]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include "lfdemod.h" | |
14 | ||
15 | //by marshmellow | |
16 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
17 | uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen) | |
18 | { | |
19 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
20 | // otherwise could be a void with no arguments | |
21 | //set defaults | |
22 | int high=0, low=128; | |
23 | uint64_t lo=0; //hi=0, | |
24 | ||
25 | uint32_t i = 0; | |
26 | uint32_t initLoopMax = 65; | |
27 | if (initLoopMax>BitLen) initLoopMax=BitLen; | |
28 | ||
29 | for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values | |
30 | { | |
31 | if (BitStream[i] > high) | |
32 | high = BitStream[i]; | |
33 | else if (BitStream[i] < low) | |
34 | low = BitStream[i]; | |
35 | } | |
36 | if (((high !=1)||(low !=0))){ //allow only 1s and 0s | |
37 | // PrintAndLog("no data found"); | |
38 | return 0; | |
39 | } | |
40 | uint8_t parityTest=0; | |
41 | // 111111111 bit pattern represent start of frame | |
42 | uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; | |
43 | uint32_t idx = 0; | |
44 | uint32_t ii=0; | |
45 | uint8_t resetCnt = 0; | |
46 | while( (idx + 64) < BitLen) { | |
47 | restart: | |
48 | // search for a start of frame marker | |
49 | if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
50 | { // frame marker found | |
51 | idx+=9;//sizeof(frame_marker_mask); | |
52 | for (i=0; i<10;i++){ | |
53 | for(ii=0; ii<5; ++ii){ | |
54 | parityTest += BitStream[(i*5)+ii+idx]; | |
55 | } | |
56 | if (parityTest== ((parityTest>>1)<<1)){ | |
57 | parityTest=0; | |
58 | for (ii=0; ii<4;++ii){ | |
59 | //hi = (hi<<1)|(lo>>31); | |
60 | lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); | |
61 | } | |
62 | //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); | |
63 | }else {//parity failed | |
64 | //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); | |
65 | parityTest=0; | |
66 | idx-=8; | |
67 | if (resetCnt>5)return 0; | |
68 | resetCnt++; | |
69 | goto restart;//continue; | |
70 | } | |
71 | } | |
72 | //skip last 5 bit parity test for simplicity. | |
73 | return lo; | |
74 | }else{ | |
75 | idx++; | |
76 | } | |
77 | } | |
78 | return 0; | |
79 | } | |
80 | ||
81 | //by marshmellow | |
82 | //takes 2 arguments - clock and invert both as integers | |
83 | //attempts to demodulate ask while decoding manchester | |
84 | //prints binary found and saves in graphbuffer for further commands | |
85 | int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) | |
86 | { | |
87 | int i; | |
88 | int high = 0, low = 128; | |
89 | *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default | |
90 | ||
91 | if (*clk<8) *clk =64; | |
92 | if (*clk<32) *clk=32; | |
93 | if (*invert != 0 && *invert != 1) *invert=0; | |
94 | uint32_t initLoopMax = 200; | |
95 | if (initLoopMax>*BitLen) initLoopMax=*BitLen; | |
96 | // Detect high and lows | |
97 | for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values | |
98 | { | |
99 | if (BinStream[i] > high) | |
100 | high = BinStream[i]; | |
101 | else if (BinStream[i] < low) | |
102 | low = BinStream[i]; | |
103 | } | |
104 | if ((high < 158) ){ //throw away static | |
105 | //PrintAndLog("no data found"); | |
106 | return -2; | |
107 | } | |
108 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
109 | high=(int)((high-128)*.75)+128; | |
110 | low= (int)((low-128)*.75)+128; | |
111 | ||
112 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
113 | int lastBit = 0; //set first clock check | |
114 | uint32_t bitnum = 0; //output counter | |
115 | int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
116 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
117 | int iii = 0; | |
118 | uint32_t gLen = *BitLen; | |
119 | if (gLen > 3000) gLen=3000; | |
120 | uint8_t errCnt =0; | |
121 | uint32_t bestStart = *BitLen; | |
122 | uint32_t bestErrCnt = (*BitLen/1000); | |
