]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
0755e1e5a73c5fc5c8072b07e54438a70e5cf73b
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "../include/proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
16 #include "string.h"
17 #include "crapto1.h"
18 #include "mifareutil.h"
19
20 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
21 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
22
23 void LFSetupFPGAForADC(int divisor, bool lf_field)
24 {
25 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
26 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
27 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
28 else if (divisor == 0)
29 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
30 else
31 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
32
33 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
34
35 // Connect the A/D to the peak-detected low-frequency path.
36 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
37
38 // Give it a bit of time for the resonant antenna to settle.
39 SpinDelay(150);
40
41 // Now set up the SSC to get the ADC samples that are now streaming at us.
42 FpgaSetupSsc();
43 }
44
45 void AcquireRawAdcSamples125k(int divisor)
46 {
47 LFSetupFPGAForADC(divisor, true);
48 DoAcquisition125k();
49 }
50
51 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
52 {
53 LFSetupFPGAForADC(divisor, false);
54 DoAcquisition125k_threshold(trigger_threshold);
55 }
56
57 // split into two routines so we can avoid timing issues after sending commands //
58 void DoAcquisition125k_internal(int trigger_threshold, bool silent)
59 {
60 uint8_t *dest = mifare_get_bigbufptr();
61 int n = 24000;
62 int i = 0;
63 memset(dest, 0x00, n);
64
65 for(;;) {
66 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
67 AT91C_BASE_SSC->SSC_THR = 0x43;
68 LED_D_ON();
69 }
70 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
71 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
72 LED_D_OFF();
73 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
74 continue;
75 else
76 trigger_threshold = -1;
77 if (++i >= n) break;
78 }
79 }
80 if (!silent){
81 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
82 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
83 }
84 }
85 void DoAcquisition125k_threshold(int trigger_threshold) {
86 DoAcquisition125k_internal(trigger_threshold, true);
87 }
88 void DoAcquisition125k() {
89 DoAcquisition125k_internal(-1, true);
90 }
91
92 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
93 {
94
95 /* Make sure the tag is reset */
96 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
97 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
98 SpinDelay(2500);
99
100 int divisor_used = 95; // 125 KHz
101 // see if 'h' was specified
102
103 if (command[strlen((char *) command) - 1] == 'h')
104 divisor_used = 88; // 134.8 KHz
105
106 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
107 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
108 // Give it a bit of time for the resonant antenna to settle.
109 SpinDelay(50);
110
111
112 // And a little more time for the tag to fully power up
113 SpinDelay(2000);
114
115 // Now set up the SSC to get the ADC samples that are now streaming at us.
116 FpgaSetupSsc();
117
118 // now modulate the reader field
119 while(*command != '\0' && *command != ' ') {
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
121 LED_D_OFF();
122 SpinDelayUs(delay_off);
123 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
124
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
126 LED_D_ON();
127 if(*(command++) == '0')
128 SpinDelayUs(period_0);
129 else
130 SpinDelayUs(period_1);
131 }
132 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
133 LED_D_OFF();
134 SpinDelayUs(delay_off);
135 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
136
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
138
139 // now do the read
140 DoAcquisition125k(-1);
141 }
142
143 /* blank r/w tag data stream
144 ...0000000000000000 01111111
145 1010101010101010101010101010101010101010101010101010101010101010
146 0011010010100001
147 01111111
148 101010101010101[0]000...
149
150 [5555fe852c5555555555555555fe0000]
151 */
152 void ReadTItag(void)
153 {
154 // some hardcoded initial params
155 // when we read a TI tag we sample the zerocross line at 2Mhz
156 // TI tags modulate a 1 as 16 cycles of 123.2Khz
157 // TI tags modulate a 0 as 16 cycles of 134.2Khz
158 #define FSAMPLE 2000000
159 #define FREQLO 123200
160 #define FREQHI 134200
161
162 signed char *dest = (signed char *)BigBuf;
163 int n = sizeof(BigBuf);
164 // int *dest = GraphBuffer;
165 // int n = GraphTraceLen;
166
167 // 128 bit shift register [shift3:shift2:shift1:shift0]
168 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
169
170 int i, cycles=0, samples=0;
171 // how many sample points fit in 16 cycles of each frequency
172 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
173 // when to tell if we're close enough to one freq or another
174 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
175
176 // TI tags charge at 134.2Khz
177 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
179
180 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
181 // connects to SSP_DIN and the SSP_DOUT logic level controls
182 // whether we're modulating the antenna (high)
183 // or listening to the antenna (low)
184 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
185
186 // get TI tag data into the buffer
187 AcquireTiType();
188
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
190
191 for (i=0; i<n-1; i++) {
192 // count cycles by looking for lo to hi zero crossings
