]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // ISO14443-A support for the Proxmark III | |
3 | // Gerhard de Koning Gans, April 2008 | |
4 | //----------------------------------------------------------------------------- | |
5 | ||
6 | // constants for the different modes: | |
7 | `define SNIFFER 3'b000 | |
8 | `define TAGSIM_LISTEN 3'b001 | |
9 | `define TAGSIM_MOD 3'b010 | |
10 | `define READER_LISTEN 3'b011 | |
11 | `define READER_MOD 3'b100 | |
12 | ||
13 | module hi_iso14443a( | |
14 | pck0, ck_1356meg, ck_1356megb, | |
15 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, | |
16 | adc_d, adc_clk, | |
17 | ssp_frame, ssp_din, ssp_dout, ssp_clk, | |
18 | cross_hi, cross_lo, | |
19 | dbg, | |
20 | mod_type | |
21 | ); | |
22 | input pck0, ck_1356meg, ck_1356megb; | |
23 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; | |
24 | input [7:0] adc_d; | |
25 | output adc_clk; | |
26 | input ssp_dout; | |
27 | output ssp_frame, ssp_din, ssp_clk; | |
28 | input cross_hi, cross_lo; | |
29 | output dbg; | |
30 | input [2:0] mod_type; | |
31 | ||
32 | ||
33 | wire adc_clk = ck_1356meg; | |
34 | ||
35 | ||
36 | ||
37 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
38 | // Reader -> PM3: | |
39 | // detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a | |
40 | // hysteresis (Schmitt Trigger) to avoid false triggers during slowly increasing or decreasing carrier amplitudes | |
41 | reg after_hysteresis; | |
42 | reg [11:0] has_been_low_for; | |
43 | ||
44 | always @(negedge adc_clk) | |
45 | begin | |
46 | if(adc_d >= 16) after_hysteresis <= 1'b1; // U >= 1,14V -> after_hysteresis = 1 | |
47 | else if(adc_d < 8) after_hysteresis <= 1'b0; // U < 1,04V -> after_hysteresis = 0 | |
48 | // Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit | |
49 | // (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part). | |
50 | // In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the ”End of Pause” after the field exceeds | |
51 | // 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V. | |
52 | ||
53 | ||
54 | // detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case, | |
55 | // set the detected reader signal (after_hysteresis) to '1' (unmodulated) | |
56 | if(adc_d >= 192) | |
57 | begin | |
58 | has_been_low_for <= 12'd0; | |
59 | end | |
60 | else | |
61 | begin | |
62 | if(has_been_low_for == 12'd4095) | |
63 | begin | |
64 | has_been_low_for <= 12'd0; | |
65 | after_hysteresis <= 1'b1; | |
66 | end | |
67 | else | |
68 | begin | |
69 | has_been_low_for <= has_been_low_for + 1; | |
70 | end | |
71 | end | |
72 | ||
73 | end | |
74 | ||
75 | ||
76 | ||
77 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
78 | // Reader -> PM3 | |
79 | // detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8 | |
80 | // carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles. | |
81 | reg deep_modulation; | |
82 | reg [2:0] deep_counter; | |
83 | reg [8:0] saw_deep_modulation; | |
84 | ||
85 | always @(negedge adc_clk) | |
86 | begin | |
87 | if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V) | |
88 | begin | |
89 | if(deep_counter == 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader) | |
90 | begin | |
91 | deep_modulation <= 1'b1; | |
92 | saw_deep_modulation <= 8'd0; | |
93 | end | |
94 | else | |
95 | deep_counter <= deep_counter + 1; | |
96 | end | |
97 | else | |
98 | begin | |
99 | deep_counter <= 3'd0; | |
100 | if(saw_deep_modulation == 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response | |
