]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
Merge branch 'master' into master
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "usb_cdc.h" // for usb_poll_validate_length
21#include "fpgaloader.h"
22
23/**
24 * Function to do a modulation and then get samples.
25 * @param delay_off
26 * @param period_0
27 * @param period_1
28 * @param command
29 */
30void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
31{
32 // start timer
33 StartTicks();
34
35 // use lf config settings
36 sample_config *sc = getSamplingConfig();
37
38 // Make sure the tag is reset
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
41 WaitMS(2500);
42
43 // clear read buffer (after fpga bitstream loaded...)
44 BigBuf_Clear_keep_EM();
45
46 // power on
47 LFSetupFPGAForADC(sc->divisor, 1);
48
49 // And a little more time for the tag to fully power up
50 WaitMS(2000);
51 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
52 bool bitbang = delay_off == 0;
53 // now modulate the reader field
54
55 if (bitbang) {
56 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
57 uint8_t hack_cnt = 7;
58 if (period_0 < hack_cnt || period_1 < hack_cnt) {
59 DbpString("Warning periods cannot be less than 7us in bit bang mode");
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
61 LED_D_OFF();
62 return;
63 }
64
65 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
66 // leading to ~ 1 to 2 125khz samples extra in every off period
67 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
68 // but is this time different for every antenna or other hw builds??? more testing needed
69
70 // prime cmd_len to save time comparing strings while modulating
71 int cmd_len = 0;
72 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
73 cmd_len++;
74
75 int counter = 0;
76 bool off = false;
77 for (counter = 0; counter < cmd_len; counter++) {
78 // if cmd = 0 then turn field off
79 if (command[counter] == '0') {
80 // if field already off leave alone (affects timing otherwise)
81 if (off == false) {
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
83 LED_D_OFF();
84 off = true;
85 }
86 // note we appear to take about 7us to switch over (or run the if statements/loop...)
87 WaitUS(period_0-hack_cnt);
88 // else if cmd = 1 then turn field on
89 } else {
90 // if field already on leave alone (affects timing otherwise)
91 if (off) {
92 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
93 LED_D_ON();
94 off = false;
95 }
96 // note we appear to take about 7us to switch over (or run the if statements/loop...)
97 WaitUS(period_1-hack_cnt);
98 }
99 }
100 } else { // old mode of cmd read using delay as off period
101 while(*command != '\0' && *command != ' ') {
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
103 LED_D_OFF();
104 WaitUS(delay_off);
105 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
106 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
107 LED_D_ON();
108 if(*(command++) == '0') {
109 WaitUS(period_0);
110 } else {
111 WaitUS(period_1);
112 }
113 }
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 LED_D_OFF();
116 WaitUS(delay_off);
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
118 }
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
121
122 // now do the read
123 DoAcquisition_config(false, 0);
124
125 // Turn off antenna
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
127 // tell client we are done
128 cmd_send(CMD_ACK,0,0,0,0,0);
129}
130
131/* blank r/w tag data stream
132...0000000000000000 01111111
1331010101010101010101010101010101010101010101010101010101010101010
1340011010010100001
13501111111
136101010101010101[0]000...
137
138[5555fe852c5555555555555555fe0000]
139*/
140void ReadTItag(void)
141{
142 // some hardcoded initial params
143 // when we read a TI tag we sample the zerocross line at 2Mhz
144 // TI tags modulate a 1 as 16 cycles of 123.2Khz
145 // TI tags modulate a 0 as 16 cycles of 134.2Khz
146 #define FSAMPLE 2000000
147 #define FREQLO 123200
148 #define FREQHI 134200
149
150 signed char *dest = (signed char *)BigBuf_get_addr();
151 uint16_t n = BigBuf_max_traceLen();
152 // 128 bit shift register [shift3:shift2:shift1:shift0]
153 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
154
155 int i, cycles=0, samples=0;
156 // how many sample points fit in 16 cycles of each frequency
157 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
158 // when to tell if we're close enough to one freq or another
159 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
160
161 // TI tags charge at 134.2Khz
162 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
163 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
164
165 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
166 // connects to SSP_DIN and the SSP_DOUT logic level controls
167 // whether we're modulating the antenna (high)
168 // or listening to the antenna (low)
169 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
170
171 // get TI tag data into the buffer
172 AcquireTiType();
173
174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
175
176 for (i=0; i<n-1; i++) {
177 // count cycles by looking for lo to hi zero crossings
178 if ( (dest[i]<0) && (dest[i+1]>0) ) {
179 cycles++;
180 // after 16 cycles, measure the frequency
181 if (cycles>15) {
182 cycles=0;
183 samples=i-samples; // number of samples in these 16 cycles
184
185 // TI bits are coming to us lsb first so shift them
186 // right through our 128 bit right shift register
187 shift0 = (shift0>>1) | (shift1 << 31);
188 shift1 = (shift1>>1) | (shift2 << 31);
189 shift2 = (shift2>>1) | (shift3 << 31);
190 shift3 >>= 1;
191
192 // check if the cycles fall close to the number
193 // expected for either the low or high frequency
194 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
195 // low frequency represents a 1
196 shift3 |= (1<<31);
197 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
198 // high frequency represents a 0
199 } else {
200 // probably detected a gay waveform or noise
201 // use this as gaydar or discard shift register and start again
202 shift3 = shift2 = shift1 = shift0 = 0;
203 }
204 samples = i;
205
206 // for each bit we receive, test if we've detected a valid tag
207
208 // if we see 17 zeroes followed by 6 ones, we might have a tag
209 // remember the bits are backwards
210 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
211 // if start and end bytes match, we have a tag so break out of the loop
212 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
213 cycles = 0xF0B; //use this as a flag (ugly but whatever)
214 break;
215 }
216 }
217 }
218 }
219 }
220
221 // if flag is set we have a tag
222 if (cycles!=0xF0B) {
223 DbpString("Info: No valid tag detected.");
224 } else {
225 // put 64 bit data into shift1 and shift0
226 shift0 = (shift0>>24) | (shift1 << 8);
227 shift1 = (shift1>>24) | (shift2 << 8);
228
229 // align 16 bit crc into lower half of shift2
230 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
231
232 // if r/w tag, check ident match
233 if (shift3 & (1<<15) ) {
234 DbpString("Info: TI tag is rewriteable");
235 // only 15 bits compare, last bit of ident is not valid
236 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
237 DbpString("Error: Ident mismatch!");
238 } else {
239 DbpString("Info: TI tag ident is valid");
240 }
241 } else {
242 DbpString("Info: TI tag is readonly");
243 }
244
245 // WARNING the order of the bytes in which we calc crc below needs checking
246 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
247 // bytes in reverse or something
248 // calculate CRC
249 uint32_t crc=0;
250
251 crc = update_crc16(crc, (shift0)&0xff);
252 crc = update_crc16(crc, (shift0>>8)&0xff);
253 crc = update_crc16(crc, (shift0>>16)&0xff);
254 crc = update_crc16(crc, (shift0>>24)&0xff);
255 crc = update_crc16(crc, (shift1)&0xff);
256 crc = update_crc16(crc, (shift1>>8)&0xff);
257 crc = update_crc16(crc, (shift1>>16)&0xff);
258 crc = update_crc16(crc, (shift1>>24)&0xff);
259
260 Dbprintf("Info: Tag data: %x%08x, crc=%x",
261 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
262 if (crc != (shift2&0xffff)) {
263 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
264 } else {
265 DbpString("Info: CRC is good");
266 }
267 }
268}
269
270void WriteTIbyte(uint8_t b)
271{
272 int i = 0;
273
274 // modulate 8 bits out to the antenna
275 for (i=0; i<8; i++)
276 {
277 if (b&(1<<i)) {
278 // stop modulating antenna
279 LOW(GPIO_SSC_DOUT);
280 SpinDelayUs(1000);
281 // modulate antenna
282 HIGH(GPIO_SSC_DOUT);
283 SpinDelayUs(1000);
284 } else {
285 // stop modulating antenna
286 LOW(GPIO_SSC_DOUT);
287 SpinDelayUs(300);
288 // modulate antenna
289 HIGH(GPIO_SSC_DOUT);
290 SpinDelayUs(1700);
291 }
292 }
293}
294
295void AcquireTiType(void)
296{
297 int i, j, n;
298 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
299 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
300 #define TIBUFLEN 1250
301
302 // clear buffer
303 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
304 BigBuf_Clear_ext(false);
305
306 // Set up the synchronous serial port
307 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
308 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
309
310 // steal this pin from the SSP and use it to control the modulation
311 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
312 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
313
314 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
315 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
316
317 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
318 // 48/2 = 24 MHz clock must be divided by 12
319 AT91C_BASE_SSC->SSC_CMR = 12;
320
321 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
322 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
323 AT91C_BASE_SSC->SSC_TCMR = 0;
324 AT91C_BASE_SSC->SSC_TFMR = 0;
325
326 LED_D_ON();
327
328 // modulate antenna
329 HIGH(GPIO_SSC_DOUT);
330
331 // Charge TI tag for 50ms.