193 if ( (dest[i]<0) && (dest[i+1]>0) ) {
194 cycles++;
195 // after 16 cycles, measure the frequency
196 if (cycles>15) {
197 cycles=0;
198 samples=i-samples; // number of samples in these 16 cycles
199
200 // TI bits are coming to us lsb first so shift them
201 // right through our 128 bit right shift register
202 shift0 = (shift0>>1) | (shift1 << 31);
203 shift1 = (shift1>>1) | (shift2 << 31);
204 shift2 = (shift2>>1) | (shift3 << 31);
205 shift3 >>= 1;
206
207 // check if the cycles fall close to the number
208 // expected for either the low or high frequency
209 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
210 // low frequency represents a 1
211 shift3 |= (1<<31);
212 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
213 // high frequency represents a 0
214 } else {
215 // probably detected a gay waveform or noise
216 // use this as gaydar or discard shift register and start again
217 shift3 = shift2 = shift1 = shift0 = 0;
218 }
219 samples = i;
220
221 // for each bit we receive, test if we've detected a valid tag
222
223 // if we see 17 zeroes followed by 6 ones, we might have a tag
224 // remember the bits are backwards
225 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
226 // if start and end bytes match, we have a tag so break out of the loop
227 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
228 cycles = 0xF0B; //use this as a flag (ugly but whatever)
229 break;
230 }
231 }
232 }
233 }
234 }
235
236 // if flag is set we have a tag
237 if (cycles!=0xF0B) {
238 DbpString("Info: No valid tag detected.");
239 } else {
240 // put 64 bit data into shift1 and shift0
241 shift0 = (shift0>>24) | (shift1 << 8);
242 shift1 = (shift1>>24) | (shift2 << 8);
243
244 // align 16 bit crc into lower half of shift2
245 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
246
247 // if r/w tag, check ident match
248 if ( shift3&(1<<15) ) {
249 DbpString("Info: TI tag is rewriteable");
250 // only 15 bits compare, last bit of ident is not valid
251 if ( ((shift3>>16)^shift0)&0x7fff ) {
252 DbpString("Error: Ident mismatch!");
253 } else {
254 DbpString("Info: TI tag ident is valid");
255 }
256 } else {
257 DbpString("Info: TI tag is readonly");
258 }
259
260 // WARNING the order of the bytes in which we calc crc below needs checking
261 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
262 // bytes in reverse or something
263 // calculate CRC
264 uint32_t crc=0;
265
266 crc = update_crc16(crc, (shift0)&0xff);
267 crc = update_crc16(crc, (shift0>>8)&0xff);
268 crc = update_crc16(crc, (shift0>>16)&0xff);
269 crc = update_crc16(crc, (shift0>>24)&0xff);
270 crc = update_crc16(crc, (shift1)&0xff);
271 crc = update_crc16(crc, (shift1>>8)&0xff);
272 crc = update_crc16(crc, (shift1>>16)&0xff);
273 crc = update_crc16(crc, (shift1>>24)&0xff);
274
275 Dbprintf("Info: Tag data: %x%08x, crc=%x",
276 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
277 if (crc != (shift2&0xffff)) {
278 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
279 } else {
280 DbpString("Info: CRC is good");
281 }
282 }
283 }
284
285 void WriteTIbyte(uint8_t b)
286 {
287 int i = 0;
288
289 // modulate 8 bits out to the antenna
290 for (i=0; i<8; i++)
291 {
292 if (b&(1<<i)) {
293 // stop modulating antenna
294 SHORT_COIL();
295 SpinDelayUs(1000);
296 // modulate antenna
297 OPEN_COIL();
298 SpinDelayUs(1000);
299 } else {
300 // stop modulating antenna
301 SHORT_COIL();
302 SpinDelayUs(300);
303 // modulate antenna
304 OPEN_COIL();
305 SpinDelayUs(1700);
306 }
307 }
308 }
309
310 void AcquireTiType(void)
311 {
312 int i, j, n;
313 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
314 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
315 #define TIBUFLEN 1250
316
317 // clear buffer
318 memset(BigBuf,0,sizeof(BigBuf));
319
320 // Set up the synchronous serial port
321 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
322 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
323
324 // steal this pin from the SSP and use it to control the modulation
325 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
326 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
327
328 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
329 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
330
331 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
332 // 48/2 = 24 MHz clock must be divided by 12
333 AT91C_BASE_SSC->SSC_CMR = 12;
334
335 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
336 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
337 AT91C_BASE_SSC->SSC_TCMR = 0;
338 AT91C_BASE_SSC->SSC_TFMR = 0;
339
340 LED_D_ON();
341
342 // modulate antenna
343 HIGH(GPIO_SSC_DOUT);
344
345 // Charge TI tag for 50ms.
346 SpinDelay(50);
347
348 // stop modulating antenna and listen
349 LOW(GPIO_SSC_DOUT);
350
351 LED_D_OFF();
352
353 i = 0;
354 for(;;) {
355 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
356 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
357 i++; if(i >= TIBUFLEN) break;
358 }
359 WDT_HIT();
360 }
361
362 // return stolen pin to SSP
363 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
364 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
365
366 char *dest = (char *)BigBuf;
367 n = TIBUFLEN*32;
368 // unpack buffer
369 for (i=TIBUFLEN-1; i>=0; i--) {
370 for (j=0; j<32; j++) {
371 if(BigBuf[i] & (1 << j)) {
372 dest[--n] = 1;
373 } else {
374 dest[--n] = -1;
375 }
376 }
377 }
378 }
379
380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
381 // if crc provided, it will be written with the data verbatim (even if bogus)
382 // if not provided a valid crc will be computed from the data and written.
