]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - armsrc/lfops.c
usb communication (device side) housekeeping
[proxmark3-svn] / armsrc / lfops.c
... / ...
CommitLineData
1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
19#include "protocols.h"
20#include "cmd.h"
21#include "usb_cdc.h" // for usb_poll_validate_length
22#include "fpgaloader.h"
23
24/**
25 * Function to do a modulation and then get samples.
26 * @param delay_off
27 * @param period_0
28 * @param period_1
29 * @param command
30 */
31void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
32{
33 // start timer
34 StartTicks();
35
36 // use lf config settings
37 sample_config *sc = getSamplingConfig();
38
39 // Make sure the tag is reset
40 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
41 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
42 WaitMS(2500);
43
44 // clear read buffer (after fpga bitstream loaded...)
45 BigBuf_Clear_keep_EM();
46
47 // power on
48 LFSetupFPGAForADC(sc->divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 WaitMS(2000);
52 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
53 bool bitbang = delay_off == 0;
54 // now modulate the reader field
55
56 if (bitbang) {
57 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
58 uint8_t hack_cnt = 7;
59 if (period_0 < hack_cnt || period_1 < hack_cnt) {
60 DbpString("Warning periods cannot be less than 7us in bit bang mode");
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
62 LED_D_OFF();
63 return;
64 }
65
66 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
67 // leading to ~ 1 to 2 125khz samples extra in every off period
68 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
69 // but is this time different for every antenna or other hw builds??? more testing needed
70
71 // prime cmd_len to save time comparing strings while modulating
72 int cmd_len = 0;
73 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
74 cmd_len++;
75
76 int counter = 0;
77 bool off = false;
78 for (counter = 0; counter < cmd_len; counter++) {
79 // if cmd = 0 then turn field off
80 if (command[counter] == '0') {
81 // if field already off leave alone (affects timing otherwise)
82 if (off == false) {
83 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
84 LED_D_OFF();
85 off = true;
86 }
87 // note we appear to take about 7us to switch over (or run the if statements/loop...)
88 WaitUS(period_0-hack_cnt);
89 // else if cmd = 1 then turn field on
90 } else {
91 // if field already on leave alone (affects timing otherwise)
92 if (off) {
93 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
94 LED_D_ON();
95 off = false;
96 }
97 // note we appear to take about 7us to switch over (or run the if statements/loop...)
98 WaitUS(period_1-hack_cnt);
99 }
100 }
101 } else { // old mode of cmd read using delay as off period
102 while(*command != '\0' && *command != ' ') {
103 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
104 LED_D_OFF();
105 WaitUS(delay_off);
106 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
107 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
108 LED_D_ON();
109 if(*(command++) == '0') {
110 WaitUS(period_0);
111 } else {
112 WaitUS(period_1);
113 }
114 }
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
116 LED_D_OFF();
117 WaitUS(delay_off);
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
119 }
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
122
123 // now do the read
124 DoAcquisition_config(false, 0);
125
126 // Turn off antenna
127 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
128 // tell client we are done
129 cmd_send(CMD_ACK,0,0,0,0,0);
130}
131
132/* blank r/w tag data stream
133...0000000000000000 01111111
1341010101010101010101010101010101010101010101010101010101010101010
1350011010010100001
13601111111
137101010101010101[0]000...
138
139[5555fe852c5555555555555555fe0000]
140*/
141void ReadTItag(void)
142{
143 // some hardcoded initial params
144 // when we read a TI tag we sample the zerocross line at 2Mhz
145 // TI tags modulate a 1 as 16 cycles of 123.2Khz
146 // TI tags modulate a 0 as 16 cycles of 134.2Khz
147 #define FSAMPLE 2000000
148 #define FREQLO 123200
149 #define FREQHI 134200
150
151 signed char *dest = (signed char *)BigBuf_get_addr();
152 uint16_t n = BigBuf_max_traceLen();
153 // 128 bit shift register [shift3:shift2:shift1:shift0]
154 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
155
156 int i, cycles=0, samples=0;
157 // how many sample points fit in 16 cycles of each frequency
158 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
159 // when to tell if we're close enough to one freq or another
160 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
161
162 // TI tags charge at 134.2Khz
163 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
164 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
165
166 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
167 // connects to SSP_DIN and the SSP_DOUT logic level controls
168 // whether we're modulating the antenna (high)
169 // or listening to the antenna (low)
170 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
171
172 // get TI tag data into the buffer
173 AcquireTiType();
174
175 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
176
177 for (i=0; i<n-1; i++) {
178 // count cycles by looking for lo to hi zero crossings
179 if ( (dest[i]<0) && (dest[i+1]>0) ) {
180 cycles++;
181 // after 16 cycles, measure the frequency
182 if (cycles>15) {
183 cycles=0;
184 samples=i-samples; // number of samples in these 16 cycles
185
186 // TI bits are coming to us lsb first so shift them
187 // right through our 128 bit right shift register
188 shift0 = (shift0>>1) | (shift1 << 31);
189 shift1 = (shift1>>1) | (shift2 << 31);
190 shift2 = (shift2>>1) | (shift3 << 31);
191 shift3 >>= 1;
192
193 // check if the cycles fall close to the number
194 // expected for either the low or high frequency
195 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
196 // low frequency represents a 1
197 shift3 |= (1<<31);
198 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
199 // high frequency represents a 0
200 } else {
201 // probably detected a gay waveform or noise
202 // use this as gaydar or discard shift register and start again
203 shift3 = shift2 = shift1 = shift0 = 0;
204 }
205 samples = i;
206
207 // for each bit we receive, test if we've detected a valid tag
208
209 // if we see 17 zeroes followed by 6 ones, we might have a tag
210 // remember the bits are backwards
211 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
212 // if start and end bytes match, we have a tag so break out of the loop
213 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
214 cycles = 0xF0B; //use this as a flag (ugly but whatever)
215 break;
216 }
217 }
218 }
219 }
220 }
221
222 // if flag is set we have a tag
223 if (cycles!=0xF0B) {
224 DbpString("Info: No valid tag detected.");
225 } else {
226 // put 64 bit data into shift1 and shift0
227 shift0 = (shift0>>24) | (shift1 << 8);
228 shift1 = (shift1>>24) | (shift2 << 8);
229
230 // align 16 bit crc into lower half of shift2
231 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
232
233 // if r/w tag, check ident match
234 if (shift3 & (1<<15) ) {
235 DbpString("Info: TI tag is rewriteable");
236 // only 15 bits compare, last bit of ident is not valid
237 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
238 DbpString("Error: Ident mismatch!");
239 } else {
240 DbpString("Info: TI tag ident is valid");
241 }
242 } else {
243 DbpString("Info: TI tag is readonly");
244 }
245
246 // WARNING the order of the bytes in which we calc crc below needs checking
247 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
248 // bytes in reverse or something
249 // calculate CRC
250 uint32_t crc=0;
251
252 crc = update_crc16(crc, (shift0)&0xff);
253 crc = update_crc16(crc, (shift0>>8)&0xff);
254 crc = update_crc16(crc, (shift0>>16)&0xff);
255 crc = update_crc16(crc, (shift0>>24)&0xff);
256 crc = update_crc16(crc, (shift1)&0xff);
257 crc = update_crc16(crc, (shift1>>8)&0xff);
258 crc = update_crc16(crc, (shift1>>16)&0xff);
259 crc = update_crc16(crc, (shift1>>24)&0xff);
260
261 Dbprintf("Info: Tag data: %x%08x, crc=%x",
262 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
263 if (crc != (shift2&0xffff)) {
264 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
265 } else {
266 DbpString("Info: CRC is good");
267 }
268 }
269}
270
271void WriteTIbyte(uint8_t b)
272{
273 int i = 0;
274
275 // modulate 8 bits out to the antenna
276 for (i=0; i<8; i++)
277 {
278 if (b&(1<<i)) {
279 // stop modulating antenna
280 LOW(GPIO_SSC_DOUT);
281 SpinDelayUs(1000);
282 // modulate antenna
283 HIGH(GPIO_SSC_DOUT);
284 SpinDelayUs(1000);
285 } else {
286 // stop modulating antenna
287 LOW(GPIO_SSC_DOUT);
288 SpinDelayUs(300);
289 // modulate antenna
290 HIGH(GPIO_SSC_DOUT);
291 SpinDelayUs(1700);
292 }
293 }
294}
295
296void AcquireTiType(void)
297{
298 int i, j, n;
299 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
300 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
301 #define TIBUFLEN 1250
302
303 // clear buffer
304 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
305 BigBuf_Clear_ext(false);
306
307 // Set up the synchronous serial port
308 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
309 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
310
311 // steal this pin from the SSP and use it to control the modulation
312 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
313 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
314
315 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
316 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
317
318 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
319 // 48/2 = 24 MHz clock must be divided by 12
320 AT91C_BASE_SSC->SSC_CMR = 12;
321
322 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
323 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
324 AT91C_BASE_SSC->SSC_TCMR = 0;
325 AT91C_BASE_SSC->SSC_TFMR = 0;
326
327 LED_D_ON();
328
329 // modulate antenna
330 HIGH(GPIO_SSC_DOUT);
331
332 // Charge TI tag for 50ms.