332 SpinDelay(50);
333
334 // stop modulating antenna and listen
335 LOW(GPIO_SSC_DOUT);
336
337 LED_D_OFF();
338
339 i = 0;
340 for(;;) {
341 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
342 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
343 i++; if(i >= TIBUFLEN) break;
344 }
345 WDT_HIT();
346 }
347
348 // return stolen pin to SSP
349 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
350 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
351
352 char *dest = (char *)BigBuf_get_addr();
353 n = TIBUFLEN*32;
354 // unpack buffer
355 for (i=TIBUFLEN-1; i>=0; i--) {
356 for (j=0; j<32; j++) {
357 if(BigBuf[i] & (1 << j)) {
358 dest[--n] = 1;
359 } else {
360 dest[--n] = -1;
361 }
362 }
363 }
364}
365
366// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
367// if crc provided, it will be written with the data verbatim (even if bogus)
368// if not provided a valid crc will be computed from the data and written.
369void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
370{
371 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
372 if(crc == 0) {
373 crc = update_crc16(crc, (idlo)&0xff);
374 crc = update_crc16(crc, (idlo>>8)&0xff);
375 crc = update_crc16(crc, (idlo>>16)&0xff);
376 crc = update_crc16(crc, (idlo>>24)&0xff);
377 crc = update_crc16(crc, (idhi)&0xff);
378 crc = update_crc16(crc, (idhi>>8)&0xff);
379 crc = update_crc16(crc, (idhi>>16)&0xff);
380 crc = update_crc16(crc, (idhi>>24)&0xff);
381 }
382 Dbprintf("Writing to tag: %x%08x, crc=%x",
383 (unsigned int) idhi, (unsigned int) idlo, crc);
384
385 // TI tags charge at 134.2Khz
386 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
387 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
388 // connects to SSP_DIN and the SSP_DOUT logic level controls
389 // whether we're modulating the antenna (high)
390 // or listening to the antenna (low)
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
392 LED_A_ON();
393
394 // steal this pin from the SSP and use it to control the modulation
395 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
397
398 // writing algorithm:
399 // a high bit consists of a field off for 1ms and field on for 1ms
400 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
401 // initiate a charge time of 50ms (field on) then immediately start writing bits
402 // start by writing 0xBB (keyword) and 0xEB (password)
403 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
404 // finally end with 0x0300 (write frame)
405 // all data is sent lsb firts
406 // finish with 15ms programming time
407
408 // modulate antenna
409 HIGH(GPIO_SSC_DOUT);
410 SpinDelay(50); // charge time
411
412 WriteTIbyte(0xbb); // keyword
413 WriteTIbyte(0xeb); // password
414 WriteTIbyte( (idlo )&0xff );
415 WriteTIbyte( (idlo>>8 )&0xff );
416 WriteTIbyte( (idlo>>16)&0xff );
417 WriteTIbyte( (idlo>>24)&0xff );
418 WriteTIbyte( (idhi )&0xff );
419 WriteTIbyte( (idhi>>8 )&0xff );
420 WriteTIbyte( (idhi>>16)&0xff );
421 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
422 WriteTIbyte( (crc )&0xff ); // crc lo
423 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
424 WriteTIbyte(0x00); // write frame lo
425 WriteTIbyte(0x03); // write frame hi
426 HIGH(GPIO_SSC_DOUT);
427 SpinDelay(50); // programming time
428
429 LED_A_OFF();
430
431 // get TI tag data into the buffer
432 AcquireTiType();
433
434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
435 DbpString("Now use `lf ti read` to check");
436}
437
438void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
439{
440 int i;
441 uint8_t *tab = BigBuf_get_addr();
442
443 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
444 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
445 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
446
447 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
448
449 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
450 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
451
452 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
453 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
454
455 i = 0;
456 for(;;) {
457 //wait until SSC_CLK goes HIGH
458 int ii = 0;
459 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
460 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
461 if ( ii == 1000 ) {
462 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
464 DbpString("Stopped");
465 return;
466 }
467 ii=0;
468 }
469 WDT_HIT();
470 ii++;
471 }
472 if (ledcontrol)
473 LED_D_ON();
474
475 if(tab[i])
476 OPEN_COIL();
477 else
478 SHORT_COIL();
479
480 if (ledcontrol)
481 LED_D_OFF();
482 ii=0;
483 //wait until SSC_CLK goes LOW
484 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
485 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
486 if ( ii == 1000 ) {
487 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
488 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
489 DbpString("Stopped");
490 return;
491 }
492 ii=0;
493 }
494 WDT_HIT();
495 ii++;
496 }
497
498 i++;
499 if(i == period) {
500
501 i = 0;
502 if (gap) {
503 SHORT_COIL();
504 SpinDelayUs(gap);
505 }
506 }
507
508 }
509}
510
511#define DEBUG_FRAME_CONTENTS 1
512void SimulateTagLowFrequencyBidir(int divisor, int t0)
513{
514}
515
516// compose fc/8 fc/10 waveform (FSK2)
517static void fc(int c, int *n)
518{
519 uint8_t *dest = BigBuf_get_addr();
520 int idx;
521
522 // for when we want an fc8 pattern every 4 logical bits
523 if(c==0) {
524 dest[((*n)++)]=1;
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=1;
528 dest[((*n)++)]=0;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 dest[((*n)++)]=0;
532 }
533
534 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
535 if(c==8) {
536 for (idx=0; idx<6; idx++) {
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=1;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 }
546 }
547
548 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
549 if(c==10) {
550 for (idx=0; idx<5; idx++) {
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=1;
553 dest[((*n)++)]=1;
554 dest[((*n)++)]=1;
555 dest[((*n)++)]=1;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 dest[((*n)++)]=0;
559 dest[((*n)++)]=0;
560 dest[((*n)++)]=0;
561 }
562 }
563}
564// compose fc/X fc/Y waveform (FSKx)
565static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
566{
567 uint8_t *dest = BigBuf_get_addr();
568 uint8_t halfFC = fc/2;
569 uint8_t wavesPerClock = clock/fc;
570 uint8_t mod = clock % fc; //modifier
571 uint8_t modAdj = fc/mod; //how often to apply modifier
572 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
573 // loop through clock - step field clock
574 for (uint8_t idx=0; idx < wavesPerClock; idx++){
575 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
576 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
577 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
578 *n += fc;
579 }
580 if (mod>0) (*modCnt)++;
581 if ((mod>0) && modAdjOk){ //fsk2
582 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
583 memset(dest+(*n), 0, fc-halfFC);
584 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
585 *n += fc;
586 }
587 }
588 if (mod>0 && !modAdjOk){ //fsk1
589 memset(dest+(*n), 0, mod-(mod/2));
590 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
591 *n += mod;
592 }
593}
594
595// prepare a waveform pattern in the buffer based on the ID given then
596// simulate a HID tag until the button is pressed
597void CmdHIDsimTAG(int hi2, int hi, int lo, int ledcontrol)
598{
599 int n=0, i=0;
600 /*
601 HID tag bitstream format
602 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
603 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
604 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
605 A fc8 is inserted before every 4 bits
606 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
607 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
608 */
609
610 if (hi2>0x0FFFFFFF) {
611 DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
612 return;
613 }
614 // set LF so we don't kill the bigbuf we are setting with simulation data.
