]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Jonathan Westhues, split Nov 2006 | |
3 | // piwi 2018 | |
4 | // | |
5 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
6 | // at your option, any later version. See the LICENSE.txt file for the text of | |
7 | // the license. | |
8 | //----------------------------------------------------------------------------- | |
9 | // Routines to support ISO 14443B. This includes both the reader software and | |
10 | // the `fake tag' modes. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "string.h" | |
17 | ||
18 | #include "iso14443crc.h" | |
19 | ||
20 | #define RECEIVE_SAMPLES_TIMEOUT 1000 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA. 1000 seems to be much too high? | |
21 | #define ISO14443B_DMA_BUFFER_SIZE 128 | |
22 | ||
23 | // PCB Block number for APDUs | |
24 | static uint8_t pcb_blocknum = 0; | |
25 | ||
26 | //============================================================================= | |
27 | // An ISO 14443 Type B tag. We listen for commands from the reader, using | |
28 | // a UART kind of thing that's implemented in software. When we get a | |
29 | // frame (i.e., a group of bytes between SOF and EOF), we check the CRC. | |
30 | // If it's good, then we can do something appropriate with it, and send | |
31 | // a response. | |
32 | //============================================================================= | |
33 | ||
34 | //----------------------------------------------------------------------------- | |
35 | // Code up a string of octets at layer 2 (including CRC, we don't generate | |
36 | // that here) so that they can be transmitted to the reader. Doesn't transmit | |
37 | // them yet, just leaves them ready to send in ToSend[]. | |
38 | //----------------------------------------------------------------------------- | |
39 | static void CodeIso14443bAsTag(const uint8_t *cmd, int len) | |
40 | { | |
41 | int i; | |
42 | ||
43 | ToSendReset(); | |
44 | ||
45 | // Transmit a burst of ones, as the initial thing that lets the | |
46 | // reader get phase sync. This (TR1) must be > 80/fs, per spec, | |
47 | // but tag that I've tried (a Paypass) exceeds that by a fair bit, | |
48 | // so I will too. | |
49 | for(i = 0; i < 20; i++) { | |
50 | ToSendStuffBit(1); | |
51 | ToSendStuffBit(1); | |
52 | ToSendStuffBit(1); | |
53 | ToSendStuffBit(1); | |
54 | } | |
55 | ||
56 | // Send SOF. | |
57 | for(i = 0; i < 10; i++) { | |
58 | ToSendStuffBit(0); | |
59 | ToSendStuffBit(0); | |
60 | ToSendStuffBit(0); | |
61 | ToSendStuffBit(0); | |
62 | } | |
63 | for(i = 0; i < 2; i++) { | |
64 | ToSendStuffBit(1); | |
65 | ToSendStuffBit(1); | |
66 | ToSendStuffBit(1); | |
67 | ToSendStuffBit(1); | |
68 | } | |
69 | ||
70 | for(i = 0; i < len; i++) { | |
71 | int j; | |
72 | uint8_t b = cmd[i]; | |
73 | ||
74 | // Start bit | |
75 | ToSendStuffBit(0); | |
76 | ToSendStuffBit(0); | |
77 | ToSendStuffBit(0); | |
78 | ToSendStuffBit(0); | |
79 | ||
80 | // Data bits | |
81 | for(j = 0; j < 8; j++) { | |
82 | if(b & 1) { | |
83 | ToSendStuffBit(1); | |
84 | ToSendStuffBit(1); | |
85 | ToSendStuffBit(1); | |
86 | ToSendStuffBit(1); | |
87 | } else { | |
88 | ToSendStuffBit(0); | |
89 | ToSendStuffBit(0); | |
90 | ToSendStuffBit(0); | |
91 | ToSendStuffBit(0); | |
92 | } | |
93 | b >>= 1; | |
94 | } | |
95 | ||
96 | // Stop bit | |
97 | ToSendStuffBit(1); | |
98 | ToSendStuffBit(1); | |
99 | ToSendStuffBit(1); | |
100 | ToSendStuffBit(1); | |
101 | } | |
102 | ||
103 | // Send EOF. | |
104 | for(i = 0; i < 10; i++) { | |
105 | ToSendStuffBit(0); | |
106 | ToSendStuffBit(0); | |
107 | ToSendStuffBit(0); | |
108 | ToSendStuffBit(0); | |
109 | } | |
110 | for(i = 0; i < 2; i++) { | |
111 | ToSendStuffBit(1); | |
112 | ToSendStuffBit(1); | |
113 | ToSendStuffBit(1); | |
114 | ToSendStuffBit(1); | |
115 | } | |
116 | ||
117 | // Convert from last byte pos to length | |
118 | ToSendMax++; | |
119 | } | |
120 | ||
121 | //----------------------------------------------------------------------------- | |
122 | // The software UART that receives commands from the reader, and its state | |
123 | // variables. | |
124 | //----------------------------------------------------------------------------- | |
125 | static struct { | |
126 | enum { | |
127 | STATE_UNSYNCD, | |
128 | STATE_GOT_FALLING_EDGE_OF_SOF, | |
129 | STATE_AWAITING_START_BIT, | |
130 | STATE_RECEIVING_DATA | |
131 | } state; | |
132 | uint16_t shiftReg; | |
133 | int bitCnt; | |
134 | int byteCnt; | |
135 | int byteCntMax; | |
136 | int posCnt; | |
137 | uint8_t *output; | |
138 | } Uart; | |
139 | ||
140 | /* Receive & handle a bit coming from the reader. | |
141 | * | |
142 | * This function is called 4 times per bit (every 2 subcarrier cycles). | |
143 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us | |
144 | * | |
145 | * LED handling: | |
146 | * LED A -> ON once we have received the SOF and are expecting the rest. | |
147 | * LED A -> OFF once we have received EOF or are in error state or unsynced | |
148 | * | |
149 | * Returns: true if we received a EOF | |
150 | * false if we are still waiting for some more | |
151 | */ | |
152 | static RAMFUNC int Handle14443bUartBit(uint8_t bit) | |
153 | { | |
154 | switch(Uart.state) { | |
155 | case STATE_UNSYNCD: | |
156 | if(!bit) { | |
157 | // we went low, so this could be the beginning | |
158 | // of an SOF | |
159 | Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; | |
160 | Uart.posCnt = 0; | |
161 | Uart.bitCnt = 0; | |
162 | } | |
163 | break; | |
164 | ||
165 | case STATE_GOT_FALLING_EDGE_OF_SOF: | |
166 | Uart.posCnt++; | |