333 SpinDelay(50);
334
335 // stop modulating antenna and listen
336 LOW(GPIO_SSC_DOUT);
337
338 LED_D_OFF();
339
340 i = 0;
341 for(;;) {
342 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
343 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
344 i++; if(i >= TIBUFLEN) break;
345 }
346 WDT_HIT();
347 }
348
349 // return stolen pin to SSP
350 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
351 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
352
353 char *dest = (char *)BigBuf_get_addr();
354 n = TIBUFLEN*32;
355 // unpack buffer
356 for (i=TIBUFLEN-1; i>=0; i--) {
357 for (j=0; j<32; j++) {
358 if(BigBuf[i] & (1 << j)) {
359 dest[--n] = 1;
360 } else {
361 dest[--n] = -1;
362 }
363 }
364 }
365}
366
367// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
368// if crc provided, it will be written with the data verbatim (even if bogus)
369// if not provided a valid crc will be computed from the data and written.
370void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
371{
372 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
373 if(crc == 0) {
374 crc = update_crc16(crc, (idlo)&0xff);
375 crc = update_crc16(crc, (idlo>>8)&0xff);
376 crc = update_crc16(crc, (idlo>>16)&0xff);
377 crc = update_crc16(crc, (idlo>>24)&0xff);
378 crc = update_crc16(crc, (idhi)&0xff);
379 crc = update_crc16(crc, (idhi>>8)&0xff);
380 crc = update_crc16(crc, (idhi>>16)&0xff);
381 crc = update_crc16(crc, (idhi>>24)&0xff);
382 }
383 Dbprintf("Writing to tag: %x%08x, crc=%x",
384 (unsigned int) idhi, (unsigned int) idlo, crc);
385
386 // TI tags charge at 134.2Khz
387 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
388 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
389 // connects to SSP_DIN and the SSP_DOUT logic level controls
390 // whether we're modulating the antenna (high)
391 // or listening to the antenna (low)
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
393 LED_A_ON();
394
395 // steal this pin from the SSP and use it to control the modulation
396 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
397 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
398
399 // writing algorithm:
400 // a high bit consists of a field off for 1ms and field on for 1ms
401 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
402 // initiate a charge time of 50ms (field on) then immediately start writing bits
403 // start by writing 0xBB (keyword) and 0xEB (password)
404 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
405 // finally end with 0x0300 (write frame)
406 // all data is sent lsb firts
407 // finish with 15ms programming time
408
409 // modulate antenna
410 HIGH(GPIO_SSC_DOUT);
411 SpinDelay(50); // charge time
412
413 WriteTIbyte(0xbb); // keyword
414 WriteTIbyte(0xeb); // password
415 WriteTIbyte( (idlo )&0xff );
416 WriteTIbyte( (idlo>>8 )&0xff );
417 WriteTIbyte( (idlo>>16)&0xff );
418 WriteTIbyte( (idlo>>24)&0xff );
419 WriteTIbyte( (idhi )&0xff );
420 WriteTIbyte( (idhi>>8 )&0xff );
421 WriteTIbyte( (idhi>>16)&0xff );
422 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
423 WriteTIbyte( (crc )&0xff ); // crc lo
424 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
425 WriteTIbyte(0x00); // write frame lo
426 WriteTIbyte(0x03); // write frame hi
427 HIGH(GPIO_SSC_DOUT);
428 SpinDelay(50); // programming time
429
430 LED_A_OFF();
431
432 // get TI tag data into the buffer
433 AcquireTiType();
434
435 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
436 DbpString("Now use `lf ti read` to check");
437}
438
439void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
440{
441 int i;
442 uint8_t *tab = BigBuf_get_addr();
443
444 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
445 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
447
448 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
449
450 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
451 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
452
453 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
454 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
455
456 i = 0;
457 for(;;) {
458 //wait until SSC_CLK goes HIGH
459 int ii = 0;
460 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
461 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
462 if ( ii == 1000 ) {
463 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 DbpString("Stopped");
466 return;
467 }
468 ii=0;
469 }
470 WDT_HIT();
471 ii++;
472 }
473 if (ledcontrol)
474 LED_D_ON();
475
476 if(tab[i])
477 OPEN_COIL();
478 else
479 SHORT_COIL();
480
481 if (ledcontrol)
482 LED_D_OFF();
483 ii=0;
484 //wait until SSC_CLK goes LOW
485 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
486 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
487 if ( ii == 1000 ) {
488 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
489 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
490 DbpString("Stopped");
491 return;
492 }
493 ii=0;
494 }
495 WDT_HIT();
496 ii++;
497 }
498
499 i++;
500 if(i == period) {
501
502 i = 0;
503 if (gap) {
504 SHORT_COIL();
505 SpinDelayUs(gap);
506 }
507 }
508
509 }
510}
511
512#define DEBUG_FRAME_CONTENTS 1
513void SimulateTagLowFrequencyBidir(int divisor, int t0)
514{
515}
516
517// compose fc/8 fc/10 waveform (FSK2)
518static void fc(int c, int *n)
519{
520 uint8_t *dest = BigBuf_get_addr();
521 int idx;
522
523 // for when we want an fc8 pattern every 4 logical bits
524 if(c==0) {
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=1;
528 dest[((*n)++)]=1;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 dest[((*n)++)]=0;
532 dest[((*n)++)]=0;
533 }
534
535 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
536 if(c==8) {
537 for (idx=0; idx<6; idx++) {
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=1;
541 dest[((*n)++)]=1;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 dest[((*n)++)]=0;
546 }
547 }
548
549 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
550 if(c==10) {
551 for (idx=0; idx<5; idx++) {
552 dest[((*n)++)]=1;
553 dest[((*n)++)]=1;
554 dest[((*n)++)]=1;
555 dest[((*n)++)]=1;
556 dest[((*n)++)]=1;
557 dest[((*n)++)]=0;
558 dest[((*n)++)]=0;
559 dest[((*n)++)]=0;
560 dest[((*n)++)]=0;
561 dest[((*n)++)]=0;
562 }
563 }
564}
565// compose fc/X fc/Y waveform (FSKx)
566static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
567{
568 uint8_t *dest = BigBuf_get_addr();
569 uint8_t halfFC = fc/2;
570 uint8_t wavesPerClock = clock/fc;
571 uint8_t mod = clock % fc; //modifier
572 uint8_t modAdj = fc/mod; //how often to apply modifier
573 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
574 // loop through clock - step field clock
575 for (uint8_t idx=0; idx < wavesPerClock; idx++){
576 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
577 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
578 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
579 *n += fc;
580 }
581 if (mod>0) (*modCnt)++;
582 if ((mod>0) && modAdjOk){ //fsk2
583 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
584 memset(dest+(*n), 0, fc-halfFC);
585 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
586 *n += fc;
587 }
588 }
589 if (mod>0 && !modAdjOk){ //fsk1
590 memset(dest+(*n), 0, mod-(mod/2));
591 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
592 *n += mod;
593 }
594}
595
596// prepare a waveform pattern in the buffer based on the ID given then
597// simulate a HID tag until the button is pressed
598void CmdHIDsimTAG(int hi2, int hi, int lo, int ledcontrol)
599{
600 int n=0, i=0;
601 /*
602 HID tag bitstream format
603 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
604 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
605 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
606 A fc8 is inserted before every 4 bits
607 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
608 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
609 */
610
611 if (hi2>0x0FFFFFFF) {
612 DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
613 return;
614 }
615 // set LF so we don't kill the bigbuf we are setting with simulation data.