101 | deep_modulation <= 1'b0; | |
102 | else | |
103 | saw_deep_modulation <= saw_deep_modulation + 1; | |
104 | end | |
105 | end | |
106 | ||
107 | ||
108 | ||
109 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
110 | // Tag -> PM3 | |
111 | // filter the input for a tag's signal. The filter box needs the 4 previous input values and is a gaussian derivative filter | |
112 | // for noise reduction and edge detection. | |
113 | // store 4 previous samples: | |
114 | reg [7:0] input_prev_4, input_prev_3, input_prev_2, input_prev_1; | |
115 | ||
116 | always @(negedge adc_clk) | |
117 | begin | |
118 | input_prev_4 <= input_prev_3; | |
119 | input_prev_3 <= input_prev_2; | |
120 | input_prev_2 <= input_prev_1; | |
121 | input_prev_1 <= adc_d; | |
122 | end | |
123 | ||
124 | // adc_d_filtered = 2*input_prev4 + 1*input_prev3 + 0*input_prev2 - 1*input_prev1 - 2*input | |
125 | // = (2*input_prev4 + input_prev3) - (2*input + input_prev1) | |
126 | wire [8:0] input_prev_4_times_2 = input_prev_4 << 1; | |
127 | wire [8:0] adc_d_times_2 = adc_d << 1; | |
128 | ||
129 | wire [9:0] tmp1 = input_prev_4_times_2 + input_prev_3; | |
130 | wire [9:0] tmp2 = adc_d_times_2 + input_prev_1; | |
131 | ||
132 | // convert intermediate signals to signed and calculate the filter output | |
133 | wire signed [10:0] adc_d_filtered = {1'b0, tmp1} - {1'b0, tmp2}; | |
134 | ||
135 | ||
136 | ||
137 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
138 | // internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a | |
139 | // 7 bit counter). Adjust its frequency to external reader's clock when simulating a tag or sniffing. | |
140 | reg pre_after_hysteresis; | |
141 | reg [3:0] reader_falling_edge_time; | |
142 | reg [6:0] negedge_cnt; | |
143 | ||
144 | always @(negedge adc_clk) | |
145 | begin | |
146 | // detect a reader signal's falling edge and remember its timing: | |
147 | pre_after_hysteresis <= after_hysteresis; | |
148 | if (pre_after_hysteresis && ~after_hysteresis) | |
149 | begin | |
150 | reader_falling_edge_time[3:0] <= negedge_cnt[3:0]; | |
151 | end | |
152 | ||
153 | // adjust internal timer counter if necessary: | |
154 | if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_LISTEN) && deep_modulation) | |
155 | begin | |
156 | if (reader_falling_edge_time == 4'd1) // reader signal changes right after sampling. Better sample earlier next time. | |
157 | begin | |
158 | negedge_cnt <= negedge_cnt + 2; // time warp | |
159 | end | |
160 | else if (reader_falling_edge_time == 4'd0) // reader signal changes right before sampling. Better sample later next time. | |
161 | begin | |
162 | negedge_cnt <= negedge_cnt; // freeze time | |
163 | end | |
164 | else | |
165 | begin | |
166 | negedge_cnt <= negedge_cnt + 1; // Continue as usual | |
167 | end | |
168 | reader_falling_edge_time[3:0] <= 4'd8; // adjust only once per detected edge | |
169 | end | |
170 | else if (negedge_cnt == 7'd127) // normal operation: count from 0 to 127 | |
171 | begin | |
172 | negedge_cnt <= 0; | |
173 | end | |
174 | else | |
175 | begin | |
176 | negedge_cnt <= negedge_cnt + 1; | |
177 | end | |
178 | end | |
179 | ||
180 | ||
181 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
182 | // Tag -> PM3: | |
183 | // determine best possible time for starting/resetting the modulation detector. | |
184 | reg [3:0] mod_detect_reset_time; | |
185 | ||
186 | always @(negedge adc_clk) | |
187 | begin | |
188 | if (mod_type == `READER_LISTEN) | |