123 | uint32_t maxErr = (*BitLen/1000); | |
124 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
125 | //loop to find first wave that works | |
126 | for (iii=0; iii < gLen; ++iii){ | |
127 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
128 | lastBit=iii-*clk; | |
129 | errCnt=0; | |
130 | //loop through to see if this start location works | |
131 | for (i = iii; i < *BitLen; ++i) { | |
132 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
133 | lastBit+=*clk; | |
134 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
135 | //low found and we are expecting a bar | |
136 | lastBit+=*clk; | |
137 | } else { | |
138 | //mid value found or no bar supposed to be here | |
139 | if ((i-lastBit)>(*clk+tol)){ | |
140 | //should have hit a high or low based on clock!! | |
141 | ||
142 | //debug | |
143 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
144 | ||
145 | errCnt++; | |
146 | lastBit+=*clk;//skip over until hit too many errors | |
147 | if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over | |
148 | } | |
149 | } | |
150 | if ((i-iii) >(400 * *clk)) break; //got plenty of bits | |
151 | } | |
152 | //we got more than 64 good bits and not all errors | |
153 | if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) { | |
154 | //possible good read | |
155 | if (errCnt==0){ | |
156 | bestStart=iii; | |
157 | bestErrCnt=errCnt; | |
158 | break; //great read - finish | |
159 | } | |
160 | if (errCnt<bestErrCnt){ //set this as new best run | |
161 | bestErrCnt=errCnt; | |
162 | bestStart = iii; | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | if (bestErrCnt<maxErr){ | |
168 | //best run is good enough set to best run and set overwrite BinStream | |
169 | iii=bestStart; | |
170 | lastBit=bestStart-*clk; | |
171 | bitnum=0; | |
172 | for (i = iii; i < *BitLen; ++i) { | |
173 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
174 | lastBit+=*clk; | |
175 | BinStream[bitnum] = *invert; | |
176 | bitnum++; | |
177 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
178 | //low found and we are expecting a bar | |
179 | lastBit+=*clk; | |
180 | BinStream[bitnum] = 1-*invert; | |
181 | bitnum++; | |
182 | } else { | |
183 | //mid value found or no bar supposed to be here | |
184 | if ((i-lastBit)>(*clk+tol)){ | |
185 | //should have hit a high or low based on clock!! | |
186 | ||
187 | //debug | |
188 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
189 | if (bitnum > 0){ | |
190 | BinStream[bitnum]=77; | |
191 | bitnum++; | |
192 | } | |
193 | ||
194 | lastBit+=*clk;//skip over error | |
195 | } | |
196 | } | |
197 | if (bitnum >=400) break; | |
198 | } | |
199 | *BitLen=bitnum; | |
200 | } else{ | |
201 | *invert=bestStart; | |
202 | *clk=iii; | |
203 | return -1; | |
204 | } | |
205 | return bestErrCnt; | |
206 | } | |
207 | ||
208 | //by marshmellow | |
209 | //take 10 and 01 and manchester decode | |
210 | //run through 2 times and take least errCnt | |
211 | int manrawdecode(uint8_t * BitStream, int *bitLen) | |
212 | { | |
213 | int bitnum=0; | |
214 | int errCnt =0; | |
215 | int i=1; | |
216 | int bestErr = 1000; | |
217 | int bestRun = 0; | |
218 | int ii=1; | |
219 | for (ii=1;ii<3;++ii){ | |
220 | i=1; | |
221 | for (i=i+ii;i<*bitLen-2;i+=2){ | |
222 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
223 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
224 | } else { | |
225 | errCnt++; | |
226 | } | |
227 | if(bitnum>300) break; | |
228 | } | |
229 | if (bestErr>errCnt){ | |
230 | bestErr=errCnt; | |
231 | bestRun=ii; | |
232 | } | |
233 | errCnt=0; | |
234 | } | |
235 | errCnt=bestErr; | |
236 | if (errCnt<20){ | |
237 | ii=bestRun; | |
238 | i=1; | |
239 | for (i=i+ii;i<*bitLen-2;i+=2){ | |
240 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
241 | BitStream[bitnum++]=0; | |
242 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
243 | BitStream[bitnum++]=1; | |
244 | } else { | |
245 | BitStream[bitnum++]=77; | |