616 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
617
618 fc(0,&n);
619 // special start of frame marker containing invalid bit sequences
620 fc(8, &n); fc(8, &n); // invalid
621 fc(8, &n); fc(10, &n); // logical 0
622 fc(10, &n); fc(10, &n); // invalid
623 fc(8, &n); fc(10, &n); // logical 0
624
625 WDT_HIT();
626 if (hi2 > 0 || hi > 0xFFF){
627 // manchester encode bits 91 to 64 (91-84 are part of the header)
628 for (i=27; i>=0; i--) {
629 if ((i%4)==3) fc(0,&n);
630 if ((hi2>>i)&1) {
631 fc(10, &n); fc(8, &n); // low-high transition
632 } else {
633 fc(8, &n); fc(10, &n); // high-low transition
634 }
635 }
636 WDT_HIT();
637 // manchester encode bits 63 to 32
638 for (i=31; i>=0; i--) {
639 if ((i%4)==3) fc(0,&n);
640 if ((hi>>i)&1) {
641 fc(10, &n); fc(8, &n); // low-high transition
642 } else {
643 fc(8, &n); fc(10, &n); // high-low transition
644 }
645 }
646 } else {
647 // manchester encode bits 43 to 32
648 for (i=11; i>=0; i--) {
649 if ((i%4)==3) fc(0,&n);
650 if ((hi>>i)&1) {
651 fc(10, &n); fc(8, &n); // low-high transition
652 } else {
653 fc(8, &n); fc(10, &n); // high-low transition
654 }
655 }
656 }
657
658 WDT_HIT();
659 // manchester encode bits 31 to 0
660 for (i=31; i>=0; i--) {
661 if ((i%4)==3) fc(0,&n);
662 if ((lo>>i)&1) {
663 fc(10, &n); fc(8, &n); // low-high transition
664 } else {
665 fc(8, &n); fc(10, &n); // high-low transition
666 }
667 }
668
669 if (ledcontrol)
670 LED_A_ON();
671 SimulateTagLowFrequency(n, 0, ledcontrol);
672
673 if (ledcontrol)
674 LED_A_OFF();
675}
676
677// prepare a waveform pattern in the buffer based on the ID given then
678// simulate a FSK tag until the button is pressed
679// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
680void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
681{
682 int ledcontrol=1;
683 int n=0, i=0;
684 uint8_t fcHigh = arg1 >> 8;
685 uint8_t fcLow = arg1 & 0xFF;
686 uint16_t modCnt = 0;
687 uint8_t clk = arg2 & 0xFF;
688 uint8_t invert = (arg2 >> 8) & 1;
689
690 // set LF so we don't kill the bigbuf we are setting with simulation data.
691 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
692
693 for (i=0; i<size; i++){
694 if (BitStream[i] == invert){
695 fcAll(fcLow, &n, clk, &modCnt);
696 } else {
697 fcAll(fcHigh, &n, clk, &modCnt);
698 }
699 }
700 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
701 /*Dbprintf("DEBUG: First 32:");
702 uint8_t *dest = BigBuf_get_addr();
703 i=0;
704 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
705 i+=16;
706 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
707 */
708 if (ledcontrol)
709 LED_A_ON();
710
711 SimulateTagLowFrequency(n, 0, ledcontrol);
712
713 if (ledcontrol)
714 LED_A_OFF();
715}
716
717// compose ask waveform for one bit(ASK)
718static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
719{
720 uint8_t *dest = BigBuf_get_addr();
721 uint8_t halfClk = clock/2;
722 // c = current bit 1 or 0
723 if (manchester==1){
724 memset(dest+(*n), c, halfClk);
725 memset(dest+(*n) + halfClk, c^1, halfClk);
726 } else {
727 memset(dest+(*n), c, clock);
728 }
729 *n += clock;
730}
731
732static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
733{
734 uint8_t *dest = BigBuf_get_addr();
735 uint8_t halfClk = clock/2;
736 if (c){
737 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
738 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
739 } else {
740 memset(dest+(*n), c ^ *phase, clock);
741 *phase ^= 1;
742 }
743 *n += clock;
744}
745
746static void stAskSimBit(int *n, uint8_t clock) {
747 uint8_t *dest = BigBuf_get_addr();
748 uint8_t halfClk = clock/2;
749 //ST = .5 high .5 low 1.5 high .5 low 1 high
750 memset(dest+(*n), 1, halfClk);
751 memset(dest+(*n) + halfClk, 0, halfClk);
752 memset(dest+(*n) + clock, 1, clock + halfClk);
753 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
754 memset(dest+(*n) + clock*3, 1, clock);
755 *n += clock*4;
756}
757
758// args clock, ask/man or askraw, invert, transmission separator
759void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
760{
761 int ledcontrol = 1;
762 int n=0, i=0;
763 uint8_t clk = (arg1 >> 8) & 0xFF;
764 uint8_t encoding = arg1 & 0xFF;
765 uint8_t separator = arg2 & 1;
766 uint8_t invert = (arg2 >> 8) & 1;
767
768 // set LF so we don't kill the bigbuf we are setting with simulation data.
769 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
770
771 if (encoding==2){ //biphase
772 uint8_t phase=0;
773 for (i=0; i<size; i++){
774 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
775 }
776 if (phase==1) { //run a second set inverted to keep phase in check
777 for (i=0; i<size; i++){
778 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
779 }
780 }
781 } else { // ask/manchester || ask/raw
782 for (i=0; i<size; i++){
783 askSimBit(BitStream[i]^invert, &n, clk, encoding);
784 }
785 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
786 for (i=0; i<size; i++){
787 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
788 }
789 }
790 }
791 if (separator==1 && encoding == 1)
792 stAskSimBit(&n, clk);
793 else if (separator==1)
794 Dbprintf("sorry but separator option not yet available");
795
796 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
797 //DEBUG
798 //Dbprintf("First 32:");
799 //uint8_t *dest = BigBuf_get_addr();
800 //i=0;
801 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
802 //i+=16;
803 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
804
805 if (ledcontrol) LED_A_ON();
806 SimulateTagLowFrequency(n, 0, ledcontrol);
807 if (ledcontrol) LED_A_OFF();
808}
809
810//carrier can be 2,4 or 8
811static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
812{
813 uint8_t *dest = BigBuf_get_addr();
814 uint8_t halfWave = waveLen/2;
815 //uint8_t idx;
816 int i = 0;
817 if (phaseChg){
818 // write phase change
819 memset(dest+(*n), *curPhase^1, halfWave);
820 memset(dest+(*n) + halfWave, *curPhase, halfWave);
821 *n += waveLen;
822 *curPhase ^= 1;
823 i += waveLen;
824 }
825 //write each normal clock wave for the clock duration
826 for (; i < clk; i+=waveLen){
827 memset(dest+(*n), *curPhase, halfWave);
828 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
829 *n += waveLen;
830 }
831}
832
833// args clock, carrier, invert,
834void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
835{
836 int ledcontrol=1;
837 int n=0, i=0;
838 uint8_t clk = arg1 >> 8;
839 uint8_t carrier = arg1 & 0xFF;
840 uint8_t invert = arg2 & 0xFF;
841 uint8_t curPhase = 0;
842 // set LF so we don't kill the bigbuf we are setting with simulation data.