189 | // (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by | |
190 | // 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks). | |
191 | // To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e. | |
192 | // at mod_detect_reset_time+4 and mod_detect_reset_time+12 (-4 ticks). | |
193 | // 9 + 4 + 3 + 7 - 4 = 19. 19 mod 16 = 3 | |
194 | begin | |
195 | mod_detect_reset_time <= 4'd4; | |
196 | end | |
197 | else | |
198 | if (mod_type == `SNIFFER) | |
199 | begin | |
200 | // detect a rising edge of reader's signal and sync modulation detector to the tag's answer: | |
201 | if (~pre_after_hysteresis && after_hysteresis && deep_modulation) | |
202 | // reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed | |
203 | // 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis. | |
204 | // Then the same as above. | |
205 | // - 9 - 3 - 1 + 4 + 3 + 7 - 4 = -3 | |
206 | begin | |
207 | mod_detect_reset_time <= negedge_cnt[3:0] - 4'd3; | |
208 | end | |
209 | end | |
210 | end | |
211 | ||
212 | ||
213 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
214 | // Tag -> PM3: | |
215 | // modulation detector. Looks for the steepest falling and rising edges within a 16 clock period. If there is both a significant | |
216 | // falling and rising edge (in any order), a modulation is detected. | |
217 | reg signed [10:0] rx_mod_falling_edge_max; | |
218 | reg signed [10:0] rx_mod_rising_edge_max; | |
219 | reg curbit; | |
220 | ||
221 | `define EDGE_DETECT_THRESHOLD 5 | |
222 | ||
223 | always @(negedge adc_clk) | |
224 | begin | |
225 | if(negedge_cnt[3:0] == mod_detect_reset_time) | |
226 | begin | |
227 | // detect modulation signal: if modulating, there must have been a falling AND a rising edge | |
228 | if ((rx_mod_falling_edge_max > `EDGE_DETECT_THRESHOLD) && (rx_mod_rising_edge_max < -`EDGE_DETECT_THRESHOLD)) | |
229 | curbit <= 1'b1; // modulation | |
230 | else | |
231 | curbit <= 1'b0; // no modulation | |
232 | // reset modulation detector | |
233 | rx_mod_rising_edge_max <= 0; | |
234 | rx_mod_falling_edge_max <= 0; | |
235 | end | |
236 | else // look for steepest edges (slopes) | |
237 | begin | |
238 | if (adc_d_filtered > 0) | |
239 | begin | |
240 | if (adc_d_filtered > rx_mod_falling_edge_max) | |
241 | rx_mod_falling_edge_max <= adc_d_filtered; | |
242 | end | |
243 | else | |
244 | begin | |
245 | if (adc_d_filtered < rx_mod_rising_edge_max) | |
246 | rx_mod_rising_edge_max <= adc_d_filtered; | |
247 | end | |
248 | end | |
249 | ||
250 | end | |
251 | ||
252 | ||
253 | ||
254 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
255 | // Tag+Reader -> PM3 | |
256 | // sample 4 bits reader data and 4 bits tag data for sniffing | |
257 | reg [3:0] reader_data; | |
258 | reg [3:0] tag_data; | |
259 | ||
260 | always @(negedge adc_clk) | |
261 | begin | |
262 | if(negedge_cnt[3:0] == 4'd0) | |
263 | begin | |
264 | reader_data[3:0] <= {reader_data[2:0], after_hysteresis}; | |
265 | tag_data[3:0] <= {tag_data[2:0], curbit}; | |
266 | end | |
267 | end | |
268 | ||
269 | ||
270 | ||
271 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
272 | // PM3 -> Reader: | |
273 | // a delay line to ensure that we send the (emulated) tag's answer at the correct time according to ISO14443-3 | |
274 | reg [31:0] mod_sig_buf; | |
275 | reg [4:0] mod_sig_ptr; | |
276 | reg mod_sig; | |
277 | ||
278 | always @(negedge adc_clk) | |
279 | begin | |
280 | if(negedge_cnt[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge. | |
