 | data2 = 0; |
1358 | for (int i=0;i<16;i++) { |
1359 | if (hi2 & (1<<(15-i))) |
1360 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1361 | else |
1362 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
1363 | } |
1364 | |
1365 | data3 = 0; |
1366 | for (int i=0;i<16;i++) { |
1367 | if (hi & (1<<(31-i))) |
1368 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1369 | else |
1370 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
1371 | } |
1372 | |
1373 | data4 = 0; |
1374 | for (int i=0;i<16;i++) { |
1375 | if (hi & (1<<(15-i))) |
1376 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1377 | else |
1378 | data4 |= (1<<((15-i)*2)); // 0 -> 01 |
1379 | } |
1380 | |
1381 | data5 = 0; |
1382 | for (int i=0;i<16;i++) { |
1383 | if (lo & (1<<(31-i))) |
1384 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1385 | else |
1386 | data5 |= (1<<((15-i)*2)); // 0 -> 01 |
1387 | } |
1388 | |
1389 | data6 = 0; |
1390 | for (int i=0;i<16;i++) { |
1391 | if (lo & (1<<(15-i))) |
1392 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1393 | else |
1394 | data6 |= (1<<((15-i)*2)); // 0 -> 01 |
1395 | } |
1396 | } |
1397 | else { |
1398 | // Ensure no more than 44 bits supplied |
1399 | if (hi>0xFFF) { |
1400 | DbpString("Tags can only have 44 bits."); |
1401 | return; |
1402 | } |
1403 | |
1404 | // Build the 3 data blocks for supplied 44bit ID |
1405 | last_block = 3; |
1406 | |
1407 | data1 = 0x1D000000; // load preamble |
1408 | |
1409 | for (int i=0;i<12;i++) { |
1410 | if (hi & (1<<(11-i))) |
1411 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 |
1412 | else |
1413 | data1 |= (1<<((11-i)*2)); // 0 -> 01 |
1414 | } |
1415 | |
1416 | data2 = 0; |
1417 | for (int i=0;i<16;i++) { |
1418 | if (lo & (1<<(31-i))) |
1419 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1420 | else |
1421 | data2 |= (1<<((15-i)*2)); // 0 -> 01 |
1422 | } |
1423 | |
1424 | data3 = 0; |
1425 | for (int i=0;i<16;i++) { |
1426 | if (lo & (1<<(15-i))) |
1427 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 |
1428 | else |
1429 | data3 |= (1<<((15-i)*2)); // 0 -> 01 |
1430 | } |
1431 | } |
1432 | |
1433 | LED_D_ON(); |
1434 | // Program the data blocks for supplied ID |
1435 | // and the block 0 for HID format |
1436 | T55xxWriteBlock(data1,1,0,0); |
1437 | T55xxWriteBlock(data2,2,0,0); |
1438 | T55xxWriteBlock(data3,3,0,0); |
1439 | |
1440 | if (longFMT) { // if long format there are 6 blocks |
1441 | T55xxWriteBlock(data4,4,0,0); |
1442 | T55xxWriteBlock(data5,5,0,0); |
1443 | T55xxWriteBlock(data6,6,0,0); |
1444 | } |
1445 | |
1446 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) |
1447 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | |
1448 | T55x7_MODULATION_FSK2a | |
1449 | last_block << T55x7_MAXBLOCK_SHIFT, |
1450 | 0,0,0); |
1451 | |
1452 | LED_D_OFF(); |
1453 | |
1454 | DbpString("DONE!"); |
1455 | } |
1456 | |
1457 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) |
1458 | { |
1459 | int data1=0, data2=0; //up to six blocks for long format |
1460 | |
1461 | data1 = hi; // load preamble |
1462 | data2 = lo; |
1463 | |
1464 | LED_D_ON(); |
1465 | // Program the data blocks for supplied ID |
1466 | // and the block 0 for HID format |
1467 | T55xxWriteBlock(data1,1,0,0); |
1468 | T55xxWriteBlock(data2,2,0,0); |
1469 | |
1470 | //Config Block |
1471 | T55xxWriteBlock(0x00147040,0,0,0); |
1472 | LED_D_OFF(); |
1473 | |
1474 | DbpString("DONE!"); |
1475 | } |
1476 | |
1477 | // Define 9bit header for EM410x tags |
1478 | #define EM410X_HEADER 0x1FF |
1479 | #define EM410X_ID_LENGTH 40 |
1480 | |
1481 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) |
1482 | { |
1483 | int i, id_bit; |
1484 | uint64_t id = EM410X_HEADER; |
1485 | uint64_t rev_id = 0; // reversed ID |
1486 | int c_parity[4]; // column parity |
1487 | int r_parity = 0; // row parity |
1488 | uint32_t clock = 0; |
1489 | |
1490 | // Reverse ID bits given as parameter (for simpler operations) |