246 | //errCnt++; | |
247 | } | |
248 | if(bitnum>300) break; | |
249 | } | |
250 | *bitLen=bitnum; | |
251 | } | |
252 | return errCnt; | |
253 | } | |
254 | ||
255 | ||
256 | //by marshmellow | |
257 | //take 01 or 10 = 0 and 11 or 00 = 1 | |
258 | int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) | |
259 | { | |
260 | uint8_t bitnum=0; | |
261 | uint32_t errCnt =0; | |
262 | uint32_t i=1; | |
263 | i=offset; | |
264 | for (;i<*bitLen-2;i+=2){ | |
265 | if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ | |
266 | BitStream[bitnum++]=1; | |
267 | } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ | |
268 | BitStream[bitnum++]=0; | |
269 | } else { | |
270 | BitStream[bitnum++]=77; | |
271 | errCnt++; | |
272 | } | |
273 | if(bitnum>250) break; | |
274 | } | |
275 | *bitLen=bitnum; | |
276 | return errCnt; | |
277 | } | |
278 | ||
279 | //by marshmellow | |
280 | //takes 2 arguments - clock and invert both as integers | |
281 | //attempts to demodulate ask only | |
282 | //prints binary found and saves in graphbuffer for further commands | |
283 | int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) | |
284 | { | |
285 | uint32_t i; | |
286 | // int invert=0; //invert default | |
287 | int high = 0, low = 128; | |
288 | *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default | |
289 | uint8_t BitStream[502] = {0}; | |
290 | ||
291 | if (*clk<8) *clk =64; | |
292 | if (*clk<32) *clk=32; | |
293 | if (*invert != 0 && *invert != 1) *invert =0; | |
294 | uint32_t initLoopMax = 200; | |
295 | if (initLoopMax>*bitLen) initLoopMax=*bitLen; | |
296 | // Detect high and lows | |
297 | for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values | |
298 | { | |
299 | if (BinStream[i] > high) | |
300 | high = BinStream[i]; | |
301 | else if (BinStream[i] < low) | |
302 | low = BinStream[i]; | |
303 | } | |
304 | if ((high < 158)){ //throw away static | |
305 | // PrintAndLog("no data found"); | |
306 | return -2; | |
307 | } | |
308 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
309 | high=(int)((high-128)*.75)+128; | |
310 | low= (int)((low-128)*.75)+128; | |
311 | ||
312 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
313 | int lastBit = 0; //set first clock check | |
314 | uint32_t bitnum = 0; //output counter | |
315 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
316 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
317 | uint32_t iii = 0; | |
318 | uint32_t gLen = *bitLen; | |
319 | if (gLen > 500) gLen=500; | |
320 | uint8_t errCnt =0; | |
321 | uint32_t bestStart = *bitLen; | |
322 | uint32_t bestErrCnt = (*bitLen/1000); | |
323 | uint8_t midBit=0; | |
324 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
325 | //loop to find first wave that works | |
326 | for (iii=0; iii < gLen; ++iii){ | |
327 | if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ | |
328 | lastBit=iii-*clk; | |
329 | //loop through to see if this start location works | |
330 | for (i = iii; i < *bitLen; ++i) { | |
331 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
332 | lastBit+=*clk; | |
333 | BitStream[bitnum] = *invert; | |
334 | bitnum++; | |
335 | midBit=0; | |
336 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
337 | //low found and we are expecting a bar | |
338 | lastBit+=*clk; | |
339 | BitStream[bitnum] = 1-*invert; | |
340 | bitnum++; | |
341 | midBit=0; | |
342 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
343 | //mid bar? | |
344 | midBit=1; | |
345 | BitStream[bitnum]= 1-*invert; | |
346 | bitnum++; | |
347 | } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
348 | //mid bar? | |
349 | midBit=1; | |
350 | BitStream[bitnum]= *invert; | |
351 | bitnum++; | |
352 | } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ | |
353 | //no mid bar found | |
354 | midBit=1; | |
355 | BitStream[bitnum]= BitStream[bitnum-1]; | |
356 | bitnum++; | |
357 | } else { | |
358 | //mid value found or no bar supposed to be here | |