615 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
616
617 fc(0,&n);
618 // special start of frame marker containing invalid bit sequences
619 fc(8, &n); fc(8, &n); // invalid
620 fc(8, &n); fc(10, &n); // logical 0
621 fc(10, &n); fc(10, &n); // invalid
622 fc(8, &n); fc(10, &n); // logical 0
623
624 WDT_HIT();
625 if (hi2 > 0 || hi > 0xFFF){
626 // manchester encode bits 91 to 64 (91-84 are part of the header)
627 for (i=27; i>=0; i--) {
628 if ((i%4)==3) fc(0,&n);
629 if ((hi2>>i)&1) {
630 fc(10, &n); fc(8, &n); // low-high transition
631 } else {
632 fc(8, &n); fc(10, &n); // high-low transition
633 }
634 }
635 WDT_HIT();
636 // manchester encode bits 63 to 32
637 for (i=31; i>=0; i--) {
638 if ((i%4)==3) fc(0,&n);
639 if ((hi>>i)&1) {
640 fc(10, &n); fc(8, &n); // low-high transition
641 } else {
642 fc(8, &n); fc(10, &n); // high-low transition
643 }
644 }
645 } else {
646 // manchester encode bits 43 to 32
647 for (i=11; i>=0; i--) {
648 if ((i%4)==3) fc(0,&n);
649 if ((hi>>i)&1) {
650 fc(10, &n); fc(8, &n); // low-high transition
651 } else {
652 fc(8, &n); fc(10, &n); // high-low transition
653 }
654 }
655 }
656
657 WDT_HIT();
658 // manchester encode bits 31 to 0
659 for (i=31; i>=0; i--) {
660 if ((i%4)==3) fc(0,&n);
661 if ((lo>>i)&1) {
662 fc(10, &n); fc(8, &n); // low-high transition
663 } else {
664 fc(8, &n); fc(10, &n); // high-low transition
665 }
666 }
667
668 if (ledcontrol)
669 LED_A_ON();
670 SimulateTagLowFrequency(n, 0, ledcontrol);
671
672 if (ledcontrol)
673 LED_A_OFF();
674}
675
676// prepare a waveform pattern in the buffer based on the ID given then
677// simulate a FSK tag until the button is pressed
678// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
679void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
680{
681 int ledcontrol=1;
682 int n=0, i=0;
683 uint8_t fcHigh = arg1 >> 8;
684 uint8_t fcLow = arg1 & 0xFF;
685 uint16_t modCnt = 0;
686 uint8_t clk = arg2 & 0xFF;
687 uint8_t invert = (arg2 >> 8) & 1;
688
689 // set LF so we don't kill the bigbuf we are setting with simulation data.
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
691
692 for (i=0; i<size; i++){
693 if (BitStream[i] == invert){
694 fcAll(fcLow, &n, clk, &modCnt);
695 } else {
696 fcAll(fcHigh, &n, clk, &modCnt);
697 }
698 }
699 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
700 /*Dbprintf("DEBUG: First 32:");
701 uint8_t *dest = BigBuf_get_addr();
702 i=0;
703 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 i+=16;
705 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
706 */
707 if (ledcontrol)
708 LED_A_ON();
709
710 SimulateTagLowFrequency(n, 0, ledcontrol);
711
712 if (ledcontrol)
713 LED_A_OFF();
714}
715
716// compose ask waveform for one bit(ASK)
717static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
718{
719 uint8_t *dest = BigBuf_get_addr();
720 uint8_t halfClk = clock/2;
721 // c = current bit 1 or 0
722 if (manchester==1){
723 memset(dest+(*n), c, halfClk);
724 memset(dest+(*n) + halfClk, c^1, halfClk);
725 } else {
726 memset(dest+(*n), c, clock);
727 }
728 *n += clock;
729}
730
731static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
732{
733 uint8_t *dest = BigBuf_get_addr();
734 uint8_t halfClk = clock/2;
735 if (c){
736 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
737 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
738 } else {
739 memset(dest+(*n), c ^ *phase, clock);
740 *phase ^= 1;
741 }
742 *n += clock;
743}
744
745static void stAskSimBit(int *n, uint8_t clock) {
746 uint8_t *dest = BigBuf_get_addr();
747 uint8_t halfClk = clock/2;
748 //ST = .5 high .5 low 1.5 high .5 low 1 high
749 memset(dest+(*n), 1, halfClk);
750 memset(dest+(*n) + halfClk, 0, halfClk);
751 memset(dest+(*n) + clock, 1, clock + halfClk);
752 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
753 memset(dest+(*n) + clock*3, 1, clock);
754 *n += clock*4;
755}
756
757// args clock, ask/man or askraw, invert, transmission separator
758void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
759{
760 int ledcontrol = 1;
761 int n=0, i=0;
762 uint8_t clk = (arg1 >> 8) & 0xFF;
763 uint8_t encoding = arg1 & 0xFF;
764 uint8_t separator = arg2 & 1;
765 uint8_t invert = (arg2 >> 8) & 1;
766
767 // set LF so we don't kill the bigbuf we are setting with simulation data.
768 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
769
770 if (encoding==2){ //biphase
771 uint8_t phase=0;
772 for (i=0; i<size; i++){
773 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
774 }
775 if (phase==1) { //run a second set inverted to keep phase in check
776 for (i=0; i<size; i++){
777 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
778 }
779 }
780 } else { // ask/manchester || ask/raw
781 for (i=0; i<size; i++){
782 askSimBit(BitStream[i]^invert, &n, clk, encoding);
783 }
784 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
785 for (i=0; i<size; i++){
786 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
787 }
788 }
789 }
790 if (separator==1 && encoding == 1)
791 stAskSimBit(&n, clk);
792 else if (separator==1)
793 Dbprintf("sorry but separator option not yet available");
794
795 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
796 //DEBUG
797 //Dbprintf("First 32:");
798 //uint8_t *dest = BigBuf_get_addr();
799 //i=0;
800 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
801 //i+=16;
802 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
803
804 if (ledcontrol) LED_A_ON();
805 SimulateTagLowFrequency(n, 0, ledcontrol);
806 if (ledcontrol) LED_A_OFF();
807}
808
809//carrier can be 2,4 or 8
810static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
811{
812 uint8_t *dest = BigBuf_get_addr();
813 uint8_t halfWave = waveLen/2;
814 //uint8_t idx;
815 int i = 0;
816 if (phaseChg){
817 // write phase change
818 memset(dest+(*n), *curPhase^1, halfWave);
819 memset(dest+(*n) + halfWave, *curPhase, halfWave);
820 *n += waveLen;
821 *curPhase ^= 1;
822 i += waveLen;
823 }
824 //write each normal clock wave for the clock duration
825 for (; i < clk; i+=waveLen){
826 memset(dest+(*n), *curPhase, halfWave);
827 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
828 *n += waveLen;
829 }
830}
831
832// args clock, carrier, invert,
833void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
834{
835 int ledcontrol=1;
836 int n=0, i=0;
837 uint8_t clk = arg1 >> 8;
838 uint8_t carrier = arg1 & 0xFF;
839 uint8_t invert = arg2 & 0xFF;
840 uint8_t curPhase = 0;
841 // set LF so we don't kill the bigbuf we are setting with simulation data.