383 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
384 {
385 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
386 if(crc == 0) {
387 crc = update_crc16(crc, (idlo)&0xff);
388 crc = update_crc16(crc, (idlo>>8)&0xff);
389 crc = update_crc16(crc, (idlo>>16)&0xff);
390 crc = update_crc16(crc, (idlo>>24)&0xff);
391 crc = update_crc16(crc, (idhi)&0xff);
392 crc = update_crc16(crc, (idhi>>8)&0xff);
393 crc = update_crc16(crc, (idhi>>16)&0xff);
394 crc = update_crc16(crc, (idhi>>24)&0xff);
395 }
396 Dbprintf("Writing to tag: %x%08x, crc=%x",
397 (unsigned int) idhi, (unsigned int) idlo, crc);
398
399 // TI tags charge at 134.2Khz
400 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
401 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
402 // connects to SSP_DIN and the SSP_DOUT logic level controls
403 // whether we're modulating the antenna (high)
404 // or listening to the antenna (low)
405 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
406 LED_A_ON();
407
408 // steal this pin from the SSP and use it to control the modulation
409 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
410 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
411
412 // writing algorithm:
413 // a high bit consists of a field off for 1ms and field on for 1ms
414 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
415 // initiate a charge time of 50ms (field on) then immediately start writing bits
416 // start by writing 0xBB (keyword) and 0xEB (password)
417 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
418 // finally end with 0x0300 (write frame)
419 // all data is sent lsb firts
420 // finish with 15ms programming time
421
422 // modulate antenna
423 HIGH(GPIO_SSC_DOUT);
424 SpinDelay(50); // charge time
425
426 WriteTIbyte(0xbb); // keyword
427 WriteTIbyte(0xeb); // password
428 WriteTIbyte( (idlo )&0xff );
429 WriteTIbyte( (idlo>>8 )&0xff );
430 WriteTIbyte( (idlo>>16)&0xff );
431 WriteTIbyte( (idlo>>24)&0xff );
432 WriteTIbyte( (idhi )&0xff );
433 WriteTIbyte( (idhi>>8 )&0xff );
434 WriteTIbyte( (idhi>>16)&0xff );
435 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
436 WriteTIbyte( (crc )&0xff ); // crc lo
437 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
438 WriteTIbyte(0x00); // write frame lo
439 WriteTIbyte(0x03); // write frame hi
440 HIGH(GPIO_SSC_DOUT);
441 SpinDelay(50); // programming time
442
443 LED_A_OFF();
444
445 // get TI tag data into the buffer
446 AcquireTiType();
447
448 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
449 DbpString("Now use tiread to check");
450 }
451
452
453
454 // PIO_CODR = Clear Output Data Register
455 // PIO_SODR = Set Output Data Register
456 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
457 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
458 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
459 {
460 int i = 0;
461 uint8_t *buf = (uint8_t *)BigBuf;
462
463 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
464 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
465 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
466
467 // Connect the A/D to the peak-detected low-frequency path.
468 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
469
470 // Now set up the SSC to get the ADC samples that are now streaming at us.
471 FpgaSetupSsc();
472
473 // Configure output and enable pin that is connected to the FPGA (for modulating)
474 // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; // (PIO_PER) PIO Enable Register
475 // AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; // (PIO_OER) Output Enable Register
476 // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; // (PIO_ODR) Output Disable Register
477
478 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
479
480 while(!BUTTON_PRESS()) {
481 WDT_HIT();
482
483 // PIO_PDSR = Pin Data Status Register
484 // GPIO_SSC_CLK = SSC Transmit Clock
485 // wait ssp_clk == high
486 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
487 if(BUTTON_PRESS()) {
488 DbpString("Stopped at 0");
489 return;
490 }
491 WDT_HIT();
492 }
493
494 if ( buf[i] > 0 ){
495 OPEN_COIL();
496 } else {
497 SHORT_COIL();
498 }
499
500 DbpString("Enter Sim3");
501 // wait ssp_clk == low
502 while( (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) ) {
503 if(BUTTON_PRESS()) {
504 DbpString("stopped at 1");
505 return;
506 }
507 WDT_HIT();
508 }
509
510 DbpString("Enter Sim4 ");
511 //SpinDelayUs(512);
512
513 ++i;
514 if(i == period) {
515 i = 0;
516 if (gap) {
517 SHORT_COIL();
518 SpinDelay(gap);
519 }
520 }
521 }
522 DbpString("Stopped");
523 return;
524 }
525
526 #define DEBUG_FRAME_CONTENTS 1
527 void SimulateTagLowFrequencyBidir(int divisor, int t0)
528 {
529 }
530
531 // compose fc/8 fc/10 waveform
532 static void fc(int c, int *n) {
533 uint8_t *dest = (uint8_t *)BigBuf;
534 int idx;
535
536 // for when we want an fc8 pattern every 4 logical bits
537 if(c==0) {
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 dest[((*n)++)]=0;
546 }
547 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 if(c==8) {
549 for (idx=0; idx<6; idx++) {