359 | ||
360 | if ((i-lastBit)>(*clk+tol)){ | |
361 | //should have hit a high or low based on clock!! | |
362 | //debug | |
363 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
364 | if (bitnum > 0){ | |
365 | BitStream[bitnum]=77; | |
366 | bitnum++; | |
367 | } | |
368 | ||
369 | ||
370 | errCnt++; | |
371 | lastBit+=*clk;//skip over until hit too many errors | |
372 | if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over | |
373 | errCnt=0; | |
374 | bitnum=0;//start over | |
375 | break; | |
376 | } | |
377 | } | |
378 | } | |
379 | if (bitnum>500) break; | |
380 | } | |
381 | //we got more than 64 good bits and not all errors | |
382 | if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { | |
383 | //possible good read | |
384 | if (errCnt==0) break; //great read - finish | |
385 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
386 | if (errCnt<bestErrCnt){ //set this as new best run | |
387 | bestErrCnt=errCnt; | |
388 | bestStart = iii; | |
389 | } | |
390 | } | |
391 | } | |
392 | if (iii>=gLen){ //exhausted test | |
393 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
394 | if (bestErrCnt < (*bitLen/1000)) iii=bestStart; | |
395 | } | |
396 | } | |
397 | if (bitnum>16){ | |
398 | ||
399 | // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); | |
400 | //move BitStream back to BinStream | |
401 | // ClearGraph(0); | |
402 | for (i=0; i < bitnum; ++i){ | |
403 | BinStream[i]=BitStream[i]; | |
404 | } | |
405 | *bitLen=bitnum; | |
406 | // RepaintGraphWindow(); | |
407 | //output | |
408 | // if (errCnt>0){ | |
409 | // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); | |
410 | // } | |
411 | // PrintAndLog("ASK decoded bitstream:"); | |
412 | // Now output the bitstream to the scrollback by line of 16 bits | |
413 | // printBitStream2(BitStream,bitnum); | |
414 | //int errCnt=0; | |
415 | //errCnt=manrawdemod(BitStream,bitnum); | |
416 | ||
417 | // Em410xDecode(Cmd); | |
418 | } else return -1; | |
419 | return errCnt; | |
420 | } | |
421 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
422 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) | |
423 | { | |
424 | uint32_t last_transition = 0; | |
425 | uint32_t idx = 1; | |
426 | uint32_t maxVal=0; | |
427 | if (fchigh==0) fchigh=10; | |
428 | if (fclow==0) fclow=8; | |
429 | // we do care about the actual theshold value as sometimes near the center of the | |
430 | // wave we may get static that changes direction of wave for one value | |
431 | // if our value is too low it might affect the read. and if our tag or | |
432 | // antenna is weak a setting too high might not see anything. [marshmellow] | |
433 | if (size<100) return 0; | |
434 | for(idx=1; idx<100; idx++){ | |
435 | if(maxVal<dest[idx]) maxVal = dest[idx]; | |
436 | } | |
437 | // set close to the top of the wave threshold with 25% margin for error | |
438 | // less likely to get a false transition up there. | |
439 | // (but have to be careful not to go too high and miss some short waves) | |
440 | uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128); | |
441 | // idx=1; | |
442 | //uint8_t threshold_value = 127; | |
443 | ||
444 | // sync to first lo-hi transition, and threshold | |
445 | ||
446 | // Need to threshold first sample | |
447 | ||
448 | if(dest[0] < threshold_value) dest[0] = 0; | |
449 | else dest[0] = 1; | |
450 | ||
451 | size_t numBits = 0; | |
452 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
453 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
454 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
455 | for(idx = 1; idx < size; idx++) { | |
456 | // threshold current value | |
457 | ||
458 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
459 | else dest[idx] = 1; | |
460 | ||
461 | // Check for 0->1 transition | |
462 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
463 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