1491 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1492 | if (i < 32) { |
1493 | rev_id = (rev_id << 1) | (id_lo & 1); |
1494 | id_lo >>= 1; |
1495 | } else { |
1496 | rev_id = (rev_id << 1) | (id_hi & 1); |
1497 | id_hi >>= 1; |
1498 | } |
1499 | } |
1500 | |
1501 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { |
1502 | id_bit = rev_id & 1; |
1503 | |
1504 | if (i % 4 == 0) { |
1505 | // Don't write row parity bit at start of parsing |
1506 | if (i) |
1507 | id = (id << 1) | r_parity; |
1508 | // Start counting parity for new row |
1509 | r_parity = id_bit; |
1510 | } else { |
1511 | // Count row parity |
1512 | r_parity ^= id_bit; |
1513 | } |
1514 | |
1515 | // First elements in column? |
1516 | if (i < 4) |
1517 | // Fill out first elements |
1518 | c_parity[i] = id_bit; |
1519 | else |
1520 | // Count column parity |
1521 | c_parity[i % 4] ^= id_bit; |
1522 | |
1523 | // Insert ID bit |
1524 | id = (id << 1) | id_bit; |
1525 | rev_id >>= 1; |
1526 | } |
1527 | |
1528 | // Insert parity bit of last row |
1529 | id = (id << 1) | r_parity; |
1530 | |
1531 | // Fill out column parity at the end of tag |
1532 | for (i = 0; i < 4; ++i) |
1533 | id = (id << 1) | c_parity[i]; |
1534 | |
1535 | // Add stop bit |
1536 | id <<= 1; |
1537 | |
1538 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); |
1539 | LED_D_ON(); |
1540 | |
1541 | // Write EM410x ID |
1542 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); |
1543 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); |
1544 | |
1545 | // Config for EM410x (RF/64, Manchester, Maxblock=2) |
1546 | if (card) { |
1547 | // Clock rate is stored in bits 8-15 of the card value |
1548 | clock = (card & 0xFF00) >> 8; |
1549 | Dbprintf("Clock rate: %d", clock); |
1550 | switch (clock) |
1551 | { |
1552 | case 32: |
1553 | clock = T55x7_BITRATE_RF_32; |
1554 | break; |
1555 | case 16: |
1556 | clock = T55x7_BITRATE_RF_16; |
1557 | break; |
1558 | case 0: |
1559 | // A value of 0 is assumed to be 64 for backwards-compatibility |
1560 | // Fall through... |
1561 | case 64: |
1562 | clock = T55x7_BITRATE_RF_64; |
1563 | break; |
1564 | default: |
1565 | Dbprintf("Invalid clock rate: %d", clock); |
1566 | return; |
1567 | } |
1568 | |
1569 | // Writing configuration for T55x7 tag |
1570 | T55xxWriteBlock(clock | |
1571 | T55x7_MODULATION_MANCHESTER | |
1572 | 2 << T55x7_MAXBLOCK_SHIFT, |
1573 | 0, 0, 0); |
1574 | } |
1575 | else |
1576 | // Writing configuration for T5555(Q5) tag |
1577 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | |
1578 | T5555_MODULATION_MANCHESTER | |
1579 | 2 << T5555_MAXBLOCK_SHIFT, |
1580 | 0, 0, 0); |
1581 | |
1582 | LED_D_OFF(); |
1583 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", |
1584 | (uint32_t)(id >> 32), (uint32_t)id); |
1585 | } |
1586 | |
1587 | // Clone Indala 64-bit tag by UID to T55x7 |
1588 | void CopyIndala64toT55x7(int hi, int lo) |
1589 | { |
1590 | |
1591 | //Program the 2 data blocks for supplied 64bit UID |
1592 | // and the block 0 for Indala64 format |
1593 | T55xxWriteBlock(hi,1,0,0); |
1594 | T55xxWriteBlock(lo,2,0,0); |
1595 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) |
1596 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1597 | T55x7_MODULATION_PSK1 | |
1598 | 2 << T55x7_MAXBLOCK_SHIFT, |
1599 | 0, 0, 0); |
1600 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
1601 | // T5567WriteBlock(0x603E1042,0); |
1602 | |
1603 | DbpString("DONE!"); |
1604 | |
1605 | } |
1606 | |
1607 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) |
1608 | { |
1609 | |
1610 | //Program the 7 data blocks for supplied 224bit UID |
1611 | // and the block 0 for Indala224 format |
1612 | T55xxWriteBlock(uid1,1,0,0); |
1613 | T55xxWriteBlock(uid2,2,0,0); |
1614 | T55xxWriteBlock(uid3,3,0,0); |
1615 | T55xxWriteBlock(uid4,4,0,0); |
1616 | T55xxWriteBlock(uid5,5,0,0); |
1617 | T55xxWriteBlock(uid6,6,0,0); |
1618 | T55xxWriteBlock(uid7,7,0,0); |
1619 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