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 }
559 }
560
561 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 if(c==10) {
563 for (idx=0; idx<5; idx++) {
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=1;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 dest[((*n)++)]=0;
573 dest[((*n)++)]=0;
574 }
575 }
576 }
577
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a HID tag until the button is pressed
580 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
581 {
582 int n=0, i=0;
583 /*
584 HID tag bitstream format
585 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
586 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
587 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
588 A fc8 is inserted before every 4 bits
589 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
590 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
591 */
592
593 if (hi>0xFFF) {
594 DbpString("Tags can only have 44 bits.");
595 return;
596 }
597 fc(0,&n);
598 // special start of frame marker containing invalid bit sequences
599 fc(8, &n); fc(8, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601 fc(10, &n); fc(10, &n); // invalid
602 fc(8, &n); fc(10, &n); // logical 0
603
604 WDT_HIT();
605 // manchester encode bits 43 to 32
606 for (i=11; i>=0; i--) {
607 if ((i%4)==3) fc(0,&n);
608 if ((hi>>i)&1) {
609 fc(10, &n); fc(8, &n); // low-high transition
610 } else {
611 fc(8, &n); fc(10, &n); // high-low transition
612 }
613 }
614
615 WDT_HIT();
616 // manchester encode bits 31 to 0
617 for (i=31; i>=0; i--) {
618 if ((i%4)==3) fc(0,&n);
619 if ((lo>>i)&1) {
620 fc(10, &n); fc(8, &n); // low-high transition
621 } else {
622 fc(8, &n); fc(10, &n); // high-low transition
623 }
624 }
625
626 if (ledcontrol)
627 LED_A_ON();
628
629 SimulateTagLowFrequency(n, 0, ledcontrol);
630
631 if (ledcontrol)
632 LED_A_OFF();
633 }
634
635 size_t fsk_demod(uint8_t * dest, size_t size)
636 {
637 uint32_t last_transition = 0;
638 uint32_t idx = 1;
639
640 // we don't care about actual value, only if it's more or less than a
641 // threshold essentially we capture zero crossings for later analysis
642 uint8_t threshold_value = 127;
643
644 // sync to first lo-hi transition, and threshold
645
646 //Need to threshold first sample
647 dest[0] = (dest[0] < threshold_value) ? 0 : 1;
648
649 size_t numBits = 0;
650 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
651 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
652 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
653 for(idx = 1; idx < size; idx++) {
654 // threshold current value
655 dest[idx] = (dest[idx] < threshold_value) ? 0 : 1;
656
657 // Check for 0->1 transition
658 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
659
660 dest[numBits] = (idx-last_transition < 9) ? 1 : 0;
661 last_transition = idx;
662 numBits++;
663 }
664 }
665 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
666 }
667
668
669 size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
670 {
671 uint8_t lastval=dest[0];
672 uint32_t idx=0;
673 size_t numBits=0;
674 uint32_t n=1;
675
676 for( idx=1; idx < size; idx++) {
677
678 if (dest[idx]==lastval) {
679 n++;
680 continue;
681 }
682 //if lastval was 1, we have a 1->0 crossing
683 if ( dest[idx-1] ) {
684 n=(n+1) / h2l_crossing_value;
685 } else {// 0->1 crossing
686 n=(n+1) / l2h_crossing_value;
687 }
688 if (n == 0) n = 1;
689
690 if(n < maxConsequtiveBits)
691 {
692 memset(dest+numBits, dest[idx-1] , n);
693 numBits += n;
694 }
695 n=0;
696 lastval=dest[idx];
697 }//end for
698
699 return numBits;
700
701 }
702 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
703 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
704 {
705 uint8_t *dest = (uint8_t *)BigBuf;
706
707 size_t size=0,idx=0; //, found=0;
708 uint32_t hi2=0, hi=0, lo=0;
709
710 // Configure to go in 125Khz listen mode
711 LFSetupFPGAForADC(0, true);
712
713 while(!BUTTON_PRESS()) {
714
715 WDT_HIT();
716 if (ledcontrol) LED_A_ON();
717
718 DoAcquisition125k_internal(-1,true);
719 size = sizeof(BigBuf);
720
721 // FSK demodulator
722 size = fsk_demod(dest, size);
723
724 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
725 // 1->0 : fc/8 in sets of 6
726 // 0->1 : fc/10 in sets of 5
727 size = aggregate_bits(dest,size, 6,5,5);
728
729 WDT_HIT();
730
731 // final loop, go over previously decoded manchester data and decode into usable tag ID
732 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
733 uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
734 int numshifts = 0;
735 idx = 0;
736 while( idx + sizeof(frame_marker_mask) < size) {
737 // search for a start of frame marker
738 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
739 { // frame marker found
740 idx+=sizeof(frame_marker_mask);
741
742 while(dest[idx] != dest[idx+1] && idx < size-2)
743 {
744 // Keep going until next frame marker (or error)
745 // Shift in a bit. Start by shifting high registers
746 hi2=(hi2<<1)|(hi>>31);
747 hi=(hi<<1)|(lo>>31);
748 //Then, shift in a 0 or one into low
749 if (dest[idx] && !dest[idx+1]) // 1 0