464 | //do nothing with extra garbage | |
465 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
466 | dest[numBits]=1; | |
467 | } else { //9+ = 10 waves | |
468 | dest[numBits]=0; | |
469 | } | |
470 | last_transition = idx; | |
471 | numBits++; | |
472 | } | |
473 | } | |
474 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
475 | } | |
476 | ||
477 | uint32_t myround2(float f) | |
478 | { | |
479 | if (f >= 2000) return 2000;//something bad happened | |
480 | return (uint32_t) (f + (float)0.5); | |
481 | } | |
482 | ||
483 | //translate 11111100000 to 10 | |
484 | size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, | |
485 | { | |
486 | uint8_t lastval=dest[0]; | |
487 | uint32_t idx=0; | |
488 | size_t numBits=0; | |
489 | uint32_t n=1; | |
490 | ||
491 | for( idx=1; idx < size; idx++) { | |
492 | ||
493 | if (dest[idx]==lastval) { | |
494 | n++; | |
495 | continue; | |
496 | } | |
497 | //if lastval was 1, we have a 1->0 crossing | |
498 | if ( dest[idx-1]==1 ) { | |
499 | n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); | |
500 | //n=(n+1) / h2l_crossing_value; | |
501 | } else {// 0->1 crossing | |
502 | n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor | |
503 | //n=(n+1) / l2h_crossing_value; | |
504 | } | |
505 | if (n == 0) n = 1; | |
506 | ||
507 | if(n < maxConsequtiveBits) //Consecutive | |
508 | { | |
509 | if(invert==0){ //invert bits | |
510 | memset(dest+numBits, dest[idx-1] , n); | |
511 | }else{ | |
512 | memset(dest+numBits, dest[idx-1]^1 , n); | |
513 | } | |
514 | numBits += n; | |
515 | } | |
516 | n=0; | |
517 | lastval=dest[idx]; | |
518 | }//end for | |
519 | return numBits; | |
520 | } | |
521 | //by marshmellow (from holiman's base) | |
522 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
523 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
524 | { | |
525 | // FSK demodulator | |
526 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
527 | size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); | |
528 | return size; | |
529 | } | |
530 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
531 | int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
532 | { | |
533 | ||
534 | size_t idx=0; //, found=0; //size=0, | |
535 | // FSK demodulator | |
536 | size = fskdemod(dest, size,50,0,10,8); | |
537 | ||
538 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
539 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
540 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
541 | int numshifts = 0; | |
542 | idx = 0; | |
543 | //one scan | |
544 | while( idx + sizeof(frame_marker_mask) < size) { | |
545 | // search for a start of frame marker | |
546 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
547 | { // frame marker found | |
548 | idx+=sizeof(frame_marker_mask); | |
549 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
550 | { | |
551 | // Keep going until next frame marker (or error) | |
552 | // Shift in a bit. Start by shifting high registers | |
553 | *hi2 = (*hi2<<1)|(*hi>>31); | |
554 | *hi = (*hi<<1)|(*lo>>31); | |
555 | //Then, shift in a 0 or one into low | |
556 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
557 | *lo=(*lo<<1)|0; | |
558 | else // 0 1 | |
559 | *lo=(*lo<<1)|1; | |
560 | numshifts++; | |
561 | idx += 2; | |
562 | } | |
563 | // Hopefully, we read a tag and hit upon the next frame marker | |
564 | if(idx + sizeof(frame_marker_mask) < size) | |
565 | { | |
566 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
567 | { | |
568 | //good return | |
569 | return idx; | |
570 | } | |
571 | } | |
572 | // reset | |
573 | *hi2 = *hi = *lo = 0; | |
574 | numshifts = 0; | |
575 | }else { | |
576 | idx++; | |
577 | } | |
578 | } | |
579 | return -1; | |
580 | } | |
581 | ||
582 | uint32_t bytebits_to_byte(uint8_t* src, int numbits) | |
583 | { | |
584 | uint32_t num = 0; | |
585 | for(int i = 0 ; i < numbits ; i++) | |
586 | { | |