843 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
844
845 for (i=0; i<size; i++){
846 if (BitStream[i] == curPhase){
847 pskSimBit(carrier, &n, clk, &curPhase, false);
848 } else {
849 pskSimBit(carrier, &n, clk, &curPhase, true);
850 }
851 }
852 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
853 //Dbprintf("DEBUG: First 32:");
854 //uint8_t *dest = BigBuf_get_addr();
855 //i=0;
856 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
857 //i+=16;
858 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
859
860 if (ledcontrol) LED_A_ON();
861 SimulateTagLowFrequency(n, 0, ledcontrol);
862 if (ledcontrol) LED_A_OFF();
863}
864
865// loop to get raw HID waveform then FSK demodulate the TAG ID from it
866void CmdHIDdemodFSK(int findone, int *high2, int *high, int *low, int ledcontrol)
867{
868 uint8_t *dest = BigBuf_get_addr();
869 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
870 size_t size;
871 uint32_t hi2=0, hi=0, lo=0;
872 int idx=0;
873 int dummyIdx = 0;
874 // Configure to go in 125Khz listen mode
875 LFSetupFPGAForADC(95, true);
876
877 //clear read buffer
878 BigBuf_Clear_keep_EM();
879
880 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
881 WDT_HIT();
882 if (ledcontrol) LED_A_ON();
883
884 DoAcquisition_default(-1,true);
885 // FSK demodulator
886 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
887 size = 50*128*2; //big enough to catch 2 sequences of largest format
888 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
889
890 if (idx>0 && lo>0 && (size==96 || size==192)){
891 uint8_t bitlen = 0;
892 uint32_t fc = 0;
893 uint32_t cardnum = 0;
894 bool decoded = false;
895
896 // go over previously decoded manchester data and decode into usable tag ID
897 if ((hi2 & 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
898 uint32_t bp = hi2 & 0x000FFFFF;
899 bitlen = 63;
900 while (bp > 0) {
901 bp = bp >> 1;
902 bitlen++;
903 }
904 } else if ((hi >> 6) > 0) {
905 uint32_t bp = hi;
906 bitlen = 31;
907 while (bp > 0) {
908 bp = bp >> 1;
909 bitlen++;
910 }
911 } else if (((hi >> 5) & 1) == 0) {
912 bitlen = 37;
913 } else if ((hi & 0x0000001F) > 0 ) {
914 uint32_t bp = (hi & 0x0000001F);
915 bitlen = 31;
916 while (bp > 0) {
917 bp = bp >> 1;
918 bitlen++;
919 }
920 } else {
921 uint32_t bp = lo;
922 bitlen = 0;
923 while (bp > 0) {
924 bp = bp >> 1;
925 bitlen++;
926 }
927 }
928 switch (bitlen){
929 case 26:
930 cardnum = (lo>>1)&0xFFFF;
931 fc = (lo>>17)&0xFF;
932 decoded = true;
933 break;
934 case 35:
935 cardnum = (lo>>1)&0xFFFFF;
936 fc = ((hi&1)<<11)|(lo>>21);
937 decoded = true;
938 break;
939 }
940
941 if (hi2 != 0) //extra large HID tags 88/192 bits
942 Dbprintf("TAG ID: %x%08x%08x (%d)",
943 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
944 else
945 Dbprintf("TAG ID: %x%08x (%d)",
946 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
947
948 if (decoded)
949 Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
950 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
951
952 if (findone){
953 if (ledcontrol) LED_A_OFF();
954 *high2 = hi2;
955 *high = hi;
956 *low = lo;
957 break;
958 }
959 // reset
960 }
961 hi2 = hi = lo = idx = 0;
962 WDT_HIT();
963 }
964
965 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
966 DbpString("Stopped");
967 if (ledcontrol) LED_A_OFF();
968}
969
970// loop to get raw HID waveform then FSK demodulate the TAG ID from it
971void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
972{
973 uint8_t *dest = BigBuf_get_addr();
974 size_t size;
975 int idx=0, dummyIdx=0;
976 //clear read buffer
977 BigBuf_Clear_keep_EM();
978 // Configure to go in 125Khz listen mode
979 LFSetupFPGAForADC(95, true);
980
981 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
982
983 WDT_HIT();
984 if (ledcontrol) LED_A_ON();
985
986 DoAcquisition_default(-1,true);
987 // FSK demodulator
988 size = 50*128*2; //big enough to catch 2 sequences of largest format
989 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
990
991 if (idx<=0 || size!=96) continue;
992 // Index map
993 // 0 10 20 30 40 50 60
994 // | | | | | | |
995 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
996 // -----------------------------------------------------------------------------
997 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
998 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
999 // |---26 bit---| |-----117----||-------------142-------------|
1000 // b = format bit len, o = odd parity of last 3 bits
1001 // f = facility code, c = card number
1002 // w = wiegand parity
1003 // (26 bit format shown)
1004
1005 //get raw ID before removing parities
1006 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
1007 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
1008 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
1009
1010 size = removeParity(dest, idx+8, 4, 1, 88);
1011 if (size != 66) continue;
1012 // ok valid card found!
1013
1014 // Index map
1015 // 0 10 20 30 40 50 60
1016 // | | | | | | |
1017 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
1018 // -----------------------------------------------------------------------------
1019 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
1020 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1021 // |26 bit| |-117--| |-----142------|
1022 // b = format bit len, o = odd parity of last 3 bits
1023 // f = facility code, c = card number
1024 // w = wiegand parity
1025 // (26 bit format shown)
1026
1027 uint32_t fc = 0;
1028 uint32_t cardnum = 0;
1029 uint32_t code1 = 0;
1030 uint32_t code2 = 0;
1031 uint8_t fmtLen = bytebits_to_byte(dest,8);
1032 if (fmtLen==26){
1033 fc = bytebits_to_byte(dest+9, 8);
1034 cardnum = bytebits_to_byte(dest+17, 16);
1035 code1 = bytebits_to_byte(dest+8,fmtLen);
1036 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
1037 } else {
1038 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1039 if (fmtLen>32){
1040 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1041 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1042 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1043 } else{
1044 code1 = bytebits_to_byte(dest+8,fmtLen);
1045 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
1046 }
1047 }
1048 if (findone){
1049 if (ledcontrol) LED_A_OFF();
1050 break;
1051 }
1052 // reset
1053 idx = 0;
1054 WDT_HIT();
1055 }
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1057 DbpString("Stopped");
1058 if (ledcontrol) LED_A_OFF();
1059}
1060
1061void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1062{
1063 uint8_t *dest = BigBuf_get_addr();
1064
1065 size_t size=0, idx=0;
1066 int clk=0, invert=0, errCnt=0, maxErr=20;
1067 uint32_t hi=0;
1068 uint64_t lo=0;
1069 //clear read buffer
1070 BigBuf_Clear_keep_EM();
1071 // Configure to go in 125Khz listen mode
1072 LFSetupFPGAForADC(95, true);
1073
1074 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1075
1076 WDT_HIT();
1077 if (ledcontrol) LED_A_ON();
1078
1079 DoAcquisition_default(-1,true);
1080 size = BigBuf_max_traceLen();
1081 //askdemod and manchester decode
1082 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1083 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1084 WDT_HIT();
1085
1086 if (errCnt<0) continue;
1087
1088 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1089 if (errCnt){
1090 if (size>64){
1091 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1092 hi,
1093 (uint32_t)(lo>>32),
1094 (uint32_t)lo,
1095 (uint32_t)(lo&0xFFFF),
1096 (uint32_t)((lo>>16LL) & 0xFF),
1097 (uint32_t)(lo & 0xFFFFFF));
1098 } else {
1099 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1100 (uint32_t)(lo>>32),
1101 (uint32_t)lo,
1102 (uint32_t)(lo&0xFFFF),
1103 (uint32_t)((lo>>16LL) & 0xFF),
1104 (uint32_t)(lo & 0xFFFFFF));
1105 }
1106
1107 if (findone){
1108 if (ledcontrol) LED_A_OFF();
1109 *high=lo>>32;
1110 *low=lo & 0xFFFFFFFF;
1111 break;
1112 }
1113 }
1114 WDT_HIT();
1115 hi = lo = size = idx = 0;
1116 clk = invert = errCnt = 0;
1117 }
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1119 DbpString("Stopped");
1120 if (ledcontrol) LED_A_OFF();
1121}
1122
1123void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1124{
1125 uint8_t *dest = BigBuf_get_addr();
1126 int idx=0;
1127 uint32_t code=0, code2=0;
1128 uint8_t version=0;
1129 uint8_t facilitycode=0;
1130 uint16_t number=0;
1131 int dummyIdx=0;
1132 //clear read buffer
1133 BigBuf_Clear_keep_EM();
1134 // Configure to go in 125Khz listen mode
1135 LFSetupFPGAForADC(95, true);
1136
1137 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1138 WDT_HIT();
1139 if (ledcontrol) LED_A_ON();
1140 DoAcquisition_default(-1,true);
1141 //fskdemod and get start index
1142 WDT_HIT();
1143 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1144 if (idx<0) continue;
1145 //valid tag found
1146
1147 //Index map
1148 //0 10 20 30 40 50 60
1149 //| | | | | | |
1150 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1151 //-----------------------------------------------------------------------------
1152 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1153 //
1154 //XSF(version)facility:codeone+codetwo
1155 //Handle the data
1156 if(findone){ //only print binary if we are doing one
1157 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1158 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1159 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1160 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1161 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1162 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1163 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1164 }
1165 code = bytebits_to_byte(dest+idx,32);
1166 code2 = bytebits_to_byte(dest+idx+32,32);
1167 version = bytebits_to_byte(dest+idx+27,8); //14,4
1168 facilitycode = bytebits_to_byte(dest+idx+18,8);
1169 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1170
1171 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1172 // if we're only looking for one tag
1173 if (findone){
1174 if (ledcontrol) LED_A_OFF();
1175 //LED_A_OFF();
1176 *high=code;
1177 *low=code2;
1178 break;
1179 }
1180 code=code2=0;
1181 version=facilitycode=0;
1182 number=0;
1183 idx=0;
1184
1185 WDT_HIT();
1186 }
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1188 DbpString("Stopped");
1189 if (ledcontrol) LED_A_OFF();
1190}
1191
1192/*------------------------------
1193 * T5555/T5557/T5567/T5577 routines
1194 *------------------------------
1195 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1196 *
1197 * Relevant communication times in microsecond
1198 * To compensate antenna falling times shorten the write times
1199 * and enlarge the gap ones.