750 lo=(lo<<1)|0;
751 else // 0 1
752 lo=(lo<<1)|
753 1;
754 numshifts ++;
755 idx += 2;
756 }
757 //Dbprintf("Num shifts: %d ", numshifts);
758 // Hopefully, we read a tag and hit upon the next frame marker
759 if(idx + sizeof(frame_marker_mask) < size)
760 {
761 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
762 {
763 if (hi2 != 0){
764 Dbprintf("TAG ID: %x%08x%08x (%d)",
765 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
766 }
767 else {
768 Dbprintf("TAG ID: %x%08x (%d)",
769 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
770 }
771 }
772
773 }
774
775 // reset
776 hi2 = hi = lo = 0;
777 numshifts = 0;
778 }else
779 {
780 idx++;
781 }
782 }
783 WDT_HIT();
784
785 }
786 DbpString("Stopped");
787 if (ledcontrol) LED_A_OFF();
788 }
789
790 uint32_t bytebits_to_byte(uint8_t* src, int numbits)
791 {
792 uint32_t num = 0;
793 for(int i = 0 ; i < numbits ; i++)
794 {
795 num = (num << 1) | (*src);
796 src++;
797 }
798 return num;
799 }
800
801
802 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
803 {
804 uint8_t *dest = (uint8_t *)BigBuf;
805
806 size_t size=0, idx=0;
807 uint32_t code=0, code2=0;
808
809 // Configure to go in 125Khz listen mode
810 LFSetupFPGAForADC(0, true);
811
812 while(!BUTTON_PRESS()) {
813 WDT_HIT();
814 if (ledcontrol) LED_A_ON();
815
816 DoAcquisition125k_internal(-1,true);
817 size = sizeof(BigBuf);
818
819 // FSK demodulator
820 size = fsk_demod(dest, size);
821
822 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
823 // 1->0 : fc/8 in sets of 7
824 // 0->1 : fc/10 in sets of 6
825 size = aggregate_bits(dest, size, 7,6,13);
826
827 WDT_HIT();
828
829 //Handle the data
830 uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
831 for( idx=0; idx < size - 64; idx++) {
832
833 if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
834
835 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
836 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
837 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
838 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
839 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
840 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
841 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
842 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
843
844 code = bytebits_to_byte(dest+idx,32);
845 code2 = bytebits_to_byte(dest+idx+32,32);
846
847 short version = bytebits_to_byte(dest+idx+14,4);
848 char unknown = bytebits_to_byte(dest+idx+19,8) ;
849 uint16_t number = bytebits_to_byte(dest+idx+36,9);
850
851 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
852 if (ledcontrol) LED_D_OFF();
853
854 // if we're only looking for one tag
855 if (findone){
856 LED_A_OFF();
857 return;
858 }
859 }
860 WDT_HIT();
861 }
862 DbpString("Stopped");
863 if (ledcontrol) LED_A_OFF();
864 }
865
866 /*------------------------------
867 * T5555/T5557/T5567 routines
868 *------------------------------
869 */
870
871 /* T55x7 configuration register definitions */
872 #define T55x7_POR_DELAY 0x00000001
873 #define T55x7_ST_TERMINATOR 0x00000008
874 #define T55x7_PWD 0x00000010
875 #define T55x7_MAXBLOCK_SHIFT 5
876 #define T55x7_AOR 0x00000200
877 #define T55x7_PSKCF_RF_2 0
878 #define T55x7_PSKCF_RF_4 0x00000400
879 #define T55x7_PSKCF_RF_8 0x00000800
880 #define T55x7_MODULATION_DIRECT 0
881 #define T55x7_MODULATION_PSK1 0x00001000
882 #define T55x7_MODULATION_PSK2 0x00002000
883 #define T55x7_MODULATION_PSK3 0x00003000
884 #define T55x7_MODULATION_FSK1 0x00004000
885 #define T55x7_MODULATION_FSK2 0x00005000
886 #define T55x7_MODULATION_FSK1a 0x00006000
887 #define T55x7_MODULATION_FSK2a 0x00007000
888 #define T55x7_MODULATION_MANCHESTER 0x00008000
889 #define T55x7_MODULATION_BIPHASE 0x00010000
890 #define T55x7_BITRATE_RF_8 0
891 #define T55x7_BITRATE_RF_16 0x00040000
892 #define T55x7_BITRATE_RF_32 0x00080000
893 #define T55x7_BITRATE_RF_40 0x000C0000
894 #define T55x7_BITRATE_RF_50 0x00100000
895 #define T55x7_BITRATE_RF_64 0x00140000
896 #define T55x7_BITRATE_RF_100 0x00180000
897 #define T55x7_BITRATE_RF_128 0x001C0000
898
899 /* T5555 (Q5) configuration register definitions */
900 #define T5555_ST_TERMINATOR 0x00000001
901 #define T5555_MAXBLOCK_SHIFT 0x00000001
902 #define T5555_MODULATION_MANCHESTER 0
903 #define T5555_MODULATION_PSK1 0x00000010
904 #define T5555_MODULATION_PSK2 0x00000020
905 #define T5555_MODULATION_PSK3 0x00000030
906 #define T5555_MODULATION_FSK1 0x00000040
907 #define T5555_MODULATION_FSK2 0x00000050
908 #define T5555_MODULATION_BIPHASE 0x00000060
909 #define T5555_MODULATION_DIRECT 0x00000070
910 #define T5555_INVERT_OUTPUT 0x00000080
911 #define T5555_PSK_RF_2 0
912 #define T5555_PSK_RF_4 0x00000100
913 #define T5555_PSK_RF_8 0x00000200
914 #define T5555_USE_PWD 0x00000400
915 #define T5555_USE_AOR 0x00000800
916 #define T5555_BITRATE_SHIFT 12
917 #define T5555_FAST_WRITE 0x00004000
918 #define T5555_PAGE_SELECT 0x00008000
919
920 /*
921 * Relevant times in microsecond
922 * To compensate antenna falling times shorten the write times
923 * and enlarge the gap ones.