1620 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | |
1621 | T55x7_MODULATION_PSK1 | |
1622 | 7 << T55x7_MAXBLOCK_SHIFT, |
1623 | 0,0,0); |
1624 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
1625 | // T5567WriteBlock(0x603E10E2,0); |
1626 | |
1627 | DbpString("DONE!"); |
1628 | |
1629 | } |
1630 | |
1631 | |
1632 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) |
1633 | #define max(x,y) ( x<y ? y:x) |
1634 | |
1635 | int DemodPCF7931(uint8_t **outBlocks) { |
1636 | uint8_t BitStream[256]; |
1637 | uint8_t Blocks[8][16]; |
1638 | uint8_t *GraphBuffer = BigBuf_get_addr(); |
1639 | int GraphTraceLen = BigBuf_max_traceLen(); |
1640 | int i, j, lastval, bitidx, half_switch; |
1641 | int clock = 64; |
1642 | int tolerance = clock / 8; |
1643 | int pmc, block_done; |
1644 | int lc, warnings = 0; |
1645 | int num_blocks = 0; |
1646 | int lmin=128, lmax=128; |
1647 | uint8_t dir; |
1648 | |
1649 | LFSetupFPGAForADC(95, true); |
1650 | DoAcquisition_default(0, 0); |
1651 | |
1652 | |
1653 | lmin = 64; |
1654 | lmax = 192; |
1655 | |
1656 | i = 2; |
1657 | |
1658 | /* Find first local max/min */ |
1659 | if(GraphBuffer[1] > GraphBuffer[0]) { |
1660 | while(i < GraphTraceLen) { |
1661 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) |
1662 | break; |
1663 | i++; |
1664 | } |
1665 | dir = 0; |
1666 | } |
1667 | else { |
1668 | while(i < GraphTraceLen) { |
1669 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) |
1670 | break; |
1671 | i++; |
1672 | } |
1673 | dir = 1; |
1674 | } |
1675 | |
1676 | lastval = i++; |
1677 | half_switch = 0; |
1678 | pmc = 0; |
1679 | block_done = 0; |
1680 | |
1681 | for (bitidx = 0; i < GraphTraceLen; i++) |
1682 | { |
1683 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) |
1684 | { |
1685 | lc = i - lastval; |
1686 | lastval = i; |
1687 | |
1688 | // Switch depending on lc length: |
1689 | // Tolerance is 1/8 of clock rate (arbitrary) |
1690 | if (abs(lc-clock/4) < tolerance) { |
1691 | // 16T0 |
1692 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
1693 | /* It's a PMC ! */ |
1694 | i += (128+127+16+32+33+16)-1; |
1695 | lastval = i; |
1696 | pmc = 0; |
1697 | block_done = 1; |
1698 | } |
1699 | else { |
1700 | pmc = i; |
1701 | } |
1702 | } else if (abs(lc-clock/2) < tolerance) { |
1703 | // 32TO |
1704 | if((i - pmc) == lc) { /* 16T0 was previous one */ |
1705 | /* It's a PMC ! */ |
1706 | i += (128+127+16+32+33)-1; |
1707 | lastval = i; |
1708 | pmc = 0; |
1709 | block_done = 1; |
1710 | } |
1711 | else if(half_switch == 1) { |
1712 | BitStream[bitidx++] = 0; |
1713 | half_switch = 0; |
1714 | } |
1715 | else |
1716 | half_switch++; |
1717 | } else if (abs(lc-clock) < tolerance) { |
1718 | // 64TO |
1719 | BitStream[bitidx++] = 1; |
1720 | } else { |
1721 | // Error |
1722 | warnings++; |
1723 | if (warnings > 10) |
1724 | { |
1725 | Dbprintf("Error: too many detection errors, aborting."); |
1726 | return 0; |
1727 | } |
1728 | } |
1729 | |
1730 | if(block_done == 1) { |
1731 | if(bitidx == 128) { |
1732 | for(j=0; j<16; j++) { |
1733 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ |
1734 | 64*BitStream[j*8+6]+ |
1735 | 32*BitStream[j*8+5]+ |
1736 | 16*BitStream[j*8+4]+ |
1737 | 8*BitStream[j*8+3]+ |
1738 | 4*BitStream[j*8+2]+ |
1739 | 2*BitStream[j*8+1]+ |
1740 | BitStream[j*8]; |
1741 | } |
1742 | num_blocks++; |
1743 | } |
1744 | bitidx = 0; |
1745 | block_done = 0; |
1746 | half_switch = 0; |
1747 | } |
1748 | if(i < GraphTraceLen) |
1749 | { |
1750 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; |
1751 | else dir = 1; |
1752 | } |
1753 | } |
1754 | if(bitidx==255) |
1755 | bitidx=0; |
1756 | warnings = 0; |
1757 | if(num_blocks == 4) break; |
1758 | } |
1759 | memcpy(outBlocks, Blocks, 16*num_blocks); |
1760 | return num_blocks; |
1761 | } |
1762 | |
1763 | int IsBlock0PCF7931(uint8_t *Block) { |
1764 | // Assume RFU means 0 :) |
1765 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled |
1766 | return 1; |