587 | num = (num << 1) | (*src); | |
588 | src++; | |
589 | } | |
590 | return num; | |
591 | } | |
592 | ||
593 | int IOdemodFSK(uint8_t *dest, size_t size) | |
594 | { | |
595 | static const uint8_t THRESHOLD = 140; | |
596 | uint32_t idx=0; | |
597 | //make sure buffer has data | |
598 | if (size < 66) return -1; | |
599 | //test samples are not just noise | |
600 | uint8_t justNoise = 1; | |
601 | for(idx=0;idx< size && justNoise ;idx++){ | |
602 | justNoise = dest[idx] < THRESHOLD; | |
603 | } | |
604 | if(justNoise) return 0; | |
605 | ||
606 | // FSK demodulator | |
607 | size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert | |
608 | if (size < 65) return -1; //did we get a good demod? | |
609 | //Index map | |
610 | //0 10 20 30 40 50 60 | |
611 | //| | | | | | | | |
612 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
613 | //----------------------------------------------------------------------------- | |
614 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
615 | // | |
616 | //XSF(version)facility:codeone+codetwo | |
617 | //Handle the data | |
618 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
619 | for( idx=0; idx < (size - 65); idx++) { | |
620 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
621 | //frame marker found | |
622 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
623 | //confirmed proper separator bits found | |
624 | //return start position | |
625 | return (int) idx; | |
626 | } | |
627 | } | |
628 | } | |
629 | return 0; | |
630 | } | |
631 | ||
632 | // by marshmellow | |
633 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
634 | // maybe somehow adjust peak trimming value based on samples to fix? | |
635 | int DetectASKClock(uint8_t dest[], size_t size, int clock) | |
636 | { | |
637 | int i=0; | |
638 | int peak=0; | |
639 | int low=128; | |
640 | int clk[]={16,32,40,50,64,100,128,256}; | |
641 | int loopCnt = 256; //don't need to loop through entire array... | |
642 | if (size<loopCnt) loopCnt = size; | |
643 | ||
644 | //if we already have a valid clock quit | |
645 | for (;i<8;++i) | |
646 | if (clk[i]==clock) return clock; | |
647 | ||
648 | //get high and low peak | |
649 | for (i=0;i<loopCnt;++i){ | |
650 | if(dest[i]>peak){ | |
651 | peak = dest[i]; | |
652 | } | |
653 | if(dest[i]<low){ | |
654 | low = dest[i]; | |
655 | } | |
656 | } | |
657 | peak=(int)((peak-128)*.75)+128; | |
658 | low= (int)((low-128)*.75)+128; | |
659 | int ii; | |
660 | int clkCnt; | |
661 | int tol = 0; | |
662 | int bestErr=1000; | |
663 | int errCnt[]={0,0,0,0,0,0,0,0}; | |
664 | //test each valid clock from smallest to greatest to see which lines up | |
665 | for(clkCnt=0; clkCnt<6;++clkCnt){ | |
666 | if (clk[clkCnt]==32){ | |
667 | tol=1; | |
668 | }else{ | |
669 | tol=0; | |
670 | } | |
671 | bestErr=1000; | |
672 | //try lining up the peaks by moving starting point (try first 256) | |
673 | for (ii=0; ii<loopCnt; ++ii){ | |
674 | if ((dest[ii]>=peak) || (dest[ii]<=low)){ | |
675 | errCnt[clkCnt]=0; | |
676 | // now that we have the first one lined up test rest of wave array | |
677 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
678 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
679 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
680 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
681 | }else{ //error no peak detected | |
682 | errCnt[clkCnt]++; | |
683 | } | |
684 | } | |
685 | //if we found no errors this is correct one - return this clock | |
686 | if(errCnt[clkCnt]==0) return clk[clkCnt]; | |
687 | //if we found errors see if it is lowest so far and save it as best run | |
688 | if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt]; | |
689 | } | |
690 | } | |
691 | } | |
692 | int iii=0; | |
693 | int best=0; | |
694 | for (iii=0; iii<6;++iii){ | |
695 | if (errCnt[iii]<errCnt[best]){ | |
696 | best = iii; | |
697 | } | |
698 | } | |
699 | return clk[best]; | |
700 | } |