167 | if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit | |
168 | if(bit) { | |
169 | if(Uart.bitCnt > 9) { | |
170 | // we've seen enough consecutive | |
171 | // zeros that it's a valid SOF | |
172 | Uart.posCnt = 0; | |
173 | Uart.byteCnt = 0; | |
174 | Uart.state = STATE_AWAITING_START_BIT; | |
175 | LED_A_ON(); // Indicate we got a valid SOF | |
176 | } else { | |
177 | // didn't stay down long enough | |
178 | // before going high, error | |
179 | Uart.state = STATE_UNSYNCD; | |
180 | } | |
181 | } else { | |
182 | // do nothing, keep waiting | |
183 | } | |
184 | Uart.bitCnt++; | |
185 | } | |
186 | if(Uart.posCnt >= 4) Uart.posCnt = 0; | |
187 | if(Uart.bitCnt > 12) { | |
188 | // Give up if we see too many zeros without | |
189 | // a one, too. | |
190 | LED_A_OFF(); | |
191 | Uart.state = STATE_UNSYNCD; | |
192 | } | |
193 | break; | |
194 | ||
195 | case STATE_AWAITING_START_BIT: | |
196 | Uart.posCnt++; | |
197 | if(bit) { | |
198 | if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs | |
199 | // stayed high for too long between | |
200 | // characters, error | |
201 | Uart.state = STATE_UNSYNCD; | |
202 | } | |
203 | } else { | |
204 | // falling edge, this starts the data byte | |
205 | Uart.posCnt = 0; | |
206 | Uart.bitCnt = 0; | |
207 | Uart.shiftReg = 0; | |
208 | Uart.state = STATE_RECEIVING_DATA; | |
209 | } | |
210 | break; | |
211 | ||
212 | case STATE_RECEIVING_DATA: | |
213 | Uart.posCnt++; | |
214 | if(Uart.posCnt == 2) { | |
215 | // time to sample a bit | |
216 | Uart.shiftReg >>= 1; | |
217 | if(bit) { | |
218 | Uart.shiftReg |= 0x200; | |
219 | } | |
220 | Uart.bitCnt++; | |
221 | } | |
222 | if(Uart.posCnt >= 4) { | |
223 | Uart.posCnt = 0; | |
224 | } | |
225 | if(Uart.bitCnt == 10) { | |
226 | if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) | |
227 | { | |
228 | // this is a data byte, with correct | |
229 | // start and stop bits | |
230 | Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; | |
231 | Uart.byteCnt++; | |
232 | ||
233 | if(Uart.byteCnt >= Uart.byteCntMax) { | |
234 | // Buffer overflowed, give up | |
235 | LED_A_OFF(); | |
236 | Uart.state = STATE_UNSYNCD; | |
237 | } else { | |
238 | // so get the next byte now | |
239 | Uart.posCnt = 0; | |
240 | Uart.state = STATE_AWAITING_START_BIT; | |
241 | } | |
242 | } else if (Uart.shiftReg == 0x000) { | |
243 | // this is an EOF byte | |
244 | LED_A_OFF(); // Finished receiving | |
245 | Uart.state = STATE_UNSYNCD; | |
246 | if (Uart.byteCnt != 0) { | |
247 | return true; | |
248 | } | |
249 | } else { | |
250 | // this is an error | |
251 | LED_A_OFF(); | |
252 | Uart.state = STATE_UNSYNCD; | |
253 | } | |
254 | } | |
255 | break; | |
256 | ||
257 | default: | |
258 | LED_A_OFF(); | |
259 | Uart.state = STATE_UNSYNCD; | |
260 | break; | |
261 | } | |
262 | ||
263 | return false; | |
264 | } | |
265 | ||
266 | ||
267 | static void UartReset() | |
268 | { | |
269 | Uart.byteCntMax = MAX_FRAME_SIZE; | |
270 | Uart.state = STATE_UNSYNCD; | |
271 | Uart.byteCnt = 0; | |
272 | Uart.bitCnt = 0; | |
273 | } | |
274 | ||
275 | ||
276 | static void UartInit(uint8_t *data) | |
277 | { | |
278 | Uart.output = data; | |
279 | UartReset(); | |
280 | } | |
281 | ||
282 | ||
283 | //----------------------------------------------------------------------------- | |
284 | // Receive a command (from the reader to us, where we are the simulated tag), | |
285 | // and store it in the given buffer, up to the given maximum length. Keeps | |
286 | // spinning, waiting for a well-framed command, until either we get one | |
287 | // (returns true) or someone presses the pushbutton on the board (false). | |
288 | // | |
289 | // Assume that we're called with the SSC (to the FPGA) and ADC path set | |
290 | // correctly. | |
291 | //----------------------------------------------------------------------------- | |
292 | static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) | |
293 | { | |
294 | // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen | |
295 | // only, since we are receiving, not transmitting). | |
296 | // Signal field is off with the appropriate LED | |
297 | LED_D_OFF(); | |
298 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); | |
299 | ||
300 | // Now run a `software UART' on the stream of incoming samples. | |
301 | UartInit(received); | |
302 | ||
303 | for(;;) { | |
304 | WDT_HIT(); | |
305 | ||
306 | if(BUTTON_PRESS()) return false; | |
307 | ||
308 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
309 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
310 | for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) { | |
311 | if(Handle14443bUartBit(b & mask)) { | |
312 | *len = Uart.byteCnt; | |
313 | return true; | |
314 | } | |
315 | } | |
316 | } | |
317 | } | |
318 | ||
319 | return false; | |
320 | } | |
321 | ||
322 | //----------------------------------------------------------------------------- | |
323 | // Main loop of simulated tag: receive commands from reader, decide what | |
324 | // response to send, and send it. | |
325 | //----------------------------------------------------------------------------- | |
326 | void SimulateIso14443bTag(void) | |
327 | { | |
328 | // the only commands we understand is WUPB, AFI=0, Select All, N=1: | |
329 | static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB | |
330 | // ... and REQB, AFI=0, Normal Request, N=1: | |
331 | static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB | |
332 | // ... and HLTB | |
333 | static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB | |
334 | // ... and ATTRIB | |