842 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
843
844 for (i=0; i<size; i++){
845 if (BitStream[i] == curPhase){
846 pskSimBit(carrier, &n, clk, &curPhase, false);
847 } else {
848 pskSimBit(carrier, &n, clk, &curPhase, true);
849 }
850 }
851 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
852 //Dbprintf("DEBUG: First 32:");
853 //uint8_t *dest = BigBuf_get_addr();
854 //i=0;
855 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
856 //i+=16;
857 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
858
859 if (ledcontrol) LED_A_ON();
860 SimulateTagLowFrequency(n, 0, ledcontrol);
861 if (ledcontrol) LED_A_OFF();
862}
863
864// loop to get raw HID waveform then FSK demodulate the TAG ID from it
865void CmdHIDdemodFSK(int findone, int *high2, int *high, int *low, int ledcontrol)
866{
867 uint8_t *dest = BigBuf_get_addr();
868 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
869 size_t size;
870 uint32_t hi2=0, hi=0, lo=0;
871 int idx=0;
872 int dummyIdx = 0;
873 // Configure to go in 125Khz listen mode
874 LFSetupFPGAForADC(95, true);
875
876 //clear read buffer
877 BigBuf_Clear_keep_EM();
878
879 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
880 WDT_HIT();
881 if (ledcontrol) LED_A_ON();
882
883 DoAcquisition_default(-1,true);
884 // FSK demodulator
885 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
886 size = 50*128*2; //big enough to catch 2 sequences of largest format
887 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
888
889 if (idx>0 && lo>0 && (size==96 || size==192)){
890 uint8_t bitlen = 0;
891 uint32_t fc = 0;
892 uint32_t cardnum = 0;
893 bool decoded = false;
894
895 // go over previously decoded manchester data and decode into usable tag ID
896 if ((hi2 & 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
897 uint32_t bp = hi2 & 0x000FFFFF;
898 bitlen = 63;
899 while (bp > 0) {
900 bp = bp >> 1;
901 bitlen++;
902 }
903 } else if ((hi >> 6) > 0) {
904 uint32_t bp = hi;
905 bitlen = 31;
906 while (bp > 0) {
907 bp = bp >> 1;
908 bitlen++;
909 }
910 } else if (((hi >> 5) & 1) == 0) {
911 bitlen = 37;
912 } else if ((hi & 0x0000001F) > 0 ) {
913 uint32_t bp = (hi & 0x0000001F);
914 bitlen = 31;
915 while (bp > 0) {
916 bp = bp >> 1;
917 bitlen++;
918 }
919 } else {
920 uint32_t bp = lo;
921 bitlen = 0;
922 while (bp > 0) {
923 bp = bp >> 1;
924 bitlen++;
925 }
926 }
927 switch (bitlen){
928 case 26:
929 cardnum = (lo>>1)&0xFFFF;
930 fc = (lo>>17)&0xFF;
931 decoded = true;
932 break;
933 case 35:
934 cardnum = (lo>>1)&0xFFFFF;
935 fc = ((hi&1)<<11)|(lo>>21);
936 decoded = true;
937 break;
938 }
939
940 if (hi2 != 0) //extra large HID tags 88/192 bits
941 Dbprintf("TAG ID: %x%08x%08x (%d)",
942 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
943 else
944 Dbprintf("TAG ID: %x%08x (%d)",
945 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
946
947 if (decoded)
948 Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
949 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
950
951 if (findone){
952 if (ledcontrol) LED_A_OFF();
953 *high2 = hi2;
954 *high = hi;
955 *low = lo;
956 break;
957 }
958 // reset
959 }
960 hi2 = hi = lo = idx = 0;
961 WDT_HIT();
962 }
963
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
965 DbpString("Stopped");
966 if (ledcontrol) LED_A_OFF();
967}
968
969// loop to get raw HID waveform then FSK demodulate the TAG ID from it
970void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
971{
972 uint8_t *dest = BigBuf_get_addr();
973 size_t size;
974 int idx=0, dummyIdx=0;
975 //clear read buffer
976 BigBuf_Clear_keep_EM();
977 // Configure to go in 125Khz listen mode
978 LFSetupFPGAForADC(95, true);
979
980 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
981
982 WDT_HIT();
983 if (ledcontrol) LED_A_ON();
984
985 DoAcquisition_default(-1,true);
986 // FSK demodulator
987 size = 50*128*2; //big enough to catch 2 sequences of largest format
988 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
989
990 if (idx<=0 || size!=96) continue;
991 // Index map
992 // 0 10 20 30 40 50 60
993 // | | | | | | |
994 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
995 // -----------------------------------------------------------------------------
996 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
997 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
998 // |---26 bit---| |-----117----||-------------142-------------|
999 // b = format bit len, o = odd parity of last 3 bits
1000 // f = facility code, c = card number
1001 // w = wiegand parity
1002 // (26 bit format shown)
1003
1004 //get raw ID before removing parities
1005 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
1006 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
1007 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
1008
1009 size = removeParity(dest, idx+8, 4, 1, 88);
1010 if (size != 66) continue;
1011 // ok valid card found!
1012
1013 // Index map
1014 // 0 10 20 30 40 50 60
1015 // | | | | | | |
1016 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
1017 // -----------------------------------------------------------------------------
1018 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
1019 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1020 // |26 bit| |-117--| |-----142------|
1021 // b = format bit len, o = odd parity of last 3 bits
1022 // f = facility code, c = card number
1023 // w = wiegand parity
1024 // (26 bit format shown)
1025
1026 uint32_t fc = 0;
1027 uint32_t cardnum = 0;
1028 uint32_t code1 = 0;
1029 uint32_t code2 = 0;
1030 uint8_t fmtLen = bytebits_to_byte(dest,8);
1031 if (fmtLen==26){
1032 fc = bytebits_to_byte(dest+9, 8);
1033 cardnum = bytebits_to_byte(dest+17, 16);
1034 code1 = bytebits_to_byte(dest+8,fmtLen);
1035 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
1036 } else {
1037 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1038 if (fmtLen>32){
1039 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1040 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1041 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1042 } else{
1043 code1 = bytebits_to_byte(dest+8,fmtLen);
1044 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
1045 }
1046 }
1047 if (findone){
1048 if (ledcontrol) LED_A_OFF();
1049 break;
1050 }
1051 // reset
1052 idx = 0;
1053 WDT_HIT();
1054 }
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1056 DbpString("Stopped");
1057 if (ledcontrol) LED_A_OFF();
1058}
1059
1060void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1061{
1062 uint8_t *dest = BigBuf_get_addr();
1063
1064 size_t size=0, idx=0;
1065 int clk=0, invert=0, errCnt=0, maxErr=20;
1066 uint32_t hi=0;
1067 uint64_t lo=0;
1068 //clear read buffer
1069 BigBuf_Clear_keep_EM();
1070 // Configure to go in 125Khz listen mode
1071 LFSetupFPGAForADC(95, true);
1072
1073 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1074
1075 WDT_HIT();
1076 if (ledcontrol) LED_A_ON();
1077
1078 DoAcquisition_default(-1,true);
1079 size = BigBuf_max_traceLen();
1080 //askdemod and manchester decode
1081 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1082 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1083 WDT_HIT();
1084
1085 if (errCnt<0) continue;
1086
1087 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1088 if (errCnt){
1089 if (size>64){
1090 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1091 hi,
1092 (uint32_t)(lo>>32),
1093 (uint32_t)lo,
1094 (uint32_t)(lo&0xFFFF),
1095 (uint32_t)((lo>>16LL) & 0xFF),
1096 (uint32_t)(lo & 0xFFFFFF));
1097 } else {
1098 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1099 (uint32_t)(lo>>32),
1100 (uint32_t)lo,
1101 (uint32_t)(lo&0xFFFF),
1102 (uint32_t)((lo>>16LL) & 0xFF),
1103 (uint32_t)(lo & 0xFFFFFF));
1104 }
1105
1106 if (findone){
1107 if (ledcontrol) LED_A_OFF();
1108 *high=lo>>32;
1109 *low=lo & 0xFFFFFFFF;
1110 break;
1111 }
1112 }
1113 WDT_HIT();
1114 hi = lo = size = idx = 0;
1115 clk = invert = errCnt = 0;
1116 }
1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1118 DbpString("Stopped");
1119 if (ledcontrol) LED_A_OFF();
1120}
1121
1122void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1123{
1124 uint8_t *dest = BigBuf_get_addr();
1125 int idx=0;
1126 uint32_t code=0, code2=0;
1127 uint8_t version=0;
1128 uint8_t facilitycode=0;
1129 uint16_t number=0;
1130 int dummyIdx=0;
1131 //clear read buffer
1132 BigBuf_Clear_keep_EM();
1133 // Configure to go in 125Khz listen mode
1134 LFSetupFPGAForADC(95, true);
1135
1136 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1137 WDT_HIT();
1138 if (ledcontrol) LED_A_ON();
1139 DoAcquisition_default(-1,true);
1140 //fskdemod and get start index
1141 WDT_HIT();
1142 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1143 if (idx<0) continue;
1144 //valid tag found
1145
1146 //Index map
1147 //0 10 20 30 40 50 60
1148 //| | | | | | |
1149 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1150 //-----------------------------------------------------------------------------
1151 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1152 //
1153 //XSF(version)facility:codeone+codetwo
1154 //Handle the data
1155 if(findone){ //only print binary if we are doing one
1156 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1157 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1158 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1159 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1160 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1161 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1162 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1163 }
1164 code = bytebits_to_byte(dest+idx,32);
1165 code2 = bytebits_to_byte(dest+idx+32,32);
1166 version = bytebits_to_byte(dest+idx+27,8); //14,4
1167 facilitycode = bytebits_to_byte(dest+idx+18,8);
1168 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1169
1170 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1171 // if we're only looking for one tag
1172 if (findone){
1173 if (ledcontrol) LED_A_OFF();
1174 //LED_A_OFF();
1175 *high=code;
1176 *low=code2;
1177 break;
1178 }
1179 code=code2=0;
1180 version=facilitycode=0;
1181 number=0;
1182 idx=0;
1183
1184 WDT_HIT();
1185 }
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1187 DbpString("Stopped");
1188 if (ledcontrol) LED_A_OFF();
1189}
1190
1191/*------------------------------
1192 * T5555/T5557/T5567/T5577 routines
1193 *------------------------------
1194 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1195 *
1196 * Relevant communication times in microsecond
1197 * To compensate antenna falling times shorten the write times
1198 * and enlarge the gap ones.