924 */
925 #define START_GAP 30*8 // 10 - 50fc 250
926 #define WRITE_GAP 20*8 // 8 - 30fc
927 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
928 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
929
930 // VALUES TAKEN FROM EM4x function: SendForward
931 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
932 // WRITE_GAP = 128; (16*8)
933 // WRITE_1 = 256 32*8; (32*8)
934
935 // These timings work for 4469/4269/4305 (with the 55*8 above)
936 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
937
938 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
939
940 // Write one bit to card
941 void T55xxWriteBit(int bit)
942 {
943 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
944 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
946 if (!bit)
947 SpinDelayUs(WRITE_0);
948 else
949 SpinDelayUs(WRITE_1);
950 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
951 SpinDelayUs(WRITE_GAP);
952 }
953
954 // Write one card block in page 0, no lock
955 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
956 {
957 uint32_t i = 0;
958
959 // Set up FPGA, 125kHz
960 // Wait for config.. (192+8190xPOW)x8 == 67ms
961 LFSetupFPGAForADC(0, true);
962
963 // Now start writting
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
965 SpinDelayUs(START_GAP);
966
967 // Opcode
968 T55xxWriteBit(1);
969 T55xxWriteBit(0); //Page 0
970 if (PwdMode == 1){
971 // Pwd
972 for (i = 0x80000000; i != 0; i >>= 1)
973 T55xxWriteBit(Pwd & i);
974 }
975 // Lock bit
976 T55xxWriteBit(0);
977
978 // Data
979 for (i = 0x80000000; i != 0; i >>= 1)
980 T55xxWriteBit(Data & i);
981
982 // Block
983 for (i = 0x04; i != 0; i >>= 1)
984 T55xxWriteBit(Block & i);
985
986 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
987 // so wait a little more)
988 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
989 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
990 SpinDelay(20);
991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
992 }
993
994 // Read one card block in page 0
995 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
996 {
997 uint8_t *dest = mifare_get_bigbufptr();
998 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
999 uint32_t i = 0;
1000
1001 // Clear destination buffer before sending the command 0x80 = average.
1002 memset(dest, 0x80, bufferlength);
1003
1004 // Set up FPGA, 125kHz
1005 // Wait for config.. (192+8190xPOW)x8 == 67ms
1006 LFSetupFPGAForADC(0, true);
1007
1008 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1009 SpinDelayUs(START_GAP);
1010
1011 // Opcode
1012 T55xxWriteBit(1);
1013 T55xxWriteBit(0); //Page 0
1014 if (PwdMode == 1){
1015 // Pwd
1016 for (i = 0x80000000; i != 0; i >>= 1)
1017 T55xxWriteBit(Pwd & i);
1018 }
1019 // Lock bit
1020 T55xxWriteBit(0);
1021 // Block
1022 for (i = 0x04; i != 0; i >>= 1)
1023 T55xxWriteBit(Block & i);
1024
1025 // Turn field on to read the response
1026 TurnReadLFOn();
1027
1028 // Now do the acquisition
1029 i = 0;
1030 for(;;) {
1031 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1032 AT91C_BASE_SSC->SSC_THR = 0x43;
1033 LED_D_ON();
1034 }
1035 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1036 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1037 ++i;
1038 LED_D_OFF();
1039 if (i > bufferlength) break;
1040 }
1041 }
1042
1043 cmd_send(CMD_ACK,0,0,0,0,0);
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1045 LED_D_OFF();
1046 }
1047
1048 // Read card traceability data (page 1)
1049 void T55xxReadTrace(void){
1050 uint8_t *dest = mifare_get_bigbufptr();
1051 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1052 int i=0;
1053
1054 // Clear destination buffer before sending the command 0x80 = average
1055 memset(dest, 0x80, bufferlength);
1056
1057 LFSetupFPGAForADC(0, true);
1058
1059 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1060 SpinDelayUs(START_GAP);
1061
1062 // Opcode
1063 T55xxWriteBit(1);
1064 T55xxWriteBit(1); //Page 1
1065
1066 // Turn field on to read the response
1067 TurnReadLFOn();
1068
1069 // Now do the acquisition
1070 for(;;) {
1071 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1072 AT91C_BASE_SSC->SSC_THR = 0x43;
1073 LED_D_ON();
1074 }
1075 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1076 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1077 ++i;
1078 LED_D_OFF();
1079
1080 if (i >= bufferlength) break;
1081 }
1082 }
1083
1084 cmd_send(CMD_ACK,0,0,0,0,0);
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1086 LED_D_OFF();
1087 }
1088
1089 void TurnReadLFOn(){
1090 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1091 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1092 // Give it a bit of time for the resonant antenna to settle.