1767 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? |
1768 | return 1; |
1769 | return 0; |
1770 | } |
1771 | |
1772 | int IsBlock1PCF7931(uint8_t *Block) { |
1773 | // Assume RFU means 0 :) |
1774 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) |
1775 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) |
1776 | return 1; |
1777 | |
1778 | return 0; |
1779 | } |
1780 | |
1781 | #define ALLOC 16 |
1782 | |
1783 | void ReadPCF7931() { |
1784 | uint8_t Blocks[8][17]; |
1785 | uint8_t tmpBlocks[4][16]; |
1786 | int i, j, ind, ind2, n; |
1787 | int num_blocks = 0; |
1788 | int max_blocks = 8; |
1789 | int ident = 0; |
1790 | int error = 0; |
1791 | int tries = 0; |
1792 | |
1793 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); |
1794 | |
1795 | do { |
1796 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); |
1797 | n = DemodPCF7931((uint8_t**)tmpBlocks); |
1798 | if(!n) |
1799 | error++; |
1800 | if(error==10 && num_blocks == 0) { |
1801 | Dbprintf("Error, no tag or bad tag"); |
1802 | return; |
1803 | } |
1804 | else if (tries==20 || error==10) { |
1805 | Dbprintf("Error reading the tag"); |
1806 | Dbprintf("Here is the partial content"); |
1807 | goto end; |
1808 | } |
1809 | |
1810 | for(i=0; i<n; i++) |
1811 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1812 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], |
1813 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); |
1814 | if(!ident) { |
1815 | for(i=0; i<n; i++) { |
1816 | if(IsBlock0PCF7931(tmpBlocks[i])) { |
1817 | // Found block 0 ? |
1818 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { |
1819 | // Found block 1! |
1820 | // \o/ |
1821 | ident = 1; |
1822 | memcpy(Blocks[0], tmpBlocks[i], 16); |
1823 | Blocks[0][ALLOC] = 1; |
1824 | memcpy(Blocks[1], tmpBlocks[i+1], 16); |
1825 | Blocks[1][ALLOC] = 1; |
1826 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; |
1827 | // Debug print |
1828 | Dbprintf("(dbg) Max blocks: %d", max_blocks); |
1829 | num_blocks = 2; |
1830 | // Handle following blocks |
1831 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { |
1832 | if(j==n) j=0; |
1833 | if(j==i) break; |
1834 | memcpy(Blocks[ind2], tmpBlocks[j], 16); |
1835 | Blocks[ind2][ALLOC] = 1; |
1836 | } |
1837 | break; |
1838 | } |
1839 | } |
1840 | } |
1841 | } |
1842 | else { |
1843 | for(i=0; i<n; i++) { // Look for identical block in known blocks |
1844 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 |
1845 | for(j=0; j<max_blocks; j++) { |
1846 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { |
1847 | // Found an identical block |
1848 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { |
1849 | if(ind2 < 0) |
1850 | ind2 = max_blocks; |
1851 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
1852 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
1853 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
1854 | Blocks[ind2][ALLOC] = 1; |
1855 | num_blocks++; |
1856 | if(num_blocks == max_blocks) goto end; |
1857 | } |
1858 | } |
1859 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { |
1860 | if(ind2 > max_blocks) |
1861 | ind2 = 0; |
1862 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found |
1863 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); |
1864 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); |
1865 | Blocks[ind2][ALLOC] = 1; |
1866 | num_blocks++; |
1867 | if(num_blocks == max_blocks) goto end; |
1868 | } |
1869 | } |
1870 | } |
1871 | } |
1872 | } |
1873 | } |
1874 | } |
1875 | tries++; |
1876 | if (BUTTON_PRESS()) return; |
1877 | } while (num_blocks != max_blocks); |
1878 | end: |
1879 | Dbprintf("-----------------------------------------"); |
1880 | Dbprintf("Memory content:"); |
1881 | Dbprintf("-----------------------------------------"); |
1882 | for(i=0; i<max_blocks; i++) { |
1883 | if(Blocks[i][ALLOC]==1) |
1884 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", |
1885 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], |