335 | static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB | |
336 | ||
337 | // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922, | |
338 | // supports only 106kBit/s in both directions, max frame size = 32Bytes, | |
339 | // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported: | |
340 | static const uint8_t response1[] = { | |
341 | 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22, | |
342 | 0x00, 0x21, 0x85, 0x5e, 0xd7 | |
343 | }; | |
344 | // response to HLTB and ATTRIB | |
345 | static const uint8_t response2[] = {0x00, 0x78, 0xF0}; | |
346 | ||
347 | ||
348 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
349 | ||
350 | clear_trace(); | |
351 | set_tracing(true); | |
352 | ||
353 | const uint8_t *resp; | |
354 | uint8_t *respCode; | |
355 | uint16_t respLen, respCodeLen; | |
356 | ||
357 | // allocate command receive buffer | |
358 | BigBuf_free(); | |
359 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
360 | ||
361 | uint16_t len; | |
362 | uint16_t cmdsRecvd = 0; | |
363 | ||
364 | // prepare the (only one) tag answer: | |
365 | CodeIso14443bAsTag(response1, sizeof(response1)); | |
366 | uint8_t *resp1Code = BigBuf_malloc(ToSendMax); | |
367 | memcpy(resp1Code, ToSend, ToSendMax); | |
368 | uint16_t resp1CodeLen = ToSendMax; | |
369 | ||
370 | // prepare the (other) tag answer: | |
371 | CodeIso14443bAsTag(response2, sizeof(response2)); | |
372 | uint8_t *resp2Code = BigBuf_malloc(ToSendMax); | |
373 | memcpy(resp2Code, ToSend, ToSendMax); | |
374 | uint16_t resp2CodeLen = ToSendMax; | |
375 | ||
376 | // We need to listen to the high-frequency, peak-detected path. | |
377 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
378 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
379 | ||
380 | cmdsRecvd = 0; | |
381 | ||
382 | for(;;) { | |
383 | ||
384 | if(!GetIso14443bCommandFromReader(receivedCmd, &len)) { | |
385 | Dbprintf("button pressed, received %d commands", cmdsRecvd); | |
386 | break; | |
387 | } | |
388 | ||
389 | LogTrace(receivedCmd, len, 0, 0, NULL, true); | |
390 | ||
391 | // Good, look at the command now. | |
392 | if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0) | |
393 | || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) { | |
394 | resp = response1; | |
395 | respLen = sizeof(response1); | |
396 | respCode = resp1Code; | |
397 | respCodeLen = resp1CodeLen; | |
398 | } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0]) | |
399 | || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) { | |
400 | resp = response2; | |
401 | respLen = sizeof(response2); | |
402 | respCode = resp2Code; | |
403 | respCodeLen = resp2CodeLen; | |
404 | } else { | |
405 | Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd); | |
406 | // And print whether the CRC fails, just for good measure | |
407 | uint8_t b1, b2; | |
408 | if (len >= 3){ // if crc exists | |
409 | ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2); | |
410 | if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) { | |
411 | // Not so good, try again. | |
412 | DbpString("+++CRC fail"); | |
413 | ||
414 | } else { | |
415 | DbpString("CRC passes"); | |
416 | } | |
417 | } | |
418 | //get rid of compiler warning | |
419 | respCodeLen = 0; | |
420 | resp = response1; | |
421 | respLen = 0; | |
422 | respCode = resp1Code; | |
423 | //don't crash at new command just wait and see if reader will send other new cmds. | |
424 | //break; | |
425 | } | |
426 | ||
427 | cmdsRecvd++; | |
428 | ||
429 | if(cmdsRecvd > 0x30) { | |
430 | DbpString("many commands later..."); | |
431 | break; | |
432 | } | |
433 | ||
434 | if(respCodeLen <= 0) continue; | |
435 | ||
436 | // Modulate BPSK | |
437 | // Signal field is off with the appropriate LED | |
438 | LED_D_OFF(); | |
439 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK); | |
440 | AT91C_BASE_SSC->SSC_THR = 0xff; | |
441 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); | |
442 | ||
443 | // Transmit the response. | |
444 | uint16_t i = 0; | |
445 | for(;;) { | |
446 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
447 | uint8_t b = respCode[i]; | |
448 | ||
449 | AT91C_BASE_SSC->SSC_THR = b; | |
450 | ||
451 | i++; | |
452 | if(i > respCodeLen) { | |
453 | break; | |
454 | } | |
455 | } | |
456 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
457 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
458 | (void)b; | |
459 | } | |
460 | } | |
461 | ||
462 | // trace the response: | |
463 | LogTrace(resp, respLen, 0, 0, NULL, false); | |
464 | ||
465 | } | |
466 | } | |
467 | ||
468 | //============================================================================= | |
469 | // An ISO 14443 Type B reader. We take layer two commands, code them | |
470 | // appropriately, and then send them to the tag. We then listen for the | |
471 | // tag's response, which we leave in the buffer to be demodulated on the | |
472 | // PC side. | |
473 | //============================================================================= | |
474 | ||
475 | static struct { | |
476 | enum { | |
477 | DEMOD_UNSYNCD, | |
478 | DEMOD_PHASE_REF_TRAINING, | |
479 | DEMOD_AWAITING_FALLING_EDGE_OF_SOF, | |
480 | DEMOD_GOT_FALLING_EDGE_OF_SOF, | |
481 | DEMOD_AWAITING_START_BIT, | |
482 | DEMOD_RECEIVING_DATA | |
483 | } state; | |
484 | int bitCount; | |
485 | int posCount; | |
486 | int thisBit; | |
487 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
488 | int metric; | |
489 | int metricN; | |
490 | */ | |
491 | uint16_t shiftReg; | |
492 | uint8_t *output; | |
493 | int len; | |
494 | int sumI; | |
495 | int sumQ; | |
496 | } Demod; | |
497 | ||