1093 //SpinDelay(30);
1094 SpinDelayUs(8*150);
1095 }
1096
1097 /*-------------- Cloning routines -----------*/
1098 // Copy HID id to card and setup block 0 config
1099 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1100 {
1101 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1102 int last_block = 0;
1103
1104 if (longFMT){
1105 // Ensure no more than 84 bits supplied
1106 if (hi2>0xFFFFF) {
1107 DbpString("Tags can only have 84 bits.");
1108 return;
1109 }
1110 // Build the 6 data blocks for supplied 84bit ID
1111 last_block = 6;
1112 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1113 for (int i=0;i<4;i++) {
1114 if (hi2 & (1<<(19-i)))
1115 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1116 else
1117 data1 |= (1<<((3-i)*2)); // 0 -> 01
1118 }
1119
1120 data2 = 0;
1121 for (int i=0;i<16;i++) {
1122 if (hi2 & (1<<(15-i)))
1123 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1124 else
1125 data2 |= (1<<((15-i)*2)); // 0 -> 01
1126 }
1127
1128 data3 = 0;
1129 for (int i=0;i<16;i++) {
1130 if (hi & (1<<(31-i)))
1131 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1132 else
1133 data3 |= (1<<((15-i)*2)); // 0 -> 01
1134 }
1135
1136 data4 = 0;
1137 for (int i=0;i<16;i++) {
1138 if (hi & (1<<(15-i)))
1139 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1140 else
1141 data4 |= (1<<((15-i)*2)); // 0 -> 01
1142 }
1143
1144 data5 = 0;
1145 for (int i=0;i<16;i++) {
1146 if (lo & (1<<(31-i)))
1147 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1148 else
1149 data5 |= (1<<((15-i)*2)); // 0 -> 01
1150 }
1151
1152 data6 = 0;
1153 for (int i=0;i<16;i++) {
1154 if (lo & (1<<(15-i)))
1155 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1156 else
1157 data6 |= (1<<((15-i)*2)); // 0 -> 01
1158 }
1159 }
1160 else {
1161 // Ensure no more than 44 bits supplied
1162 if (hi>0xFFF) {
1163 DbpString("Tags can only have 44 bits.");
1164 return;
1165 }
1166
1167 // Build the 3 data blocks for supplied 44bit ID
1168 last_block = 3;
1169
1170 data1 = 0x1D000000; // load preamble
1171
1172 for (int i=0;i<12;i++) {
1173 if (hi & (1<<(11-i)))
1174 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1175 else
1176 data1 |= (1<<((11-i)*2)); // 0 -> 01
1177 }
1178
1179 data2 = 0;
1180 for (int i=0;i<16;i++) {
1181 if (lo & (1<<(31-i)))
1182 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1183 else
1184 data2 |= (1<<((15-i)*2)); // 0 -> 01
1185 }
1186
1187 data3 = 0;
1188 for (int i=0;i<16;i++) {
1189 if (lo & (1<<(15-i)))
1190 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1191 else
1192 data3 |= (1<<((15-i)*2)); // 0 -> 01
1193 }
1194 }
1195
1196 LED_D_ON();
1197 // Program the data blocks for supplied ID
1198 // and the block 0 for HID format
1199 T55xxWriteBlock(data1,1,0,0);
1200 T55xxWriteBlock(data2,2,0,0);
1201 T55xxWriteBlock(data3,3,0,0);
1202
1203 if (longFMT) { // if long format there are 6 blocks
1204 T55xxWriteBlock(data4,4,0,0);
1205 T55xxWriteBlock(data5,5,0,0);
1206 T55xxWriteBlock(data6,6,0,0);
1207 }
1208
1209 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1210 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1211 T55x7_MODULATION_FSK2a |
1212 last_block << T55x7_MAXBLOCK_SHIFT,
1213 0,0,0);
1214
1215 LED_D_OFF();
1216
1217 DbpString("DONE!");
1218 }
1219
1220 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1221 {
1222 int data1=0, data2=0; //up to six blocks for long format
1223
1224 data1 = hi; // load preamble
1225 data2 = lo;
1226
1227 LED_D_ON();
1228 // Program the data blocks for supplied ID
1229 // and the block 0 for HID format
1230 T55xxWriteBlock(data1,1,0,0);
1231 T55xxWriteBlock(data2,2,0,0);
1232
1233 //Config Block
1234 T55xxWriteBlock(0x00147040,0,0,0);
1235 LED_D_OFF();
1236
1237 DbpString("DONE!");
1238 }
1239
1240 // Define 9bit header for EM410x tags
1241 #define EM410X_HEADER 0x1FF
1242 #define EM410X_ID_LENGTH 40
1243
1244 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1245 {
1246 int i, id_bit;
1247 uint64_t id = EM410X_HEADER;
1248 uint64_t rev_id = 0; // reversed ID
1249 int c_parity[4]; // column parity
1250 int r_parity = 0; // row parity
1251 uint32_t clock = 0;
1252
1253 // Reverse ID bits given as parameter (for simpler operations)
1254 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1255 if (i < 32) {
1256 rev_id = (rev_id << 1) | (id_lo & 1);
1257 id_lo >>= 1;
1258 } else {
1259 rev_id = (rev_id << 1) | (id_hi & 1);
1260 id_hi >>= 1;
1261 }
1262 }
1263
1264 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1265 id_bit = rev_id & 1;
1266
1267 if (i % 4 == 0) {
1268 // Don't write row parity bit at start of parsing
1269 if (i)
1270 id = (id << 1) | r_parity;
1271 // Start counting parity for new row
1272 r_parity = id_bit;
1273 } else {
1274 // Count row parity
1275 r_parity ^= id_bit;
1276 }
1277
1278 // First elements in column?