1886 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); |
1887 | else |
1888 | Dbprintf("<missing block %d>", i); |
1889 | } |
1890 | Dbprintf("-----------------------------------------"); |
1891 | |
1892 | return ; |
1893 | } |
1894 | |
1895 | |
1896 | //----------------------------------- |
1897 | // EM4469 / EM4305 routines |
1898 | //----------------------------------- |
1899 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored |
1900 | #define FWD_CMD_WRITE 0xA |
1901 | #define FWD_CMD_READ 0x9 |
1902 | #define FWD_CMD_DISABLE 0x5 |
1903 | |
1904 | |
1905 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1906 | uint8_t * forward_ptr; //ptr for forward message preparation |
1907 | uint8_t fwd_bit_sz; //forwardlink bit counter |
1908 | uint8_t * fwd_write_ptr; //forwardlink bit pointer |
1909 | |
1910 | //==================================================================== |
1911 | // prepares command bits |
1912 | // see EM4469 spec |
1913 | //==================================================================== |
1914 | //-------------------------------------------------------------------- |
1915 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
1916 | //-------------------------------------------------------------------- |
1917 | |
1918 | *forward_ptr++ = 0; //start bit |
1919 | *forward_ptr++ = 0; //second pause for 4050 code |
1920 | |
1921 | *forward_ptr++ = cmd; |
1922 | cmd >>= 1; |
1923 | *forward_ptr++ = cmd; |
1924 | cmd >>= 1; |
1925 | *forward_ptr++ = cmd; |
1926 | cmd >>= 1; |
1927 | *forward_ptr++ = cmd; |
1928 | |
1929 | return 6; //return number of emited bits |
1930 | } |
1931 | |
1932 | //==================================================================== |
1933 | // prepares address bits |
1934 | // see EM4469 spec |
1935 | //==================================================================== |
1936 | |
1937 | //-------------------------------------------------------------------- |
1938 | uint8_t Prepare_Addr( uint8_t addr ) { |
1939 | //-------------------------------------------------------------------- |
1940 | |
1941 | register uint8_t line_parity; |
1942 | |
1943 | uint8_t i; |
1944 | line_parity = 0; |
1945 | for(i=0;i<6;i++) { |
1946 | *forward_ptr++ = addr; |
1947 | line_parity ^= addr; |
1948 | addr >>= 1; |
1949 | } |
1950 | |
1951 | *forward_ptr++ = (line_parity & 1); |
1952 | |
1953 | return 7; //return number of emited bits |
1954 | } |
1955 | |
1956 | //==================================================================== |
1957 | // prepares data bits intreleaved with parity bits |
1958 | // see EM4469 spec |
1959 | //==================================================================== |
1960 | |
1961 | //-------------------------------------------------------------------- |
1962 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
1963 | //-------------------------------------------------------------------- |
1964 | |
1965 | register uint8_t line_parity; |
1966 | register uint8_t column_parity; |
1967 | register uint8_t i, j; |
1968 | register uint16_t data; |
1969 | |
1970 | data = data_low; |
1971 | column_parity = 0; |
1972 | |
1973 | for(i=0; i<4; i++) { |
1974 | line_parity = 0; |
1975 | for(j=0; j<8; j++) { |
1976 | line_parity ^= data; |
1977 | column_parity ^= (data & 1) << j; |
1978 | *forward_ptr++ = data; |
1979 | data >>= 1; |
1980 | } |
1981 | *forward_ptr++ = line_parity; |
1982 | if(i == 1) |
1983 | data = data_hi; |
1984 | } |
1985 | |
1986 | for(j=0; j<8; j++) { |
1987 | *forward_ptr++ = column_parity; |
1988 | column_parity >>= 1; |
1989 | } |
1990 | *forward_ptr = 0; |
1991 | |
1992 | return 45; //return number of emited bits |
1993 | } |
1994 | |
1995 | //==================================================================== |
1996 | // Forward Link send function |
1997 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) |
1998 | // fwd_bit_count set with number of bits to be sent |