498 | /* | |
499 | * Handles reception of a bit from the tag | |
500 | * | |
501 | * This function is called 2 times per bit (every 4 subcarrier cycles). | |
502 | * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us | |
503 | * | |
504 | * LED handling: | |
505 | * LED C -> ON once we have received the SOF and are expecting the rest. | |
506 | * LED C -> OFF once we have received EOF or are unsynced | |
507 | * | |
508 | * Returns: true if we received a EOF | |
509 | * false if we are still waiting for some more | |
510 | * | |
511 | */ | |
512 | static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq) | |
513 | { | |
514 | int v; | |
515 | ||
516 | // The soft decision on the bit uses an estimate of just the | |
517 | // quadrant of the reference angle, not the exact angle. | |
518 | #define MAKE_SOFT_DECISION() { \ | |
519 | if(Demod.sumI > 0) { \ | |
520 | v = ci; \ | |
521 | } else { \ | |
522 | v = -ci; \ | |
523 | } \ | |
524 | if(Demod.sumQ > 0) { \ | |
525 | v += cq; \ | |
526 | } else { \ | |
527 | v -= cq; \ | |
528 | } \ | |
529 | } | |
530 | ||
531 | #define SUBCARRIER_DETECT_THRESHOLD 8 | |
532 | ||
533 | // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) | |
534 | #define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2)) | |
535 | switch(Demod.state) { | |
536 | case DEMOD_UNSYNCD: | |
537 | if(AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected | |
538 | Demod.state = DEMOD_PHASE_REF_TRAINING; | |
539 | Demod.sumI = ci; | |
540 | Demod.sumQ = cq; | |
541 | Demod.posCount = 1; | |
542 | } | |
543 | break; | |
544 | ||
545 | case DEMOD_PHASE_REF_TRAINING: | |
546 | if(Demod.posCount < 8) { | |
547 | if (AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { | |
548 | // set the reference phase (will code a logic '1') by averaging over 32 1/fs. | |
549 | // note: synchronization time > 80 1/fs | |
550 | Demod.sumI += ci; | |
551 | Demod.sumQ += cq; | |
552 | Demod.posCount++; | |
553 | } else { // subcarrier lost | |
554 | Demod.state = DEMOD_UNSYNCD; | |
555 | } | |
556 | } else { | |
557 | Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; | |
558 | } | |
559 | break; | |
560 | ||
561 | case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: | |
562 | MAKE_SOFT_DECISION(); | |
563 | if(v < 0) { // logic '0' detected | |
564 | Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; | |
565 | Demod.posCount = 0; // start of SOF sequence | |
566 | } else { | |
567 | if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs | |
568 | Demod.state = DEMOD_UNSYNCD; | |
569 | } | |
570 | } | |
571 | Demod.posCount++; | |
572 | break; | |
573 | ||
574 | case DEMOD_GOT_FALLING_EDGE_OF_SOF: | |
575 | Demod.posCount++; | |
576 | MAKE_SOFT_DECISION(); | |
577 | if(v > 0) { | |
578 | if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges | |
579 | Demod.state = DEMOD_UNSYNCD; | |
580 | } else { | |
581 | LED_C_ON(); // Got SOF | |
582 | Demod.state = DEMOD_AWAITING_START_BIT; | |
583 | Demod.posCount = 0; | |
584 | Demod.len = 0; | |
585 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
586 | Demod.metricN = 0; | |
587 | Demod.metric = 0; | |
588 | */ | |
589 | } | |
590 | } else { | |
591 | if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu) | |
592 | Demod.state = DEMOD_UNSYNCD; | |
593 | LED_C_OFF(); | |
594 | } | |
595 | } | |
596 | break; | |
597 | ||
598 | case DEMOD_AWAITING_START_BIT: | |
599 | Demod.posCount++; | |
600 | MAKE_SOFT_DECISION(); | |
601 | if(v > 0) { | |
602 | if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs | |
603 | Demod.state = DEMOD_UNSYNCD; | |
604 | LED_C_OFF(); | |
605 | } | |
606 | } else { // start bit detected | |
607 | Demod.bitCount = 0; | |
608 | Demod.posCount = 1; // this was the first half | |
609 | Demod.thisBit = v; | |
610 | Demod.shiftReg = 0; | |
611 | Demod.state = DEMOD_RECEIVING_DATA; | |
612 | } | |
613 | break; | |
614 | ||
615 | case DEMOD_RECEIVING_DATA: | |
616 | MAKE_SOFT_DECISION(); | |
617 | if(Demod.posCount == 0) { // first half of bit | |
618 | Demod.thisBit = v; | |
619 | Demod.posCount = 1; | |
620 | } else { // second half of bit | |
621 | Demod.thisBit += v; | |
622 | ||
623 | /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented. | |
624 | if(Demod.thisBit > 0) { | |
625 | Demod.metric += Demod.thisBit; | |
626 | } else { | |
627 | Demod.metric -= Demod.thisBit; | |
628 | } | |
629 | (Demod.metricN)++; | |
630 | */ | |
631 | ||
632 | Demod.shiftReg >>= 1; | |
633 | if(Demod.thisBit > 0) { // logic '1' | |
634 | Demod.shiftReg |= 0x200; | |
635 | } | |
636 | ||
637 | Demod.bitCount++; | |
638 | if(Demod.bitCount == 10) { | |
639 | uint16_t s = Demod.shiftReg; | |
640 | if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0' | |
641 | uint8_t b = (s >> 1); | |
642 | Demod.output[Demod.len] = b; | |
643 | Demod.len++; | |
644 | Demod.state = DEMOD_AWAITING_START_BIT; | |
645 | } else { | |
646 | Demod.state = DEMOD_UNSYNCD; | |
647 | LED_C_OFF(); | |
648 | if(s == 0x000) { | |
649 | // This is EOF (start, stop and all data bits == '0' | |
650 | return true; | |
651 | } | |
652 | } | |
653 | } | |
654 | Demod.posCount = 0; | |
655 | } | |
656 | break; | |
657 | ||
658 | default: | |
659 | Demod.state = DEMOD_UNSYNCD; | |
660 | LED_C_OFF(); | |
661 | break; | |
662 | } | |
663 | ||
664 | return false; | |
665 | } | |
666 | ||
667 | ||
668 | static void DemodReset() | |
669 | { | |
670 | // Clear out the state of the "UART" that receives from the tag. | |
671 | Demod.len = 0; | |
672 | Demod.state = DEMOD_UNSYNCD; | |
673 | Demod.posCount = 0; | |
674 | memset(Demod.output, 0x00, MAX_FRAME_SIZE); | |