1200 * Q5 tags seems to have issues when these values changes.
1201 */
1202
1203 /*
1204 // Original Timings for reference
1205//note startgap must be sent after tag has been powered up for more than 3ms (per T5557 ds)
1206
1207#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1208#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1209#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1210#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1211#define READ_GAP 15*8
1212
1213*/
1214/* Q5 timing datasheet:
1215 * Type | MIN | Typical | Max |
1216 * Start_Gap | 10*8 | ? | 50*8 |
1217 * Write_Gap Normal mode | 8*8 | 14*8 | 20*8 |
1218 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1219 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1220 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1221 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1222 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1223*/
1224
1225/* T5557 timing datasheet:
1226 * Type | MIN | Typical | Max |
1227 * Start_Gap | 10*8 | ? | 50*8 |
1228 * Write_Gap Normal mode | 8*8 |50-150us | 30*8 |
1229 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1230 * Write_0 Normal mode | 16*8 | 24*8 | 31*8 |
1231 * Write_1 Normal mode | 48*8 | 54*8 | 63*8 |
1232 * Write_0 Fast Mode | 8*8 | 12*8 | 15*8 |
1233 * Write_1 Fast Mode | 24*8 | 28*8 | 31*8 |
1234*/
1235
1236/* T5577C timing datasheet for Fixed-Bit-Length protocol (defualt):
1237 * Type | MIN | Typical | Max |
1238 * Start_Gap | 8*8 | 15*8 | 50*8 |
1239 * Write_Gap Normal mode | 8*8 | 10*8 | 20*8 |
1240 * Write_Gap Fast Mode | 8*8 | 10*8 | 20*8 |
1241 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1242 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1243 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1244 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1245*/
1246
1247// Structure to hold Timing values. In future will be simplier to add user changable timings.
1248typedef struct {
1249 uint16_t START_GAP;
1250 uint16_t WRITE_GAP;
1251 uint16_t WRITE_0;
1252 uint16_t WRITE_1;
1253 uint16_t WRITE_2;
1254 uint16_t WRITE_3;
1255 uint16_t READ_GAP;
1256} T55xx_Timing;
1257
1258// Set Initial/Default Values. Note: *8 can occure when used. This should keep things simplier here.
1259T55xx_Timing T55xx_Timing_FixedBit = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1260T55xx_Timing T55xx_Timing_LLR = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1261T55xx_Timing T55xx_Timing_Leading0 = { 31 * 8 , 20 * 8 , 18 * 8 , 40 * 8 , 0 , 0 , 15 * 8 };
1262T55xx_Timing T55xx_Timing_1of4 = { 31 * 8 , 20 * 8 , 18 * 8 , 34 * 8 , 50 * 8 , 66 * 8 , 15 * 8 };
1263
1264// Some defines for readability
1265#define T55xx_DLMode_Fixed 0 // Default Mode
1266#define T55xx_DLMode_LLR 1 // Long Leading Reference
1267#define T55xx_DLMode_Leading0 2 // Leading Zero
1268#define T55xx_DLMode_1of4 3 // 1 of 4
1269#define T55xx_LongLeadingReference 4 // Value to tell Write Bit to send long reference
1270// Macro for code readability
1271#define BitStream_Byte(X) ((X) >> 3)
1272#define BitStream_Bit(X) ((X) & 7)
1273
1274
1275void TurnReadLFOn(int delay) {
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1277 // Give it a bit of time for the resonant antenna to settle.
1278 WaitUS(delay); //155*8 //50*8
1279}
1280
1281// Write one bit to card
1282void T55xxWriteBit(int bit, T55xx_Timing *Timings) {
1283
1284 // If bit = 4 Send Long Leading Reference which is 138 + WRITE_0
1285 // Dbprintf ("Bits : %d",bit);
1286 switch (bit){
1287 case 0 : TurnReadLFOn(Timings->WRITE_0); break; // Send bit 0/00
1288 case 1 : TurnReadLFOn(Timings->WRITE_1); break; // Send bit 1/01
1289 case 2 : TurnReadLFOn(Timings->WRITE_2); break; // Send bits 10
1290 case 3 : TurnReadLFOn(Timings->WRITE_3); break; // Send bits 11
1291 case 4 : TurnReadLFOn(Timings->WRITE_0 + (136 * 8)); break; // Send Long Leading Reference
1292 }
1293 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1294 WaitUS(Timings->WRITE_GAP);
1295}
1296
1297// Function to abstract an Arbitrary length byte array to store bit pattern.
1298// bit_array - Array to hold data/bit pattern
1299// start_offset - bit location to start storing new bits.
1300// data - upto 32 bits of data to store
1301// num_bits - how many bits (low x bits of data) Max 32 bits at a time
1302// max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
1303// returns "Next" bit offset / bits stored (for next store)
1304//int T55xx_SetBits (uint8_t *bit_array, int start_offset, uint32_t data , int num_bits, int max_len)
1305int T55xx_SetBits (uint8_t *BitStream, uint8_t start_offset, uint32_t data , uint8_t num_bits, uint8_t max_len)
1306{
1307 int8_t offset;
1308 int8_t NextOffset = start_offset;
1309
1310 // Check if data will fit.
1311 if ((start_offset + num_bits) <= (max_len*8)) {
1312 // Loop through the data and store
1313 for (offset = (num_bits-1); offset >= 0; offset--) {
1314
1315 if ((data >> offset) & 1) BitStream[BitStream_Byte(NextOffset)] |= (1 << BitStream_Bit(NextOffset)); // Set the bit to 1
1316 else BitStream[BitStream_Byte(NextOffset)] &= (0xff ^ (1 << BitStream_Bit(NextOffset))); // Set the bit to 0
1317
1318 NextOffset++;
1319 }
1320 }
1321 else {
1322 // Note: This should never happen unless some code changes cause it.
1323 // So short message for coders when testing.