1999 | //==================================================================== |
2000 | void SendForward(uint8_t fwd_bit_count) { |
2001 | |
2002 | fwd_write_ptr = forwardLink_data; |
2003 | fwd_bit_sz = fwd_bit_count; |
2004 | |
2005 | LED_D_ON(); |
2006 | |
2007 | //Field on |
2008 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
2009 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
2010 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
2011 | |
2012 | // Give it a bit of time for the resonant antenna to settle. |
2013 | // And for the tag to fully power up |
2014 | SpinDelay(150); |
2015 | |
2016 | // force 1st mod pulse (start gap must be longer for 4305) |
2017 | fwd_bit_sz--; //prepare next bit modulation |
2018 | fwd_write_ptr++; |
2019 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
2020 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 |
2021 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
2022 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
2023 | SpinDelayUs(16*8); //16 cycles on (8us each) |
2024 | |
2025 | // now start writting |
2026 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation |
2027 | if(((*fwd_write_ptr++) & 1) == 1) |
2028 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) |
2029 | else { |
2030 | //These timings work for 4469/4269/4305 (with the 55*8 above) |
2031 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
2032 | SpinDelayUs(23*8); //16-4 cycles off (8us each) |
2033 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
2034 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
2035 | SpinDelayUs(9*8); //16 cycles on (8us each) |
2036 | } |
2037 | } |
2038 | } |
2039 | |
2040 | void EM4xLogin(uint32_t Password) { |
2041 | |
2042 | uint8_t fwd_bit_count; |
2043 | |
2044 | forward_ptr = forwardLink_data; |
2045 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); |
2046 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); |
2047 | |
2048 | SendForward(fwd_bit_count); |
2049 | |
2050 | //Wait for command to complete |
2051 | SpinDelay(20); |
2052 | |
2053 | } |
2054 | |
2055 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
2056 | |
2057 | uint8_t fwd_bit_count; |
2058 | uint8_t *dest = BigBuf_get_addr(); |
2059 | int m=0, i=0; |
2060 | |
2061 | //If password mode do login |
2062 | if (PwdMode == 1) EM4xLogin(Pwd); |
2063 | |
2064 | forward_ptr = forwardLink_data; |
2065 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); |
2066 | fwd_bit_count += Prepare_Addr( Address ); |
2067 | |
2068 | m = BigBuf_max_traceLen(); |
2069 | // Clear destination buffer before sending the command |
2070 | memset(dest, 128, m); |
2071 | // Connect the A/D to the peak-detected low-frequency path. |
2072 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
2073 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
2074 | FpgaSetupSsc(); |
2075 | |
2076 | SendForward(fwd_bit_count); |
2077 | |
2078 | // Now do the acquisition |
2079 | i = 0; |
2080 | for(;;) { |
2081 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
2082 | AT91C_BASE_SSC->SSC_THR = 0x43; |
2083 | } |
2084 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
2085 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
2086 | i++; |
2087 | if (i >= m) break; |
2088 | } |
2089 | } |
2090 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
2091 | LED_D_OFF(); |
2092 | } |
2093 | |
2094 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { |
2095 | |
2096 | uint8_t fwd_bit_count; |
2097 | |
2098 | //If password mode do login |
2099 | if (PwdMode == 1) EM4xLogin(Pwd); |
2100 | |
2101 | forward_ptr = forwardLink_data; |
2102 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); |
2103 | fwd_bit_count += Prepare_Addr( Address ); |
2104 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); |
2105 | |
2106 | SendForward(fwd_bit_count); |
2107 | |
2108 | //Wait for write to complete |
2109 | SpinDelay(20); |
2110 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
2111 | LED_D_OFF(); |
2112 | } |