1199 * Q5 tags seems to have issues when these values changes.
1200 */
1201
1202 /*
1203 // Original Timings for reference
1204
1205#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1206#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1207#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1208#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1209=======
1210
1211/* Q5 timing datasheet:
1212 * Type | MIN | Typical | Max |
1213 * Start_Gap | 10*8 | ? | 50*8 |
1214 * Write_Gap Normal mode | 8*8 | 14*8 | 20*8 |
1215 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1216 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1217 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1218 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1219 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1220*/
1221
1222/* T5557 timing datasheet:
1223 * Type | MIN | Typical | Max |
1224 * Start_Gap | 10*8 | ? | 50*8 |
1225 * Write_Gap Normal mode | 8*8 |50-150us | 30*8 |
1226 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1227 * Write_0 Normal mode | 16*8 | 24*8 | 31*8 |
1228 * Write_1 Normal mode | 48*8 | 54*8 | 63*8 |
1229 * Write_0 Fast Mode | 8*8 | 12*8 | 15*8 |
1230 * Write_1 Fast Mode | 24*8 | 28*8 | 31*8 |
1231*/
1232
1233/* T5577C timing datasheet for Fixed-Bit-Length protocol (defualt):
1234 * Type | MIN | Typical | Max |
1235 * Start_Gap | 8*8 | 15*8 | 50*8 |
1236 * Write_Gap Normal mode | 8*8 | 10*8 | 20*8 |
1237 * Write_Gap Fast Mode | 8*8 | 10*8 | 20*8 |
1238 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1239 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1240 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1241 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1242*/
1243
1244//note startgap must be sent after tag has been powered up for more than 3ms (per T5557 ds)
1245#define START_GAP 31*8 //31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) - T5557: 10*8 to 50*8
1246#define WRITE_GAP 20*8 //20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) - T5557: 8*8 to 30*8 typ 50-150us
1247#define WRITE_0 18*8 //18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) - T5557: 16*8 to 31*8 typ 24*8
1248#define WRITE_1 50*8 //50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) - T5557: 48*8 to 63*8 typ 54*8 432 for T55x7; 448 for E5550
1249
1250#define READ_GAP 15*8
1251*/
1252
1253// Structure to hold Timing values. In future will be simplier to add user changable timings.
1254typedef struct {
1255 uint16_t START_GAP;
1256 uint16_t WRITE_GAP;
1257 uint16_t WRITE_0;
1258 uint16_t WRITE_1;
1259 uint16_t WRITE_2;
1260 uint16_t WRITE_3;
1261 uint16_t READ_GAP;
1262} T55xx_Timing;
1263
1264
1265
1266// Set Initial/Default Values. Note: *8 can occure when used. This should keep things simplier here.
1267T55xx_Timing T55xx_Timing_FixedBit = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1268T55xx_Timing T55xx_Timing_LLR = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1269T55xx_Timing T55xx_Timing_Leading0 = { 31 * 8 , 20 * 8 , 18 * 8 , 40 * 8 , 0 , 0 , 15 * 8 };
1270T55xx_Timing T55xx_Timing_1of4 = { 31 * 8 , 20 * 8 , 18 * 8 , 34 * 8 , 50 * 8 , 66 * 8 , 15 * 8 };
1271
1272
1273// Some defines for readability
1274#define T55xx_LongLeadingReference 4 // Value to tell Write Bit to send long reference
1275#define T55xx_DLMode_Fixed 0 // Default Mode
1276#define T55xx_DLMode_LLR 1 // Long Leading Reference
1277#define T55xx_DLMode_Leading0 2 // Leading Zero
1278#define T55xx_DLMode_1of4 3 // 1 of 4
1279
1280void TurnReadLFOn(int delay) {
1281 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1282 // Give it a bit of time for the resonant antenna to settle.
1283 WaitUS(delay); //155*8 //50*8
1284}
1285
1286// Write one bit to card
1287void T55xxWriteBit(int bit, T55xx_Timing *Timings) {
1288
1289 // If bit = 4 Send Long Leading Reference which is 138 + WRITE_0
1290
1291 switch (bit){
1292 case 0 : TurnReadLFOn(Timings->WRITE_0); break; // Send bit 0/00
1293 case 1 : TurnReadLFOn(Timings->WRITE_1); break; // Send bit 1/01
1294 case 2 : TurnReadLFOn(Timings->WRITE_2); break; // Send bits 10
1295 case 3 : TurnReadLFOn(Timings->WRITE_3); break; // Send bits 11
1296 case 4 : TurnReadLFOn(Timings->WRITE_0 + (136 * 8)); break; // Send Long Leading Reference
1297 }
1298 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1299 WaitUS(Timings->WRITE_GAP);
1300}
1301
1302
1303// Function to abstract an Arbitrary length byte array to store bit pattern.
1304// bit_array - Array to hold data/bit pattern
1305// start_offset - bit location to start storing new bits.
1306// data - upto 32 bits of data to store
1307// num_bits - how many bits (low x bits of data) Max 32 bits at a time
1308// max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
1309// returns "Next" bit offset / bits stored (for next store)
1310int T55xx_SetBits (uint8_t *bit_array, int start_offset, uint32_t data , int num_bits, int max_len)
1311{
1312 int bit,byte_idx, bit_idx;
1313 int offset;
1314 int NextOffset = start_offset;
1315
1316 // Check if data will fit.
1317 if ((start_offset + num_bits) <= (max_len*8)) {
1318
1319 // Loop through the data and store
1320 for (offset = (num_bits-1); offset >= 0; offset--) {
1321
1322 bit = (data >> offset) & 1; // Get data bit value (0/1)
1323 byte_idx = (NextOffset / 8); // Get Array Byte Index to Store
1324 bit_idx = NextOffset - (byte_idx * 8); // Get Bit Index to set/clr
1325
1326 // If set (1) we OR, if clear (0) we AND with inverse
1327 // Dbprintf ("Add Bit : %d at byte %d bit %d",bit,byte_idx,bit_idx);
1328 if (bit == 1)
1329 bit_array[byte_idx] |= (1 << bit_idx); // Set the bit to 1
1330
1331 else
1332 bit_array[byte_idx] &= (0xff ^ (1 << bit_idx)); // Set the bit to 0 (clr)
1333
1334 NextOffset++;
1335 }
1336 }
1337 else
1338 Dbprintf ("Too Many Bits to fit into bit buffer");
1339 return NextOffset;
1340}
1341
1342// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1343void T55xxResetRead(void) {
1344 LED_A_ON();
1345 //clear buffer now so it does not interfere with timing later
1346 BigBuf_Clear_keep_EM();
1347
1348 // Set up FPGA, 125kHz
1349 LFSetupFPGAForADC(95, true);
1350 StartTicks();
1351 // make sure tag is fully powered up...
1352 WaitMS(5);
1353
1354 // Trigger T55x7 in mode.