675 | } | |
676 | ||
677 | ||
678 | static void DemodInit(uint8_t *data) | |
679 | { | |
680 | Demod.output = data; | |
681 | DemodReset(); | |
682 | } | |
683 | ||
684 | ||
685 | /* | |
686 | * Demodulate the samples we received from the tag, also log to tracebuffer | |
687 | * quiet: set to 'true' to disable debug output | |
688 | */ | |
689 | static void GetSamplesFor14443bDemod(int n, bool quiet) | |
690 | { | |
691 | int maxBehindBy = 0; | |
692 | bool gotFrame = false; | |
693 | int lastRxCounter, samples = 0; | |
694 | int8_t ci, cq; | |
695 | ||
696 | // Allocate memory from BigBuf for some buffers | |
697 | // free all previous allocations first | |
698 | BigBuf_free(); | |
699 | ||
700 | // The response (tag -> reader) that we're receiving. | |
701 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); | |
702 | ||
703 | // The DMA buffer, used to stream samples from the FPGA | |
704 | uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t)); | |
705 | ||
706 | // Set up the demodulator for tag -> reader responses. | |
707 | DemodInit(receivedResponse); | |
708 | ||
709 | // wait for last transfer to complete | |
710 | while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) | |
711 | ||
712 | // Setup and start DMA. | |
713 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
714 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
715 | ||
716 | uint16_t *upTo = dmaBuf; | |
717 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
718 | ||
719 | // Signal field is ON with the appropriate LED: | |
720 | LED_D_ON(); | |
721 | // And put the FPGA in the appropriate mode | |
722 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
723 | ||
724 | for(;;) { | |
725 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1); | |
726 | if(behindBy > maxBehindBy) { | |
727 | maxBehindBy = behindBy; | |
728 | } | |
729 | ||
730 | if(behindBy < 1) continue; | |
731 | ||
732 | ci = *upTo >> 8; | |
733 | cq = *upTo; | |
734 | upTo++; | |
735 | lastRxCounter--; | |
736 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
737 | upTo = dmaBuf; // start reading the circular buffer from the beginning | |
738 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
739 | } | |
740 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
741 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
742 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
743 | } | |
744 | samples++; | |
745 | ||
746 | if(Handle14443bSamplesDemod(ci, cq)) { | |
747 | gotFrame = true; | |
748 | break; | |
749 | } | |
750 | ||
751 | if(samples > n) { | |
752 | break; | |
753 | } | |
754 | } | |
755 | ||
756 | FpgaDisableSscDma(); | |
757 | ||
758 | if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", maxBehindBy, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ); | |
759 | //Tracing | |
760 | if (Demod.len > 0) { | |
761 | LogTrace(Demod.output, Demod.len, 0, 0, NULL, false); | |
762 | } | |
763 | } | |
764 | ||
765 | ||
766 | //----------------------------------------------------------------------------- | |
767 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
768 | //----------------------------------------------------------------------------- | |
769 | static void TransmitFor14443b(void) | |
770 | { | |
771 | int c; | |
772 | ||
773 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); | |
774 | ||
775 | // Signal field is ON with the appropriate Red LED | |
776 | LED_D_ON(); | |
777 | // Signal we are transmitting with the Green LED | |
778 | LED_B_ON(); | |
779 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
780 | ||
781 | c = 0; | |
782 | for(;;) { | |
783 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
784 | AT91C_BASE_SSC->SSC_THR = ~ToSend[c]; | |
785 | c++; | |
786 | if(c >= ToSendMax) { | |
787 | break; | |
788 | } | |
789 | } | |
790 | WDT_HIT(); | |
791 | } | |
792 | LED_B_OFF(); // Finished sending | |
793 | } | |
794 | ||
795 | ||
796 | //----------------------------------------------------------------------------- | |
797 | // Code a layer 2 command (string of octets, including CRC) into ToSend[], | |
798 | // so that it is ready to transmit to the tag using TransmitFor14443b(). | |
799 | //----------------------------------------------------------------------------- | |
800 | static void CodeIso14443bAsReader(const uint8_t *cmd, int len) | |
801 | { | |
802 | int i, j; | |
803 | uint8_t b; | |
804 | ||
805 | ToSendReset(); | |
806 | ||
807 | // Send SOF | |
808 | for(i = 0; i < 10; i++) { | |
809 | ToSendStuffBit(0); | |
810 | } | |
811 | ToSendStuffBit(1); | |
812 | ToSendStuffBit(1); | |
813 | ||
814 | for(i = 0; i < len; i++) { | |
815 | // Start bit | |
816 | ToSendStuffBit(0); | |
817 | // Data bits | |
818 | b = cmd[i]; | |
819 | for(j = 0; j < 8; j++) { | |
820 | if(b & 1) { | |
821 | ToSendStuffBit(1); | |
822 | } else { | |
823 | ToSendStuffBit(0); | |
824 | } | |
825 | b >>= 1; | |
826 | } | |
827 | // Stop bit | |
828 | ToSendStuffBit(1); | |
829 | } | |
830 | ||
831 | // Send EOF | |
832 | for(i = 0; i < 10; i++) { | |
833 | ToSendStuffBit(0); | |
834 | } | |
835 | ToSendStuffBit(1); | |
836 | ||
837 | // ensure that last byte is filled up | |
838 | for(i = 0; i < 8; i++) { | |
839 | ToSendStuffBit(1); | |
840 | } | |
841 | ||
842 | // Convert from last character reference to length | |
843 | ToSendMax++; | |
844 | } | |
845 | ||
846 | ||
847 | /** | |
848 | Convenience function to encode, transmit and trace iso 14443b comms | |
849 | **/ | |
850 | static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) | |
851 | { | |
852 | CodeIso14443bAsReader(cmd, len); | |