281 | begin | |
282 | mod_sig_buf[31:2] <= mod_sig_buf[30:1]; // shift | |
283 | if (~ssp_dout && ~mod_sig_buf[1]) | |
284 | mod_sig_buf[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0) | |
285 | else | |
286 | mod_sig_buf[1] <= mod_sig_buf[0]; | |
287 | mod_sig_buf[0] <= ssp_dout; // add new data to the delay line | |
288 | ||
289 | mod_sig = mod_sig_buf[mod_sig_ptr]; // the delayed signal. | |
290 | end | |
291 | end | |
292 | ||
293 | ||
294 | ||
295 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
296 | // PM3 -> Reader, internal timing: | |
297 | // a timer for the 1172 cycles fdt (Frame Delay Time). Start the timer with a rising edge of the reader's signal. | |
298 | // set fdt_elapsed when we no longer need to delay data. Set fdt_indicator when we can start sending data. | |
299 | // Note: the FPGA only takes care for the 1172 delay. To achieve an additional 1236-1172=64 ticks delay, the ARM must send | |
300 | // a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the | |
301 | // transmission stream, causing the required additional delay. | |
302 | reg [10:0] fdt_counter; | |
303 | reg fdt_indicator, fdt_elapsed; | |
304 | reg [3:0] mod_sig_flip; | |
305 | reg [3:0] sub_carrier_cnt; | |
306 | ||
307 | // we want to achieve a delay of 1172. The RF part already has delayed the reader signals's rising edge | |
308 | // by 9 ticks, the ADC took 3 ticks and there is always a delay of 32 ticks by the mod_sig_buf. Therefore need to | |
309 | // count to 1172 - 9 - 3 - 32 = 1128 | |
310 | `define FDT_COUNT 11'd1128 | |
311 | ||
312 | // The ARM must not send too early, otherwise the mod_sig_buf will overflow, therefore signal that we are ready | |
313 | // with fdt_indicator. The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks. | |
314 | // fdt_indicator could appear at ssp_din after 1 tick, the transfer needs 16 ticks, the ARM can send 128 ticks later. | |
315 | // 1128 - 464 - 1 - 128 - 8 = 535 | |
316 | `define FDT_INDICATOR_COUNT 11'd535 | |
317 | ||
318 | // reset on a pause in listen mode. I.e. the counter starts when the pause is over: | |
319 | assign fdt_reset = ~after_hysteresis && mod_type == `TAGSIM_LISTEN; | |
320 | ||
321 | always @(negedge adc_clk) | |
322 | begin | |
323 | if (fdt_reset) | |
324 | begin | |
325 | fdt_counter <= 11'd0; | |
326 | fdt_elapsed <= 1'b0; | |
327 | fdt_indicator <= 1'b0; | |
328 | end | |
329 | else | |
330 | begin | |
331 | if(fdt_counter == `FDT_COUNT) | |
332 | begin | |
333 | if(~fdt_elapsed) // just reached fdt. | |
334 | begin | |
335 | mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time | |
336 | sub_carrier_cnt <= 4'd0; // subcarrier phase in sync with start of modulation | |
337 | fdt_elapsed <= 1'b1; | |
338 | end | |
339 | else | |
340 | begin | |
341 | sub_carrier_cnt <= sub_carrier_cnt + 1; | |
342 | end | |
343 | end | |
344 | else | |
345 | begin | |
346 | fdt_counter <= fdt_counter + 1; | |
347 | end | |
348 | end | |
349 | ||
350 | if(fdt_counter == `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1; | |
351 | end | |
352 | ||
353 | ||
354 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
355 | // PM3 -> Reader or Tag | |
356 | // assign a modulation signal to the antenna. This signal is either a delayed signal (to achieve fdt when sending to a reader) | |
357 | // or undelayed when sending to a tag | |
358 | reg mod_sig_coil; | |
359 | ||
360 | always @(negedge adc_clk) | |
361 | begin | |