1355 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1356 WaitUS(T55xx_Timing_FixedBit.START_GAP);
1357
1358 // reset tag - op code 00
1359 T55xxWriteBit(0,&T55xx_Timing_FixedBit);
1360 T55xxWriteBit(0,&T55xx_Timing_FixedBit);
1361
1362 TurnReadLFOn(T55xx_Timing_FixedBit.READ_GAP);
1363
1364 // Acquisition
1365 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1366
1367 // Turn the field off
1368 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1369 cmd_send(CMD_ACK,0,0,0,0,0);
1370 LED_A_OFF();
1371}
1372
1373// Send one downlink command to the card
1374void T55xx_SendCMD (uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { //, bool read_cmd) {//, struct T55xx_Timing *Timing) {
1375
1376 /*
1377 arg bits
1378 xxxxxxx1 0x01 PwdMode
1379 xxxxxx1x 0x02 Page
1380 xxxxx1xx 0x04 testMode
1381 xxx11xxx 0x18 downlink mode
1382 xx1xxxxx 0x20 reg_readmode
1383 x1xxxxxx 0x40 called for a read, so no data packet
1384
1385 */
1386 bool PwdMode = ((arg & 0x01) == 0x01);
1387 uint8_t Page = (arg & 0x02) >> 1;
1388 bool testMode = ((arg & 0x04) == 0x04);
1389 uint8_t downlink_mode = (arg >> 3) & 0x03;;
1390 bool reg_readmode = ((arg & 0x20) == 0x20);
1391 bool read_cmd = ((arg & 0x40) == 0x40);
1392
1393 int i = 0;
1394 uint8_t BitStream[10]; // Max Downlink Command size ~75 bits, so 10 bytes (80 bits)
1395 uint8_t BitStreamLen;
1396 int byte_idx, bit_idx;
1397 T55xx_Timing *Timing;
1398
1399
1400 // Assigning Downlink Timeing for write
1401 switch (downlink_mode)
1402 {
1403 case T55xx_DLMode_Fixed : Timing = &T55xx_Timing_FixedBit; break;
1404 case T55xx_DLMode_LLR : Timing = &T55xx_Timing_LLR; break;
1405 case T55xx_DLMode_Leading0 : Timing = &T55xx_Timing_Leading0; break;
1406 case T55xx_DLMode_1of4 : Timing = &T55xx_Timing_1of4; break;
1407 default:
1408 Timing = &T55xx_Timing_FixedBit;
1409 }
1410
1411 // Build Bit Stream to send.
1412 memset (BitStream,0x00,sizeof(BitStream));
1413
1414 BitStreamLen = 0;
1415
1416 // Add Leading 0 and 1 of 4 reference bit
1417 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4))
1418 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1419
1420 // Add extra reference 0 for 1 of 4
1421 if (downlink_mode == T55xx_DLMode_1of4)
1422 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1423
1424 // Add Opcode
1425 if (testMode) Dbprintf("TestMODE");
1426 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 0 : 1 , 1,sizeof(BitStream));
1427 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 1 : Page , 1,sizeof(BitStream));
1428
1429 if (PwdMode) {
1430
1431 // Leading 0 and 1 of 4 00 fixed bits if passsword used
1432 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4)) {
1433 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1434 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1435 }
1436 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Pwd, 32,sizeof(BitStream));
1437
1438 }
1439 // Add Lock bit
1440 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1441
1442 // Add Data if a write command
1443 if (!read_cmd) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Data, 32,sizeof(BitStream));
1444
1445 // Add Address
1446 if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Block, 3,sizeof(BitStream));
1447
1448
1449
1450 // Send Bits to T55xx
1451
1452 // Set up FPGA, 125kHz
1453 LFSetupFPGAForADC(95, true);
1454 StartTicks();
1455 // make sure tag is fully powered up...
1456 WaitMS(5);
1457 // Trigger T55x7 in mode.
1458 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1459 WaitUS(Timing->START_GAP);
1460
1461
1462 // If long leading 0 send long reference pulse
1463 if (downlink_mode == T55xx_DLMode_LLR)
1464 T55xxWriteBit (T55xx_LongLeadingReference,Timing); // Send Long Leading Start Reference
1465
1466 uint8_t SendBits;
1467
1468 if (downlink_mode == T55xx_DLMode_1of4) { // 1 of 4 need to send 2 bits at a time
1469 for (i = 0; i < BitStreamLen; i+=2) {
1470 byte_idx = i / 8;
1471 bit_idx = i - (byte_idx * 8);
1472 SendBits = ((BitStream[byte_idx] >> bit_idx) & 1) << 1;
1473
1474 byte_idx = (i+1) / 8;
1475 bit_idx = (i+1) - (byte_idx * 8);
1476 SendBits += (BitStream[byte_idx] >> bit_idx) & 1;
1477
1478 T55xxWriteBit (SendBits,Timing);
1479 }
1480 }
1481 else {
1482 for (i = 0; i < BitStreamLen; i++) {
1483 byte_idx = i / 8;
1484 bit_idx = i - (byte_idx * 8);
1485 SendBits = (BitStream[byte_idx] >> bit_idx) & 1;
1486 T55xxWriteBit (SendBits,Timing);
1487 }
1488 }
1489
1490}
1491
1492// Write one card block in page 0, no lock
1493void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1494 /*
1495 arg bits
1496 xxxxxxx1 0x01 PwdMode
1497 xxxxxx1x 0x02 Page
1498 xxxxx1xx 0x04 testMode
1499 xxx11xxx 0x18 downlink mode
1500 xx1xxxxx 0x20 reg_readmode
1501 x1xxxxxx 0x40 called for a read, so no data packet
1502 */
1503
1504 bool testMode = ((arg & 0x04) == 0x04);
1505 arg &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
1506
1507 LED_A_ON ();
1508 T55xx_SendCMD (Data, Block, Pwd, arg) ;//, false);
1509
1510 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1511 // so wait a little more)
1512
1513 // "there is a clock delay before programming"
1514 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1515 // so we should wait 1 clock + 5.6ms then read response?
1516 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1517 if (testMode) {
1518 //TESTMODE TIMING TESTS:
1519 // <566us does nothing
1520 // 566-568 switches between wiping to 0s and doing nothing
1521 // 5184 wipes and allows 1 block to be programmed.
1522 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1523 TurnReadLFOn(5184);
1524
1525 } else {
1526 TurnReadLFOn(20 * 1000);
1527 //could attempt to do a read to confirm write took
1528 // as the tag should repeat back the new block
1529 // until it is reset, but to confirm it we would
1530 // need to know the current block 0 config mode for
1531 // modulation clock an other details to demod the response...
1532 // response should be (for t55x7) a 0 bit then (ST if on)
1533 // block data written in on repeat until reset.
1534
1535 //DoPartialAcquisition(20, true, 12000);
1536 }
1537 // turn field off
1538 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1539
1540 cmd_send(CMD_ACK,0,0,0,0,0);
1541
1542 LED_A_OFF ();
1543}
1544
1545// Read one card block in page [page]
1546void T55xxReadBlock (uint16_t arg0, uint8_t Block, uint32_t Pwd) {//, struct T55xx_Timing *Timing) {
1547
1548 LED_A_ON();
1549
1550 /*
1551 arg bits
1552 xxxxxxx1 0x01 PwdMode
1553 xxxxxx1x 0x02 Page
1554 xxxxx1xx 0x04 testMode
1555 xxx11xxx 0x18 downlink mode
1556 xx1xxxxx 0x20 reg_readmode
1557 x1xxxxxx 0x40 called for a read, so no data packet
1558 */
1559
1560 // Set Read Flag to ensure SendCMD does not add "data" to the packet
1561 arg0 |= 0x40;
1562
1563
1564 if (Block == 0xff) arg0 |= 0x20;
1565
1566 //make sure block is at max 7
1567 Block &= 0x7;
1568
1569 //clear buffer now so it does not interfere with timing later
1570 BigBuf_Clear_ext(false);
1571
1572 T55xx_SendCMD (0, Block, Pwd, arg0); //, true);
1573
1574/*
1575// the send has been moved to the above SendCMD Call
1576=======
1577
1578 // Set up FPGA, 125kHz to power up the tag
1579 LFSetupFPGAForADC(95, true);
1580 StartTicks();
1581 // make sure tag is fully powered up...
1582 WaitMS(5);
1583 // Trigger T55x7 Direct Access Mode with start gap
1584 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1585 WaitUS(START_GAP);
1586
1587 // Opcode 1[page]
1588 T55xxWriteBit(1);
1589 T55xxWriteBit(Page); //Page 0
1590
1591 if (PwdMode) {
1592 // Send Pwd
1593 for (i = 0x80000000; i != 0; i >>= 1)
1594 T55xxWriteBit(Pwd & i);
1595 }
1596 // Send a zero bit separation
1597 T55xxWriteBit(0);
1598
1599 // Send Block number (if direct access mode)
1600 if (!RegReadMode)
1601 for (i = 0x04; i != 0; i >>= 1)
1602 T55xxWriteBit(Block & i);
1603
1604
1605*/
1606 // Turn field on to read the response
1607 // 137*8 seems to get to the start of data pretty well...