853 | TransmitFor14443b(); | |
854 | LogTrace(cmd,len, 0, 0, NULL, true); | |
855 | } | |
856 | ||
857 | /* Sends an APDU to the tag | |
858 | * TODO: check CRC and preamble | |
859 | */ | |
860 | int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) | |
861 | { | |
862 | uint8_t message_frame[message_length + 4]; | |
863 | // PCB | |
864 | message_frame[0] = 0x0A | pcb_blocknum; | |
865 | pcb_blocknum ^= 1; | |
866 | // CID | |
867 | message_frame[1] = 0; | |
868 | // INF | |
869 | memcpy(message_frame + 2, message, message_length); | |
870 | // EDC (CRC) | |
871 | ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]); | |
872 | // send | |
873 | CodeAndTransmit14443bAsReader(message_frame, message_length + 4); | |
874 | // get response | |
875 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
876 | if(Demod.len < 3) | |
877 | { | |
878 | return 0; | |
879 | } | |
880 | // TODO: Check CRC | |
881 | // copy response contents | |
882 | if(response != NULL) | |
883 | { | |
884 | memcpy(response, Demod.output, Demod.len); | |
885 | } | |
886 | return Demod.len; | |
887 | } | |
888 | ||
889 | /* Perform the ISO 14443 B Card Selection procedure | |
890 | * Currently does NOT do any collision handling. | |
891 | * It expects 0-1 cards in the device's range. | |
892 | * TODO: Support multiple cards (perform anticollision) | |
893 | * TODO: Verify CRC checksums | |
894 | */ | |
895 | int iso14443b_select_card() | |
896 | { | |
897 | // WUPB command (including CRC) | |
898 | // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state | |
899 | static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; | |
900 | // ATTRIB command (with space for CRC) | |
901 | uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00}; | |
902 | ||
903 | // first, wake up the tag | |
904 | CodeAndTransmit14443bAsReader(wupb, sizeof(wupb)); | |
905 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
906 | // ATQB too short? | |
907 | if (Demod.len < 14) | |
908 | { | |
909 | return 2; | |
910 | } | |
911 | ||
912 | // select the tag | |
913 | // copy the PUPI to ATTRIB | |
914 | memcpy(attrib + 1, Demod.output + 1, 4); | |
915 | /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into | |
916 | ATTRIB (Param 3) */ | |
917 | attrib[7] = Demod.output[10] & 0x0F; | |
918 | ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10); | |
919 | CodeAndTransmit14443bAsReader(attrib, sizeof(attrib)); | |
920 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
921 | // Answer to ATTRIB too short? | |
922 | if(Demod.len < 3) | |
923 | { | |
924 | return 2; | |
925 | } | |
926 | // reset PCB block number | |
927 | pcb_blocknum = 0; | |
928 | return 1; | |
929 | } | |
930 | ||
931 | // Set up ISO 14443 Type B communication (similar to iso14443a_setup) | |
932 | void iso14443b_setup() { | |
933 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
934 | // Set up the synchronous serial port | |
935 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); | |
936 | // connect Demodulated Signal to ADC: | |
937 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
938 | ||
939 | // Signal field is on with the appropriate LED | |
940 | LED_D_ON(); | |
941 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); | |
942 | ||
943 | DemodReset(); | |
944 | UartReset(); | |
945 | } | |
946 | ||
947 | //----------------------------------------------------------------------------- | |
948 | // Read a SRI512 ISO 14443B tag. | |
949 | // | |
950 | // SRI512 tags are just simple memory tags, here we're looking at making a dump | |
951 | // of the contents of the memory. No anticollision algorithm is done, we assume | |
952 | // we have a single tag in the field. | |
953 | // | |
954 | // I tried to be systematic and check every answer of the tag, every CRC, etc... | |
955 | //----------------------------------------------------------------------------- | |
956 | void ReadSTMemoryIso14443b(uint32_t dwLast) | |
957 | { | |
958 | uint8_t i = 0x00; | |
959 | ||
960 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
961 | // Make sure that we start from off, since the tags are stateful; | |
962 | // confusing things will happen if we don't reset them between reads. | |
963 | LED_D_OFF(); | |
964 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
965 | SpinDelay(200); | |
966 | ||
967 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
968 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
969 | ||
970 | // Now give it time to spin up. | |
971 | // Signal field is on with the appropriate LED | |
972 | LED_D_ON(); | |
973 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ); | |
974 | SpinDelay(200); | |
975 | ||
976 | clear_trace(); | |
977 | set_tracing(true); | |
978 | ||
979 | // First command: wake up the tag using the INITIATE command | |
980 | uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b}; | |
981 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
982 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
983 | ||
984 | if (Demod.len == 0) { | |
985 | DbpString("No response from tag"); | |
986 | LED_D_OFF(); | |
987 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
988 | return; | |
989 | } else { | |
990 | Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x", | |
991 | Demod.output[0], Demod.output[1], Demod.output[2]); | |
992 | } | |
993 | ||
994 | // There is a response, SELECT the uid | |
995 | DbpString("Now SELECT tag:"); | |
996 | cmd1[0] = 0x0E; // 0x0E is SELECT | |
997 | cmd1[1] = Demod.output[0]; | |
998 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