1324 Dbprintf ("T55 too many bits");
1325 }
1326 return NextOffset;
1327}
1328
1329// Send one downlink command to the card
1330void T55xx_SendCMD (uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1331
1332 /*
1333 arg bits
1334 xxxxxxx1 0x01 PwdMode
1335 xxxxxx1x 0x02 Page
1336 xxxxx1xx 0x04 testMode
1337 xxx11xxx 0x18 downlink mode
1338 xx1xxxxx 0x20 !reg_readmode
1339 x1xxxxxx 0x40 called for a read, so no data packet
1340 1xxxxxxx 0x80 reset
1341
1342 */
1343 bool PwdMode = ((arg & 0x01) == 0x01);
1344 bool Page = (arg & 0x02);
1345 bool testMode = ((arg & 0x04) == 0x04);
1346 uint8_t downlink_mode = (arg >> 3) & 0x03;
1347 bool reg_readmode = ((arg & 0x20) == 0x20);
1348 bool read_cmd = ((arg & 0x40) == 0x40);
1349 bool reset = (arg & 0x80);
1350
1351 uint8_t i = 0;
1352 uint8_t BitStream[10]; // Max Downlink Command size ~74 bits, so 10 bytes (80 bits)
1353 uint8_t BitStreamLen;
1354 T55xx_Timing *Timing;
1355 uint8_t SendBits;
1356
1357 // Assigning Downlink Timeing for write
1358 switch (downlink_mode)
1359 {
1360 case T55xx_DLMode_Fixed : Timing = &T55xx_Timing_FixedBit; break;
1361 case T55xx_DLMode_LLR : Timing = &T55xx_Timing_LLR; break;
1362 case T55xx_DLMode_Leading0 : Timing = &T55xx_Timing_Leading0; break;
1363 case T55xx_DLMode_1of4 : Timing = &T55xx_Timing_1of4; break;
1364 default:
1365 Timing = &T55xx_Timing_FixedBit;
1366 }
1367
1368 // Build Bit Stream to send.
1369 memset (BitStream,0x00,sizeof(BitStream));
1370
1371 BitStreamLen = 0; // Ensure 0 bit index to start.
1372
1373 // Add Leading 0 and 1 of 4 reference bit
1374 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4))
1375 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1376
1377 // Add extra reference 0 for 1 of 4
1378 if (downlink_mode == T55xx_DLMode_1of4)
1379 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1380
1381 // Add Opcode
1382 if (reset) {
1383 // Reset : r*) 00
1384 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
1385 }
1386 else
1387 {
1388 if (testMode) Dbprintf("TestMODE");
1389 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 0 : 1 , 1,sizeof(BitStream));
1390 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 1 : Page , 1,sizeof(BitStream));
1391
1392 if (PwdMode) {
1393 // Leading 0 and 1 of 4 00 fixed bits if passsword used
1394 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4)) {
1395 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
1396 }
1397 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Pwd, 32,sizeof(BitStream));
1398 }
1399
1400 // Add Lock bit 0
1401 if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1402
1403 // Add Data if a write command
1404 if (!read_cmd) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Data, 32,sizeof(BitStream));
1405
1406 // Add Address
1407 if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Block, 3,sizeof(BitStream));
1408 }
1409
1410 // Send Bits to T55xx
1411 // Set up FPGA, 125kHz
1412 LFSetupFPGAForADC(95, true);
1413 StartTicks();
1414 // make sure tag is fully powered up...
1415 WaitMS(5);
1416 // Trigger T55x7 in mode.
1417 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1418 WaitUS(Timing->START_GAP);
1419
1420 // If long leading 0 send long reference pulse
1421 if (downlink_mode == T55xx_DLMode_LLR)
1422 T55xxWriteBit (T55xx_LongLeadingReference,Timing); // Send Long Leading Start Reference
1423
1424 if ((downlink_mode == T55xx_DLMode_1of4) && (BitStreamLen > 0)) { // 1 of 4 need to send 2 bits at a time
1425 for ( i = 0; i < BitStreamLen-1; i+=2 ) {
1426 SendBits = (BitStream[BitStream_Byte(i )] >> (BitStream_Bit(i )) & 1) << 1; // Bit i
1427 SendBits += (BitStream[BitStream_Byte(i+1)] >> (BitStream_Bit(i+1)) & 1); // Bit i+1;
1428 T55xxWriteBit (SendBits & 3,Timing);
1429 }
1430 }
1431 else {
1432 for (i = 0; i < BitStreamLen; i++) {
1433 SendBits = (BitStream[BitStream_Byte(i)] >> BitStream_Bit(i));
1434 T55xxWriteBit (SendBits & 1,Timing);
1435 }
1436 }
1437}
1438
1439// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1440void T55xxResetRead(void) {
1441 LED_A_ON();
1442
1443 // send r* 00
1444 uint8_t arg = 0x80; // SendCMD will add correct reference mode based on flags (when added).
1445
1446 // Add in downlink_mode when ready
1447 // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
1448
1449 //clear buffer now so it does not interfere with timing later
1450 BigBuf_Clear_keep_EM();
1451
1452 T55xx_SendCMD (0, 0, 0, arg); //, true);
1453
1454 TurnReadLFOn(T55xx_Timing_FixedBit.READ_GAP);
1455
1456 // Acquisition
1457 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1458
1459 // Turn the field off
1460 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1461 cmd_send(CMD_ACK,0,0,0,0,0);
1462 LED_A_OFF();
1463}
1464
1465// Write one card block in page 0, no lock
1466void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1467 /*
1468 arg bits
1469 xxxxxxx1 0x01 PwdMode
1470 xxxxxx1x 0x02 Page
1471 xxxxx1xx 0x04 testMode
1472 xxx11xxx 0x18 downlink mode
1473 xx1xxxxx 0x20 !reg_readmode
1474 x1xxxxxx 0x40 called for a read, so no data packet
1475 1xxxxxxx 0x80 reset
1476 */
1477
1478 bool testMode = ((arg & 0x04) == 0x04);
1479 arg &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
1480
1481 LED_A_ON ();
1482 T55xx_SendCMD (Data, Block, Pwd, arg) ;//, false);
1483
1484 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1485 // so wait a little more)
1486
1487 // "there is a clock delay before programming"
1488 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1489 // so we should wait 1 clock + 5.6ms then read response?
1490 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1491 if (testMode) {
1492 //TESTMODE TIMING TESTS:
1493 // <566us does nothing
1494 // 566-568 switches between wiping to 0s and doing nothing
1495 // 5184 wipes and allows 1 block to be programmed.
1496 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1497 TurnReadLFOn(5184);
1498
1499 } else {
1500 TurnReadLFOn(20 * 1000);
1501 //could attempt to do a read to confirm write took
1502 // as the tag should repeat back the new block
1503 // until it is reset, but to confirm it we would
1504 // need to know the current block 0 config mode for
1505 // modulation clock an other details to demod the response...
1506 // response should be (for t55x7) a 0 bit then (ST if on)
1507 // block data written in on repeat until reset.
1508
1509 //DoPartialAcquisition(20, true, 12000);
1510 }
1511 // turn field off
1512 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1513
1514 cmd_send(CMD_ACK,0,0,0,0,0);
1515
1516 LED_A_OFF ();
1517}
1518
1519// Read one card block in page [page]
1520void T55xxReadBlock (uint16_t arg0, uint8_t Block, uint32_t Pwd) {//, struct T55xx_Timing *Timing) {
1521
1522 LED_A_ON();
1523
1524 /*
1525 arg bits
1526 xxxxxxx1 0x01 PwdMode
1527 xxxxxx1x 0x02 Page
1528 xxxxx1xx 0x04 testMode
1529 xxx11xxx 0x18 downlink mode
1530 xx1xxxxx 0x20 !reg_readmode
1531 x1xxxxxx 0x40 called for a read, so no data packet
1532 1xxxxxxx 0x80 reset
1533 */
1534
1535 // Set Read Flag to ensure SendCMD does not add "data" to the packet
1536 arg0 |= 0x40;
1537
1538 // RegRead Mode true of block 0xff
1539 if (Block == 0xff) arg0 |= 0x20;
1540
1541 //make sure block is at max 7
1542 Block &= 0x7;
1543
1544 //clear buffer now so it does not interfere with timing later
1545 BigBuf_Clear_ext(false);
1546
1547 T55xx_SendCMD (0, Block, Pwd, arg0); //, true);
1548
1549 // Turn field on to read the response
1550 // 137*8 seems to get to the start of data pretty well...
1551 // but we want to go past the start and let the repeating data settle in...