1608 // but we want to go past the start and let the repeating data settle in...
1609 TurnReadLFOn(210*8);
1610
1611 // Acquisition
1612 // Now do the acquisition
1613 DoPartialAcquisition(0, true, 12000, 0);
1614
1615 // Turn the field off
1616 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1617 cmd_send(CMD_ACK,0,0,0,0,0);
1618
1619 LED_A_OFF();
1620}
1621
1622void T55xxWakeUp(uint32_t Pwd){
1623 LED_B_ON();
1624 uint32_t i = 0;
1625
1626 // Set up FPGA, 125kHz
1627 LFSetupFPGAForADC(95, true);
1628 StartTicks();
1629 // make sure tag is fully powered up...
1630 WaitMS(5);
1631
1632 // Trigger T55x7 Direct Access Mode
1633 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1634 WaitUS(T55xx_Timing_FixedBit.START_GAP);
1635
1636 // Opcode 10
1637 T55xxWriteBit(1,&T55xx_Timing_FixedBit);
1638 T55xxWriteBit(0,&T55xx_Timing_FixedBit); //Page 0
1639
1640 // Send Pwd
1641
1642 for (i = 0x80000000; i != 0; i >>= 1)
1643 T55xxWriteBit(Pwd & i,&T55xx_Timing_FixedBit);
1644
1645 // Turn and leave field on to let the begin repeating transmission
1646 TurnReadLFOn(20*1000);
1647}
1648
1649/*-------------- Cloning routines -----------*/
1650
1651void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1652 // write last block first and config block last (if included)
1653 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1654 T55xxWriteBlock(blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1655 // T55xx_SendCMD (blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1656 }
1657}
1658
1659// Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
1660void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, uint8_t preamble) {
1661 uint32_t data[] = {0,0,0,0,0,0,0};
1662 uint8_t last_block = 0;
1663
1664 if (longFMT) {
1665 // Ensure no more than 84 bits supplied
1666 if (hi2>0xFFFFF) {
1667 DbpString("Tags can only have 84 bits.");
1668 return;
1669 }
1670 // Build the 6 data blocks for supplied 84bit ID
1671 last_block = 6;
1672 // load preamble & long format identifier (9E manchester encoded)
1673 data[1] = (preamble << 24) | 0x96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1674 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1675 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1676 data[3] = manchesterEncode2Bytes(hi >> 16);
1677 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1678 data[5] = manchesterEncode2Bytes(lo >> 16);
1679 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1680 } else {
1681 // Ensure no more than 44 bits supplied
1682 if (hi>0xFFF) {
1683 DbpString("Tags can only have 44 bits.");
1684 return;
1685 }
1686 // Build the 3 data blocks for supplied 44bit ID
1687 last_block = 3;
1688 // load preamble
1689 data[1] = (preamble << 24) | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1690 data[2] = manchesterEncode2Bytes(lo >> 16);
1691 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1692 }
1693 // load chip config block
1694 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1695
1696 //TODO add selection of chip for Q5 or T55x7
1697 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1698
1699 LED_D_ON();
1700 // Program the data blocks for supplied ID
1701 // and the block 0 for HID format
1702 WriteT55xx(data, 0, last_block+1);
1703
1704 LED_D_OFF();
1705
1706 DbpString("DONE!");
1707}
1708
1709void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1710 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1711 //TODO add selection of chip for Q5 or T55x7
1712 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1713
1714 LED_D_ON();
1715 // Program the data blocks for supplied ID
1716 // and the block 0 config
1717 WriteT55xx(data, 0, 3);
1718
1719 LED_D_OFF();
1720
1721 DbpString("DONE!");
1722}
1723
1724// Clone Indala 64-bit tag by UID to T55x7
1725void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1726 //Program the 2 data blocks for supplied 64bit UID
1727 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1728 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1729 //TODO add selection of chip for Q5 or T55x7
1730 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1731
1732 WriteT55xx(data, 0, 3);
1733 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1734 // T5567WriteBlock(0x603E1042,0);
1735 DbpString("DONE!");
1736}
1737// Clone Indala 224-bit tag by UID to T55x7
1738void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1739 //Program the 7 data blocks for supplied 224bit UID
1740 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1741 // and the block 0 for Indala224 format
1742 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1743 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1744 //TODO add selection of chip for Q5 or T55x7
1745 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1746 WriteT55xx(data, 0, 8);
1747 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1748 // T5567WriteBlock(0x603E10E2,0);
1749 DbpString("DONE!");
1750}
1751// clone viking tag to T55xx
1752void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1753 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1754 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1755 // Program the data blocks for supplied ID and the block 0 config
1756 WriteT55xx(data, 0, 3);
1757 LED_D_OFF();
1758 cmd_send(CMD_ACK,0,0,0,0,0);
1759}
1760
1761// Define 9bit header for EM410x tags
1762#define EM410X_HEADER 0x1FF
1763#define EM410X_ID_LENGTH 40
1764
1765void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1766 int i, id_bit;
1767 uint64_t id = EM410X_HEADER;
1768 uint64_t rev_id = 0; // reversed ID
1769 int c_parity[4]; // column parity
1770 int r_parity = 0; // row parity
1771 uint32_t clock = 0;
1772
1773 // Reverse ID bits given as parameter (for simpler operations)
1774 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1775 if (i < 32) {
1776 rev_id = (rev_id << 1) | (id_lo & 1);
1777 id_lo >>= 1;
1778 } else {
1779 rev_id = (rev_id << 1) | (id_hi & 1);
1780 id_hi >>= 1;
1781 }
1782 }
1783
1784 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1785 id_bit = rev_id & 1;
1786
1787 if (i % 4 == 0) {
1788 // Don't write row parity bit at start of parsing
1789 if (i)
1790 id = (id << 1) | r_parity;
1791 // Start counting parity for new row
1792 r_parity = id_bit;
1793 } else {
1794 // Count row parity
1795 r_parity ^= id_bit;
1796 }
1797
1798 // First elements in column?