999 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1000 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
1001 | if (Demod.len != 3) { | |
1002 | Dbprintf("Expected 3 bytes from tag, got %d", Demod.len); | |
1003 | LED_D_OFF(); | |
1004 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1005 | return; | |
1006 | } | |
1007 | // Check the CRC of the answer: | |
1008 | ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]); | |
1009 | if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) { | |
1010 | DbpString("CRC Error reading select response."); | |
1011 | LED_D_OFF(); | |
1012 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1013 | return; | |
1014 | } | |
1015 | // Check response from the tag: should be the same UID as the command we just sent: | |
1016 | if (cmd1[1] != Demod.output[0]) { | |
1017 | Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]); | |
1018 | LED_D_OFF(); | |
1019 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1020 | return; | |
1021 | } | |
1022 | ||
1023 | // Tag is now selected, | |
1024 | // First get the tag's UID: | |
1025 | cmd1[0] = 0x0B; | |
1026 | ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]); | |
1027 | CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one | |
1028 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
1029 | if (Demod.len != 10) { | |
1030 | Dbprintf("Expected 10 bytes from tag, got %d", Demod.len); | |
1031 | LED_D_OFF(); | |
1032 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1033 | return; | |
1034 | } | |
1035 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1036 | ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]); | |
1037 | if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) { | |
1038 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1039 | (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]); | |
1040 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1041 | } | |
1042 | Dbprintf("Tag UID (64 bits): %08x %08x", | |
1043 | (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4], | |
1044 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]); | |
1045 | ||
1046 | // Now loop to read all 16 blocks, address from 0 to last block | |
1047 | Dbprintf("Tag memory dump, block 0 to %d", dwLast); | |
1048 | cmd1[0] = 0x08; | |
1049 | i = 0x00; | |
1050 | dwLast++; | |
1051 | for (;;) { | |
1052 | if (i == dwLast) { | |
1053 | DbpString("System area block (0xff):"); | |
1054 | i = 0xff; | |
1055 | } | |
1056 | cmd1[1] = i; | |
1057 | ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]); | |
1058 | CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1)); | |
1059 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
1060 | if (Demod.len != 6) { // Check if we got an answer from the tag | |
1061 | DbpString("Expected 6 bytes from tag, got less..."); | |
1062 | LED_D_OFF(); | |
1063 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1064 | return; | |
1065 | } | |
1066 | // The check the CRC of the answer (use cmd1 as temporary variable): | |
1067 | ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]); | |
1068 | if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) { | |
1069 | Dbprintf("CRC Error reading block! Expected: %04x got: %04x", | |
1070 | (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]); | |
1071 | // Do not return;, let's go on... (we should retry, maybe ?) | |
1072 | } | |
1073 | // Now print out the memory location: | |
1074 | Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i, | |
1075 | (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0], | |
1076 | (Demod.output[4]<<8)+Demod.output[5]); | |
1077 | if (i == 0xff) { | |
1078 | break; | |
1079 | } | |
1080 | i++; | |
1081 | } | |
1082 | ||
1083 | LED_D_OFF(); | |
1084 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1085 | } | |
1086 | ||
1087 | ||
1088 | //============================================================================= | |
1089 | // Finally, the `sniffer' combines elements from both the reader and | |
1090 | // simulated tag, to show both sides of the conversation. | |
1091 | //============================================================================= | |
1092 | ||
1093 | //----------------------------------------------------------------------------- | |
1094 | // Record the sequence of commands sent by the reader to the tag, with | |
1095 | // triggering so that we start recording at the point that the tag is moved | |
1096 | // near the reader. | |
1097 | //----------------------------------------------------------------------------- | |
1098 | /* | |
1099 | * Memory usage for this function, (within BigBuf) | |
1100 | * Last Received command (reader->tag) - MAX_FRAME_SIZE | |
1101 | * Last Received command (tag->reader) - MAX_FRAME_SIZE | |
1102 | * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE | |
1103 | * Demodulated samples received - all the rest | |
1104 | */ | |
1105 | void RAMFUNC SnoopIso14443b(void) | |
1106 | { | |
1107 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1108 | BigBuf_free(); | |
1109 | ||
1110 | clear_trace(); | |
1111 | set_tracing(true); | |
1112 | ||
1113 | // The DMA buffer, used to stream samples from the FPGA | |
1114 | uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t)); | |
1115 | int lastRxCounter; | |
1116 | uint16_t *upTo; | |
1117 | int8_t ci, cq; | |
1118 | int maxBehindBy = 0; | |
1119 | ||
1120 | // Count of samples received so far, so that we can include timing | |
1121 | // information in the trace buffer. | |
1122 | int samples = 0; | |
1123 | ||
1124 | DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1125 | UartInit(BigBuf_malloc(MAX_FRAME_SIZE)); | |
1126 | ||