1552 TurnReadLFOn(210*8);
1553
1554 // Acquisition
1555 // Now do the acquisition
1556 DoPartialAcquisition(0, true, 12000, 0);
1557
1558 // Turn the field off
1559 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1560 cmd_send(CMD_ACK,0,0,0,0,0);
1561
1562 LED_A_OFF();
1563}
1564
1565void T55xxWakeUp(uint32_t Pwd){
1566 LED_B_ON();
1567 /*
1568 arg bits
1569 xxxxxxx1 0x01 PwdMode
1570 xxxxxx1x 0x02 Page
1571 xxxxx1xx 0x04 testMode
1572 xxx11xxx 0x18 downlink mode
1573 xx1xxxxx 0x20 !reg_readmode
1574 x1xxxxxx 0x40 called for a read, so no data packet
1575 1xxxxxxx 0x80 reset
1576 */
1577
1578 // r* 10 (00) <pwd> r* for llr , L0 and 1/4 - (00) for L0 and 1/4 - All handled in SendCMD
1579 // So, default Opcode 10 and pwd.
1580 uint8_t arg = 0x01 | 0x40 | 0x20; //Password Read Call no data | reg_read no block
1581
1582 // Add in downlink_mode when ready
1583 // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
1584
1585 T55xx_SendCMD (0, 0, Pwd, arg); //, true);
1586
1587 // Turn and leave field on to let the begin repeating transmission
1588 TurnReadLFOn(20*1000);
1589}
1590
1591/*-------------- Cloning routines -----------*/
1592
1593void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1594 // write last block first and config block last (if included)
1595 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1596 T55xxWriteBlock(blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1597 //T55xx_SendCMD (blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1598 }
1599}
1600
1601// Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
1602void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, uint8_t preamble) {
1603 uint32_t data[] = {0,0,0,0,0,0,0};
1604 uint8_t last_block = 0;
1605
1606 if (longFMT) {
1607 // Ensure no more than 84 bits supplied
1608 if (hi2>0xFFFFF) {
1609 DbpString("Tags can only have 84 bits.");
1610 return;
1611 }
1612 // Build the 6 data blocks for supplied 84bit ID
1613 last_block = 6;
1614 // load preamble & long format identifier (9E manchester encoded)
1615 data[1] = (preamble << 24) | 0x96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1616 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1617 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1618 data[3] = manchesterEncode2Bytes(hi >> 16);
1619 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1620 data[5] = manchesterEncode2Bytes(lo >> 16);
1621 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1622 } else {
1623 // Ensure no more than 44 bits supplied
1624 if (hi>0xFFF) {
1625 DbpString("Tags can only have 44 bits.");
1626 return;
1627 }
1628 // Build the 3 data blocks for supplied 44bit ID
1629 last_block = 3;
1630 // load preamble
1631 data[1] = (preamble << 24) | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1632 data[2] = manchesterEncode2Bytes(lo >> 16);
1633 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1634 }
1635 // load chip config block
1636 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1637
1638 //TODO add selection of chip for Q5 or T55x7
1639 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1640
1641 LED_D_ON();
1642 // Program the data blocks for supplied ID
1643 // and the block 0 for HID format
1644 WriteT55xx(data, 0, last_block+1);
1645
1646 LED_D_OFF();
1647
1648 DbpString("DONE!");
1649}
1650
1651void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1652 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1653 //TODO add selection of chip for Q5 or T55x7
1654 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1655
1656 LED_D_ON();
1657 // Program the data blocks for supplied ID
1658 // and the block 0 config
1659 WriteT55xx(data, 0, 3);
1660
1661 LED_D_OFF();
1662
1663 DbpString("DONE!");
1664}
1665
1666// Clone Indala 64-bit tag by UID to T55x7
1667void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1668 //Program the 2 data blocks for supplied 64bit UID
1669 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1670 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1671 //TODO add selection of chip for Q5 or T55x7
1672 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1673
1674 WriteT55xx(data, 0, 3);
1675 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1676 // T5567WriteBlock(0x603E1042,0);
1677 DbpString("DONE!");
1678}
1679// Clone Indala 224-bit tag by UID to T55x7
1680void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1681 //Program the 7 data blocks for supplied 224bit UID
1682 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1683 // and the block 0 for Indala224 format
1684 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1685 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1686 //TODO add selection of chip for Q5 or T55x7
1687 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1688 WriteT55xx(data, 0, 8);
1689 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1690 // T5567WriteBlock(0x603E10E2,0);
1691 DbpString("DONE!");
1692}
1693// clone viking tag to T55xx
1694void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1695 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1696 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1697 // Program the data blocks for supplied ID and the block 0 config
1698 WriteT55xx(data, 0, 3);
1699 LED_D_OFF();
1700 cmd_send(CMD_ACK,0,0,0,0,0);
1701}
1702
1703// Define 9bit header for EM410x tags
1704#define EM410X_HEADER 0x1FF
1705#define EM410X_ID_LENGTH 40
1706
1707void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1708 int i, id_bit;
1709 uint64_t id = EM410X_HEADER;
1710 uint64_t rev_id = 0; // reversed ID
1711 int c_parity[4]; // column parity
1712 int r_parity = 0; // row parity
1713 uint32_t clock = 0;
1714
1715 // Reverse ID bits given as parameter (for simpler operations)
1716 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1717 if (i < 32) {
1718 rev_id = (rev_id << 1) | (id_lo & 1);
1719 id_lo >>= 1;
1720 } else {
1721 rev_id = (rev_id << 1) | (id_hi & 1);
1722 id_hi >>= 1;
1723 }
1724 }
1725
1726 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1727 id_bit = rev_id & 1;
1728
1729 if (i % 4 == 0) {
1730 // Don't write row parity bit at start of parsing
1731 if (i)
1732 id = (id << 1) | r_parity;
1733 // Start counting parity for new row
1734 r_parity = id_bit;
1735 } else {
1736 // Count row parity
1737 r_parity ^= id_bit;
1738 }
1739
1740 // First elements in column?