1799 if (i < 4)
1800 // Fill out first elements
1801 c_parity[i] = id_bit;
1802 else
1803 // Count column parity
1804 c_parity[i % 4] ^= id_bit;
1805
1806 // Insert ID bit
1807 id = (id << 1) | id_bit;
1808 rev_id >>= 1;
1809 }
1810
1811 // Insert parity bit of last row
1812 id = (id << 1) | r_parity;
1813
1814 // Fill out column parity at the end of tag
1815 for (i = 0; i < 4; ++i)
1816 id = (id << 1) | c_parity[i];
1817
1818 // Add stop bit
1819 id <<= 1;
1820
1821 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1822 LED_D_ON();
1823
1824 // Write EM410x ID
1825 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1826
1827 clock = (card & 0xFF00) >> 8;
1828 clock = (clock == 0) ? 64 : clock;
1829 Dbprintf("Clock rate: %d", clock);
1830 if (card & 0xFF) { //t55x7
1831 clock = GetT55xxClockBit(clock);
1832 if (clock == 0) {
1833 Dbprintf("Invalid clock rate: %d", clock);
1834 return;
1835 }
1836 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1837 } else { //t5555 (Q5)
1838 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1839 }
1840
1841 WriteT55xx(data, 0, 3);
1842
1843 LED_D_OFF();
1844 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1845 (uint32_t)(id >> 32), (uint32_t)id);
1846}
1847
1848//-----------------------------------
1849// EM4469 / EM4305 routines
1850//-----------------------------------
1851#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1852#define FWD_CMD_WRITE 0xA
1853#define FWD_CMD_READ 0x9
1854#define FWD_CMD_DISABLE 0x5
1855#define FWD_CMD_PROTECT 0x3
1856
1857uint8_t forwardLink_data[64]; //array of forwarded bits
1858uint8_t * forward_ptr; //ptr for forward message preparation
1859uint8_t fwd_bit_sz; //forwardlink bit counter
1860uint8_t * fwd_write_ptr; //forwardlink bit pointer
1861
1862//====================================================================
1863// prepares command bits
1864// see EM4469 spec
1865//====================================================================
1866//--------------------------------------------------------------------
1867// VALUES TAKEN FROM EM4x function: SendForward
1868// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1869// WRITE_GAP = 128; (16*8)
1870// WRITE_1 = 256 32*8; (32*8)
1871
1872// These timings work for 4469/4269/4305 (with the 55*8 above)
1873// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1874
1875uint8_t Prepare_Cmd( uint8_t cmd ) {
1876
1877 *forward_ptr++ = 0; //start bit
1878 *forward_ptr++ = 0; //second pause for 4050 code
1879
1880 *forward_ptr++ = cmd;
1881 cmd >>= 1;
1882 *forward_ptr++ = cmd;
1883 cmd >>= 1;
1884 *forward_ptr++ = cmd;
1885 cmd >>= 1;
1886 *forward_ptr++ = cmd;
1887
1888 return 6; //return number of emited bits
1889}
1890
1891//====================================================================
1892// prepares address bits
1893// see EM4469 spec
1894//====================================================================
1895uint8_t Prepare_Addr( uint8_t addr ) {
1896
1897 register uint8_t line_parity;
1898
1899 uint8_t i;
1900 line_parity = 0;
1901 for(i=0;i<6;i++) {
1902 *forward_ptr++ = addr;
1903 line_parity ^= addr;
1904 addr >>= 1;
1905 }
1906
1907 *forward_ptr++ = (line_parity & 1);
1908
1909 return 7; //return number of emited bits
1910}
1911
1912//====================================================================
1913// prepares data bits intreleaved with parity bits
1914// see EM4469 spec
1915//====================================================================
1916uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1917
1918 register uint8_t line_parity;
1919 register uint8_t column_parity;
1920 register uint8_t i, j;
1921 register uint16_t data;
1922
1923 data = data_low;
1924 column_parity = 0;
1925
1926 for(i=0; i<4; i++) {
1927 line_parity = 0;
1928 for(j=0; j<8; j++) {
1929 line_parity ^= data;
1930 column_parity ^= (data & 1) << j;
1931 *forward_ptr++ = data;
1932 data >>= 1;
1933 }
1934 *forward_ptr++ = line_parity;
1935 if(i == 1)
1936 data = data_hi;
1937 }
1938
1939 for(j=0; j<8; j++) {
1940 *forward_ptr++ = column_parity;
1941 column_parity >>= 1;
1942 }
1943 *forward_ptr = 0;
1944
1945 return 45; //return number of emited bits
1946}
1947
1948//====================================================================
1949// Forward Link send function
1950// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1951// fwd_bit_count set with number of bits to be sent
1952//====================================================================
1953void SendForward(uint8_t fwd_bit_count) {
1954
1955 fwd_write_ptr = forwardLink_data;
1956 fwd_bit_sz = fwd_bit_count;
1957
1958 // Set up FPGA, 125kHz or 95 divisor
1959 LFSetupFPGAForADC(95, true);
1960
1961 // force 1st mod pulse (start gap must be longer for 4305)
1962 fwd_bit_sz--; //prepare next bit modulation
1963 fwd_write_ptr++;
1964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1965 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1966 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1967 WaitUS(18*8); //18 cycles on (8us each)
1968
1969 // now start writting
1970 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1971 if(((*fwd_write_ptr++) & 1) == 1)
1972 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1973 else {
1974 //These timings work for 4469/4269/4305 (with the 55*8 above)
1975 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1976 WaitUS(23*8); //23 cycles off (8us each)
1977 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1978 WaitUS(18*8); //18 cycles on (8us each)
1979 }
1980 }
1981}
1982
1983void EM4xLogin(uint32_t Password) {
1984
1985 uint8_t fwd_bit_count;
1986
1987 forward_ptr = forwardLink_data;
1988 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1989 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1990
1991 SendForward(fwd_bit_count);
1992
1993 //Wait for command to complete
1994 SpinDelay(20);
1995}
1996
1997void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1998
1999 uint8_t fwd_bit_count;
2000
2001 // Clear destination buffer before sending the command
2002 BigBuf_Clear_ext(false);
2003
2004 LED_A_ON();
2005 StartTicks();
2006 //If password mode do login
2007 if (PwdMode == 1) EM4xLogin(Pwd);
2008
2009 forward_ptr = forwardLink_data;
2010 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2011 fwd_bit_count += Prepare_Addr( Address );
2012
2013 SendForward(fwd_bit_count);
2014 WaitUS(400);
2015 // Now do the acquisition
2016 DoPartialAcquisition(20, true, 6000, 1000);
2017
2018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2019 LED_A_OFF();
2020 cmd_send(CMD_ACK,0,0,0,0,0);
2021}
2022
2023void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
2024
2025 bool PwdMode = (flag & 0x1);
2026 uint8_t Address = (flag >> 8) & 0xFF;
2027 uint8_t fwd_bit_count;
2028
2029 //clear buffer now so it does not interfere with timing later
2030 BigBuf_Clear_ext(false);
2031
2032 LED_A_ON();
2033 StartTicks();
2034 //If password mode do login
2035 if (PwdMode) EM4xLogin(Pwd);
2036
2037 forward_ptr = forwardLink_data;
2038 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2039 fwd_bit_count += Prepare_Addr( Address );
2040 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2041
2042 SendForward(fwd_bit_count);
2043
2044 //Wait for write to complete
2045 //SpinDelay(10);
2046
2047 WaitUS(6500);
2048 //Capture response if one exists
2049 DoPartialAcquisition(20, true, 6000, 1000);
2050
2051 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2052 LED_A_OFF();
2053 cmd_send(CMD_ACK,0,0,0,0,0);
2054}
2055
2056void EM4xProtect(uint32_t flag, uint32_t Data, uint32_t Pwd) {
2057
2058 bool PwdMode = (flag & 0x1);
2059 uint8_t fwd_bit_count;
2060
2061 //clear buffer now so it does not interfere with timing later
2062 BigBuf_Clear_ext(false);
2063
2064 LED_A_ON();
2065 StartTicks();
2066 //If password mode do login
2067 if (PwdMode) EM4xLogin(Pwd);
2068
2069 forward_ptr = forwardLink_data;
2070 fwd_bit_count = Prepare_Cmd( FWD_CMD_PROTECT );
2071
2072 //unsure if this needs the full packet config...
2073 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2074
2075 SendForward(fwd_bit_count);
2076
2077 //Wait for write to complete
2078 //SpinDelay(10);
2079
2080 WaitUS(6500);
2081 //Capture response if one exists
2082 DoPartialAcquisition(20, true, 6000, 1000);
2083
2084 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2085 LED_A_OFF();
2086 cmd_send(CMD_ACK,0,0,0,0,0);
2087}
2088/*
2089Reading a COTAG.
2090
2091COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
2092because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
2093
2094READER START SEQUENCE:
2095burst 800 us, gap 2.2 msecs
2096burst 3.6 msecs gap 2.2 msecs
2097burst 800 us gap 2.2 msecs
2098pulse 3.6 msecs
2099
2100This triggers a COTAG tag to response
2101*/
2102void Cotag(uint32_t arg0) {
2103
2104#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
2105#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
2106
2107 uint8_t rawsignal = arg0 & 0xF;
2108
2109 LED_A_ON();
2110
2111 // Switching to LF image on FPGA. This might empty BigBuff
2112 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2113
2114 //clear buffer now so it does not interfere with timing later
2115 BigBuf_Clear_ext(false);
2116
2117 // Set up FPGA, 132kHz to power up the tag
2118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
2119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2120
2121 // Connect the A/D to the peak-detected low-frequency path.
2122 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2123
2124 // Now set up the SSC to get the ADC samples that are now streaming at us.
2125 FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC);
2126
2127 // start clock - 1.5ticks is 1us
2128 StartTicks();
2129
2130 //send COTAG start pulse
2131 ON(740) OFF
2132 ON(3330) OFF
2133 ON(740) OFF
2134 ON(1000)
2135
2136 switch(rawsignal) {
2137 case 0: doCotagAcquisition(50000); break;
2138 case 1: doCotagAcquisitionManchester(); break;
2139 case 2: DoAcquisition_config(true, 0); break;
2140 }
2141
2142 // Turn the field off
2143 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2144 cmd_send(CMD_ACK,0,0,0,0,0);
2145 LED_A_OFF();
2146}
Impressum, Datenschutz