1127 | // Print some debug information about the buffer sizes | |
1128 | Dbprintf("Snooping buffers initialized:"); | |
1129 | Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); | |
1130 | Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE); | |
1131 | Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE); | |
1132 | Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE); | |
1133 | ||
1134 | // Signal field is off, no reader signal, no tag signal | |
1135 | LEDsoff(); | |
1136 | ||
1137 | // And put the FPGA in the appropriate mode | |
1138 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
1139 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1140 | ||
1141 | // Setup for the DMA. | |
1142 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
1143 | upTo = dmaBuf; | |
1144 | lastRxCounter = ISO14443B_DMA_BUFFER_SIZE; | |
1145 | FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE); | |
1146 | ||
1147 | bool TagIsActive = false; | |
1148 | bool ReaderIsActive = false; | |
1149 | // We won't start recording the frames that we acquire until we trigger. | |
1150 | // A good trigger condition to get started is probably when we see a | |
1151 | // reader command | |
1152 | bool triggered = false; | |
1153 | ||
1154 | // And now we loop, receiving samples. | |
1155 | for(;;) { | |
1156 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1); | |
1157 | if(behindBy > maxBehindBy) { | |
1158 | maxBehindBy = behindBy; | |
1159 | } | |
1160 | ||
1161 | if(behindBy < 1) continue; | |
1162 | ||
1163 | ci = *upTo>>8; | |
1164 | cq = *upTo; | |
1165 | upTo++; | |
1166 | lastRxCounter--; | |
1167 | if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. | |
1168 | upTo = dmaBuf; // start reading the circular buffer from the beginning again | |
1169 | lastRxCounter += ISO14443B_DMA_BUFFER_SIZE; | |
1170 | if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { | |
1171 | Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); | |
1172 | break; | |
1173 | } | |
1174 | } | |
1175 | if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. | |
1176 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and | |
1177 | AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers | |
1178 | WDT_HIT(); | |
1179 | if(BUTTON_PRESS()) { | |
1180 | DbpString("cancelled"); | |
1181 | break; | |
1182 | } | |
1183 | } | |
1184 | ||
1185 | samples++; | |
1186 | ||
1187 | if (!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
1188 | if(Handle14443bUartBit(ci & 0x01)) { | |
1189 | triggered = true; | |
1190 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true); | |
1191 | /* And ready to receive another command. */ | |
1192 | UartReset(); | |
1193 | /* And also reset the demod code, which might have been */ | |
1194 | /* false-triggered by the commands from the reader. */ | |
1195 | DemodReset(); | |
1196 | } | |
1197 | if(Handle14443bUartBit(cq & 0x01)) { | |
1198 | triggered = true; | |
1199 | LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true); | |
1200 | /* And ready to receive another command. */ | |
1201 | UartReset(); | |
1202 | /* And also reset the demod code, which might have been */ | |
1203 | /* false-triggered by the commands from the reader. */ | |
1204 | DemodReset(); | |
1205 | } | |
1206 | ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF); | |
1207 | } | |
1208 | ||
1209 | if(!ReaderIsActive && triggered) { // no need to try decoding tag data if the reader is sending or not yet triggered | |
1210 | if(Handle14443bSamplesDemod(ci/2, cq/2)) { | |
1211 | //Use samples as a time measurement | |
1212 | LogTrace(Demod.output, Demod.len, samples, samples, NULL, false); | |
1213 | // And ready to receive another response. | |
1214 | DemodReset(); | |
1215 | } | |
1216 | TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF); | |
1217 | } | |
1218 | ||
1219 | } | |
1220 | ||
1221 | FpgaDisableSscDma(); | |
1222 | LEDsoff(); | |
1223 | DbpString("Snoop statistics:"); | |
1224 | Dbprintf(" Max behind by: %i", maxBehindBy); | |
1225 | Dbprintf(" Uart State: %x", Uart.state); | |
1226 | Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt); | |
1227 | Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax); | |
1228 | Dbprintf(" Trace length: %i", BigBuf_get_traceLen()); | |
1229 | } | |
1230 | ||
1231 | ||
1232 | /* | |
1233 | * Send raw command to tag ISO14443B | |
1234 | * @Input | |
1235 | * datalen len of buffer data | |
1236 | * recv bool when true wait for data from tag and send to client | |
1237 | * powerfield bool leave the field on when true | |
1238 | * data buffer with byte to send | |
1239 | * | |
1240 | * @Output | |
1241 | * none | |
1242 | * | |
1243 | */ | |
1244 | void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[]) | |
1245 | { | |
1246 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1247 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1248 | ||
1249 | // switch field on and give tag some time to power up | |
1250 | LED_D_ON(); | |
1251 | FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); | |
1252 | SpinDelay(10); | |
1253 | ||
1254 | if (datalen){ | |
1255 | set_tracing(true); | |
1256 | ||
1257 | CodeAndTransmit14443bAsReader(data, datalen); | |
1258 | ||
1259 | if(recv) { | |
1260 | GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true); | |
1261 | uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE); | |
1262 | cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen); | |
1263 | } | |
1264 | } | |
1265 | ||
1266 | if(!powerfield) { | |
1267 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1268 | LED_D_OFF(); | |
1269 | } | |
1270 | } | |
1271 |