362 | if (mod_type == `TAGSIM_MOD) // need to take care of proper fdt timing | |
363 | begin | |
364 | if(fdt_counter == `FDT_COUNT) | |
365 | begin | |
366 | if(fdt_elapsed) | |
367 | begin | |
368 | if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig; | |
369 | end | |
370 | else | |
371 | begin | |
372 | mod_sig_coil <= mod_sig; // just reached fdt. Immediately assign signal to coil | |
373 | end | |
374 | end | |
375 | end | |
376 | else // other modes: don't delay | |
377 | begin | |
378 | mod_sig_coil <= ssp_dout; | |
379 | end | |
380 | end | |
381 | ||
382 | ||
383 | ||
384 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
385 | // PM3 -> Reader | |
386 | // determine the required delay in the mod_sig_buf (set mod_sig_ptr). | |
387 | reg temp_buffer_reset; | |
388 | ||
389 | always @(negedge adc_clk) | |
390 | begin | |
391 | if(fdt_reset) | |
392 | begin | |
393 | mod_sig_ptr <= 5'd0; | |
394 | temp_buffer_reset = 1'b0; | |
395 | end | |
396 | else | |
397 | begin | |
398 | if(fdt_counter == `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt | |
399 | if(~(| mod_sig_ptr[4:0])) | |
400 | mod_sig_ptr <= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks. | |
401 | else | |
402 | temp_buffer_reset = 1'b1; // else no need for further delays. | |
403 | ||
404 | if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge. | |
405 | begin | |
406 | if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt is reached. | |
407 | if (mod_sig_ptr == 5'd31) | |
408 | mod_sig_ptr <= 5'd0; // buffer overflow - data loss. | |
409 | else | |
410 | mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1. | |
411 | else if(fdt_elapsed && ~temp_buffer_reset) | |
412 | begin | |
413 | // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen | |
414 | // at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3) | |
415 | if(ssp_dout) | |
416 | temp_buffer_reset = 1'b1; | |
417 | if(mod_sig_ptr == 5'd1) | |
418 | mod_sig_ptr <= 5'd8; // still nothing received, need to go for the next interval | |
419 | else | |
420 | mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. | |
421 | end | |
422 | end | |
423 | end | |
424 | end | |
425 | ||
426 | ||
427 | ||
428 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
429 | // FPGA -> ARM communication: | |
430 | // buffer 8 bits data to be sent to ARM. Shift them out bit by bit. | |
431 | reg [7:0] to_arm; | |
432 | ||
433 | always @(negedge adc_clk) | |
434 | begin | |
435 | if (negedge_cnt[5:0] == 6'd63) // fill the buffer | |
436 | begin | |
437 | if (mod_type == `SNIFFER) | |
438 | begin | |
439 | if(deep_modulation) // a reader is sending (or there's no field at all) | |
440 | begin | |
441 | to_arm <= {reader_data[3:0], 4'b0000}; // don't send tag data | |
442 | end | |
443 | else | |
444 | begin | |
445 | to_arm <= {reader_data[3:0], tag_data[3:0]}; | |
446 | end | |
447 | end | |
448 | else | |
449 | begin | |
450 | to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; // feedback timing information | |
451 | end | |
452 | end | |
453 | ||
454 | if(negedge_cnt[2:0] == 3'b000 && mod_type == `SNIFFER) // shift at double speed | |
455 | begin | |
456 | // Don't shift if we just loaded new data, obviously. | |
457 | if(negedge_cnt[5:0] != 6'd0) | |
458 | begin | |
459 | to_arm[7:1] <= to_arm[6:0]; | |
460 | end | |
461 | end | |
462 | ||
463 | if(negedge_cnt[3:0] == 4'b0000 && mod_type != `SNIFFER) | |
464 | begin | |
465 | // Don't shift if we just loaded new data, obviously. | |
466 | if(negedge_cnt[6:0] != 7'd0) | |