1741 if (i < 4)
1742 // Fill out first elements
1743 c_parity[i] = id_bit;
1744 else
1745 // Count column parity
1746 c_parity[i % 4] ^= id_bit;
1747
1748 // Insert ID bit
1749 id = (id << 1) | id_bit;
1750 rev_id >>= 1;
1751 }
1752
1753 // Insert parity bit of last row
1754 id = (id << 1) | r_parity;
1755
1756 // Fill out column parity at the end of tag
1757 for (i = 0; i < 4; ++i)
1758 id = (id << 1) | c_parity[i];
1759
1760 // Add stop bit
1761 id <<= 1;
1762
1763 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1764 LED_D_ON();
1765
1766 // Write EM410x ID
1767 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1768
1769 clock = (card & 0xFF00) >> 8;
1770 clock = (clock == 0) ? 64 : clock;
1771 Dbprintf("Clock rate: %d", clock);
1772 if (card & 0xFF) { //t55x7
1773 clock = GetT55xxClockBit(clock);
1774 if (clock == 0) {
1775 Dbprintf("Invalid clock rate: %d", clock);
1776 return;
1777 }
1778 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1779 } else { //t5555 (Q5)
1780 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1781 }
1782
1783 WriteT55xx(data, 0, 3);
1784
1785 LED_D_OFF();
1786 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1787 (uint32_t)(id >> 32), (uint32_t)id);
1788}
1789
1790//-----------------------------------
1791// EM4469 / EM4305 routines
1792//-----------------------------------
1793#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1794#define FWD_CMD_WRITE 0xA
1795#define FWD_CMD_READ 0x9
1796#define FWD_CMD_DISABLE 0x5
1797#define FWD_CMD_PROTECT 0x3
1798
1799uint8_t forwardLink_data[64]; //array of forwarded bits
1800uint8_t * forward_ptr; //ptr for forward message preparation
1801uint8_t fwd_bit_sz; //forwardlink bit counter
1802uint8_t * fwd_write_ptr; //forwardlink bit pointer
1803
1804//====================================================================
1805// prepares command bits
1806// see EM4469 spec
1807//====================================================================
1808//--------------------------------------------------------------------
1809// VALUES TAKEN FROM EM4x function: SendForward
1810// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1811// WRITE_GAP = 128; (16*8)
1812// WRITE_1 = 256 32*8; (32*8)
1813
1814// These timings work for 4469/4269/4305 (with the 55*8 above)
1815// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1816
1817uint8_t Prepare_Cmd( uint8_t cmd ) {
1818
1819 *forward_ptr++ = 0; //start bit
1820 *forward_ptr++ = 0; //second pause for 4050 code
1821
1822 *forward_ptr++ = cmd;
1823 cmd >>= 1;
1824 *forward_ptr++ = cmd;
1825 cmd >>= 1;
1826 *forward_ptr++ = cmd;
1827 cmd >>= 1;
1828 *forward_ptr++ = cmd;
1829
1830 return 6; //return number of emited bits
1831}
1832
1833//====================================================================
1834// prepares address bits
1835// see EM4469 spec
1836//====================================================================
1837uint8_t Prepare_Addr( uint8_t addr ) {
1838
1839 register uint8_t line_parity;
1840
1841 uint8_t i;
1842 line_parity = 0;
1843 for(i=0;i<6;i++) {
1844 *forward_ptr++ = addr;
1845 line_parity ^= addr;
1846 addr >>= 1;
1847 }
1848
1849 *forward_ptr++ = (line_parity & 1);
1850
1851 return 7; //return number of emited bits
1852}
1853
1854//====================================================================
1855// prepares data bits intreleaved with parity bits
1856// see EM4469 spec
1857//====================================================================
1858uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1859
1860 register uint8_t line_parity;
1861 register uint8_t column_parity;
1862 register uint8_t i, j;
1863 register uint16_t data;
1864
1865 data = data_low;
1866 column_parity = 0;
1867
1868 for(i=0; i<4; i++) {
1869 line_parity = 0;
1870 for(j=0; j<8; j++) {
1871 line_parity ^= data;
1872 column_parity ^= (data & 1) << j;
1873 *forward_ptr++ = data;
1874 data >>= 1;
1875 }
1876 *forward_ptr++ = line_parity;
1877 if(i == 1)
1878 data = data_hi;
1879 }
1880
1881 for(j=0; j<8; j++) {
1882 *forward_ptr++ = column_parity;
1883 column_parity >>= 1;
1884 }
1885 *forward_ptr = 0;
1886
1887 return 45; //return number of emited bits
1888}
1889
1890//====================================================================
1891// Forward Link send function
1892// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1893// fwd_bit_count set with number of bits to be sent
1894//====================================================================
1895void SendForward(uint8_t fwd_bit_count) {
1896
1897 fwd_write_ptr = forwardLink_data;
1898 fwd_bit_sz = fwd_bit_count;
1899
1900 // Set up FPGA, 125kHz or 95 divisor
1901 LFSetupFPGAForADC(95, true);
1902
1903 // force 1st mod pulse (start gap must be longer for 4305)
1904 fwd_bit_sz--; //prepare next bit modulation
1905 fwd_write_ptr++;
1906 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1907 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1908 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1909 WaitUS(18*8); //18 cycles on (8us each)
1910
1911 // now start writting - each bit should be 32*8 total length
1912 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1913 if(((*fwd_write_ptr++) & 1) == 1)
1914 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1915 else {
1916 //These timings work for 4469/4269/4305 (with the 55*8 above)
1917 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1918 WaitUS(23*8); //23 cycles off (8us each)
1919 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1920 WaitUS((32-23)*8); //remaining cycles on (8us each)
1921 }
1922 }
1923}
1924
1925void EM4xLogin(uint32_t Password) {
1926
1927 uint8_t fwd_bit_count;
1928
1929 forward_ptr = forwardLink_data;
1930 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1931 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1932
1933 SendForward(fwd_bit_count);
1934
1935 //Wait for command to complete
1936 SpinDelay(20);
1937}
1938
1939void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1940
1941 uint8_t fwd_bit_count;
1942
1943 // Clear destination buffer before sending the command
1944 BigBuf_Clear_ext(false);
1945
1946 LED_A_ON();
1947 StartTicks();
1948 //If password mode do login
1949 if (PwdMode == 1) EM4xLogin(Pwd);
1950
1951 forward_ptr = forwardLink_data;
1952 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1953 fwd_bit_count += Prepare_Addr( Address );
1954
1955 SendForward(fwd_bit_count);
1956 WaitUS(400);
1957 // Now do the acquisition
1958 DoPartialAcquisition(20, true, 6000, 1000);
1959
1960 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1961 LED_A_OFF();
1962 cmd_send(CMD_ACK,0,0,0,0,0);
1963}
1964
1965void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1966
1967 bool PwdMode = (flag & 0x1);
1968 uint8_t Address = (flag >> 8) & 0xFF;
1969 uint8_t fwd_bit_count;
1970
1971 //clear buffer now so it does not interfere with timing later
1972 BigBuf_Clear_ext(false);
1973
1974 LED_A_ON();
1975 StartTicks();
1976 //If password mode do login
1977 if (PwdMode) EM4xLogin(Pwd);
1978
1979 forward_ptr = forwardLink_data;
1980 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1981 fwd_bit_count += Prepare_Addr( Address );
1982 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1983
1984 SendForward(fwd_bit_count);
1985
1986 //Wait for write to complete
1987 //SpinDelay(10);
1988
1989 WaitUS(6500);
1990 //Capture response if one exists
1991 DoPartialAcquisition(20, true, 6000, 1000);
1992
1993 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1994 LED_A_OFF();
1995 cmd_send(CMD_ACK,0,0,0,0,0);
1996}
1997
1998void EM4xProtect(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1999
2000 bool PwdMode = (flag & 0x1);
2001 uint8_t fwd_bit_count;
2002
2003 //clear buffer now so it does not interfere with timing later
2004 BigBuf_Clear_ext(false);
2005
2006 LED_A_ON();
2007 StartTicks();
2008 //If password mode do login
2009 if (PwdMode) EM4xLogin(Pwd);
2010
2011 forward_ptr = forwardLink_data;
2012 fwd_bit_count = Prepare_Cmd( FWD_CMD_PROTECT );
2013
2014 //unsure if this needs the full packet config...
2015 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2016
2017 SendForward(fwd_bit_count);
2018
2019 //Wait for write to complete
2020 //SpinDelay(10);
2021
2022 WaitUS(6500);
2023 //Capture response if one exists
2024 DoPartialAcquisition(20, true, 6000, 1000);
2025
2026 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2027 LED_A_OFF();
2028 cmd_send(CMD_ACK,0,0,0,0,0);
2029}
2030/*
2031Reading a COTAG.
2032
2033COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
2034because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
2035
2036READER START SEQUENCE:
2037burst 800 us, gap 2.2 msecs
2038burst 3.6 msecs gap 2.2 msecs
2039burst 800 us gap 2.2 msecs
2040pulse 3.6 msecs
2041
2042This triggers a COTAG tag to response
2043*/
2044void Cotag(uint32_t arg0) {
2045
2046#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
2047#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
2048
2049 uint8_t rawsignal = arg0 & 0xF;
2050
2051 LED_A_ON();
2052
2053 // Switching to LF image on FPGA. This might empty BigBuff
2054 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2055
2056 //clear buffer now so it does not interfere with timing later
2057 BigBuf_Clear_ext(false);
2058
2059 // Set up FPGA, 132kHz to power up the tag
2060 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
2061 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2062
2063 // Connect the A/D to the peak-detected low-frequency path.
2064 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2065
2066 // Now set up the SSC to get the ADC samples that are now streaming at us.
2067 FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC);
2068
2069 // start clock - 1.5ticks is 1us
2070 StartTicks();
2071
2072 //send COTAG start pulse
2073 ON(740) OFF
2074 ON(3330) OFF
2075 ON(740) OFF
2076 ON(1000)
2077
2078 switch(rawsignal) {
2079 case 0: doCotagAcquisition(50000); break;
2080 case 1: doCotagAcquisitionManchester(); break;
2081 case 2: DoAcquisition_config(true, 0); break;
2082 }
2083
2084 // Turn the field off
2085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2086 cmd_send(CMD_ACK,0,0,0,0,0);
2087 LED_A_OFF();
2088}
Impressum, Datenschutz