467 | begin | |
468 | to_arm[7:1] <= to_arm[6:0]; | |
469 | end | |
470 | end | |
471 | ||
472 | end | |
473 | ||
474 | ||
475 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
476 | // FPGA <-> ARM communication: | |
477 | // generate a ssp clock and ssp frame signal for the synchronous transfer from/to the ARM | |
478 | reg ssp_clk; | |
479 | reg ssp_frame; | |
480 | ||
481 | always @(negedge adc_clk) | |
482 | begin | |
483 | if(mod_type == `SNIFFER) | |
484 | // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)): | |
485 | begin | |
486 | if(negedge_cnt[2:0] == 3'd0) | |
487 | ssp_clk <= 1'b1; | |
488 | if(negedge_cnt[2:0] == 3'd4) | |
489 | ssp_clk <= 1'b0; | |
490 | ||
491 | if(negedge_cnt[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame | |
492 | ssp_frame <= 1'b1; | |
493 | if(negedge_cnt[5:0] == 6'd8) | |
494 | ssp_frame <= 1'b0; | |
495 | end | |
496 | else | |
497 | // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128): | |
498 | begin | |
499 | if(negedge_cnt[3:0] == 4'd0) | |
500 | ssp_clk <= 1'b1; | |
501 | if(negedge_cnt[3:0] == 4'd8) | |
502 | ssp_clk <= 1'b0; | |
503 | ||
504 | if(negedge_cnt[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame | |
505 | ssp_frame <= 1'b1; | |
506 | if(negedge_cnt[6:0] == 7'd23) | |
507 | ssp_frame <= 1'b0; | |
508 | end | |
509 | end | |
510 | ||
511 | ||
512 | ||
513 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
514 | // FPGA -> ARM communication: | |
515 | // select the data to be sent to ARM | |
516 | reg bit_to_arm; | |
517 | reg sendbit; | |
518 | ||
519 | always @(negedge adc_clk) | |
520 | begin | |
521 | if(negedge_cnt[3:0] == 4'd0) | |
522 | begin | |
523 | // What do we communicate to the ARM | |
524 | if(mod_type == `TAGSIM_LISTEN) | |
525 | sendbit = after_hysteresis; | |
526 | else if(mod_type == `TAGSIM_MOD) | |
527 | /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh? | |
528 | else */ | |
529 | sendbit = fdt_indicator; | |
530 | else if (mod_type == `READER_LISTEN) | |
531 | sendbit = curbit; | |
532 | else | |
533 | sendbit = 1'b0; | |
534 | end | |
535 | ||
536 | ||
537 | if(mod_type == `SNIFFER) | |
538 | // send sampled reader and tag data: | |
539 | bit_to_arm = to_arm[7]; | |
540 | else if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset) | |
541 | // send timing information: | |
542 | bit_to_arm = to_arm[7]; | |
543 | else | |
544 | // send data or fdt_indicator | |
545 | bit_to_arm = sendbit; | |
546 | end | |
547 | ||
548 | ||
549 | ||
550 | ||
551 | assign ssp_din = bit_to_arm; | |
552 | ||
553 | // Subcarrier (adc_clk/16, for TAGSIM_MOD only). | |
554 | wire sub_carrier; | |
555 | assign sub_carrier = ~sub_carrier_cnt[3]; | |
556 | ||
557 | // in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off | |
558 | assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN))); | |
559 | ||
560 | ||
561 | // Enable HF antenna drivers: | |
562 | assign pwr_oe1 = 1'b0; | |
563 | assign pwr_oe3 = 1'b0; | |
564 | ||
565 | // TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil) | |
566 | // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms | |
567 | // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms | |
568 | assign pwr_oe4 = mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD); | |
569 | ||
570 | // This is all LF, so doesn't matter. | |
571 | assign pwr_oe2 = 1'b0; | |
572 | assign pwr_lo = 1'b0; | |
573 | ||
574 | ||
575 | assign dbg = negedge_cnt[3]; | |
576 | ||
577 | endmodule |