1279 if (i < 4)
1280 // Fill out first elements
1281 c_parity[i] = id_bit;
1282 else
1283 // Count column parity
1284 c_parity[i % 4] ^= id_bit;
1285
1286 // Insert ID bit
1287 id = (id << 1) | id_bit;
1288 rev_id >>= 1;
1289 }
1290
1291 // Insert parity bit of last row
1292 id = (id << 1) | r_parity;
1293
1294 // Fill out column parity at the end of tag
1295 for (i = 0; i < 4; ++i)
1296 id = (id << 1) | c_parity[i];
1297
1298 // Add stop bit
1299 id <<= 1;
1300
1301 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1302 LED_D_ON();
1303
1304 // Write EM410x ID
1305 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1306 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1307
1308 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1309 if (card) {
1310 // Clock rate is stored in bits 8-15 of the card value
1311 clock = (card & 0xFF00) >> 8;
1312 Dbprintf("Clock rate: %d", clock);
1313 switch (clock)
1314 {
1315 case 32:
1316 clock = T55x7_BITRATE_RF_32;
1317 break;
1318 case 16:
1319 clock = T55x7_BITRATE_RF_16;
1320 break;
1321 case 0:
1322 // A value of 0 is assumed to be 64 for backwards-compatibility
1323 // Fall through...
1324 case 64:
1325 clock = T55x7_BITRATE_RF_64;
1326 break;
1327 default:
1328 Dbprintf("Invalid clock rate: %d", clock);
1329 return;
1330 }
1331
1332 // Writing configuration for T55x7 tag
1333 T55xxWriteBlock(clock |
1334 T55x7_MODULATION_MANCHESTER |
1335 2 << T55x7_MAXBLOCK_SHIFT,
1336 0, 0, 0);
1337 }
1338 else
1339 // Writing configuration for T5555(Q5) tag
1340 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1341 T5555_MODULATION_MANCHESTER |
1342 2 << T5555_MAXBLOCK_SHIFT,
1343 0, 0, 0);
1344
1345 LED_D_OFF();
1346 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1347 (uint32_t)(id >> 32), (uint32_t)id);
1348 }
1349
1350 // Clone Indala 64-bit tag by UID to T55x7
1351 void CopyIndala64toT55x7(int hi, int lo)
1352 {
1353 //Program the 2 data blocks for supplied 64bit UID
1354 // and the block 0 for Indala64 format
1355 T55xxWriteBlock(hi,1,0,0);
1356 T55xxWriteBlock(lo,2,0,0);
1357 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1358 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1359 T55x7_MODULATION_PSK1 |
1360 2 << T55x7_MAXBLOCK_SHIFT,
1361 0, 0, 0);
1362 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1363 // T5567WriteBlock(0x603E1042,0);
1364
1365 DbpString("DONE!");
1366 }
1367
1368 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1369 {
1370 //Program the 7 data blocks for supplied 224bit UID
1371 // and the block 0 for Indala224 format
1372 T55xxWriteBlock(uid1,1,0,0);
1373 T55xxWriteBlock(uid2,2,0,0);
1374 T55xxWriteBlock(uid3,3,0,0);
1375 T55xxWriteBlock(uid4,4,0,0);
1376 T55xxWriteBlock(uid5,5,0,0);
1377 T55xxWriteBlock(uid6,6,0,0);
1378 T55xxWriteBlock(uid7,7,0,0);
1379 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1380 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1381 T55x7_MODULATION_PSK1 |
1382 7 << T55x7_MAXBLOCK_SHIFT,
1383 0,0,0);
1384 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1385 // T5567WriteBlock(0x603E10E2,0);
1386
1387 DbpString("DONE!");
1388 }
1389
1390
1391 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1392 #define max(x,y) ( x<y ? y:x)
1393
1394 int DemodPCF7931(uint8_t **outBlocks) {
1395 uint8_t BitStream[256];
1396 uint8_t Blocks[8][16];
1397 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1398 int GraphTraceLen = sizeof(BigBuf);
1399 int i, j, lastval, bitidx, half_switch;
1400 int clock = 64;
1401 int tolerance = clock / 8;
1402 int pmc, block_done;
1403 int lc, warnings = 0;
1404 int num_blocks = 0;
1405 int lmin=128, lmax=128;
1406 uint8_t dir;
1407
1408 AcquireRawAdcSamples125k(0);
1409
1410 lmin = 64;
1411 lmax = 192;
1412
1413 i = 2;
1414
1415 /* Find first local max/min */
1416 if(GraphBuffer[1] > GraphBuffer[0]) {
1417 while(i < GraphTraceLen) {
1418 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1419 break;
1420 i++;
1421 }
1422 dir = 0;
1423 }
1424 else {
1425 while(i < GraphTraceLen) {
1426 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1427 break;
1428 i++;
1429 }
1430 dir = 1;
1431 }
1432
1433 lastval = i++;
1434 half_switch = 0;
1435 pmc = 0;
1436 block_done = 0;
1437
1438 for (bitidx = 0; i < GraphTraceLen; i++)
1439 {
1440 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1441 {
1442 lc = i - lastval;
1443 lastval = i;
1444
1445 // Switch depending on lc length:
1446 // Tolerance is 1/8 of clock rate (arbitrary)
1447 if (abs(lc-clock/4) < tolerance) {
1448 // 16T0
1449 if((i - pmc) == lc) { /* 16T0 was previous one */
1450 /* It's a PMC ! */
1451 i += (128+127+16+32+33+16)-1;
1452 lastval = i;
1453 pmc = 0;
1454 block_done = 1;
1455 }
1456 else {
1457 pmc = i;
1458 }
1459 } else if (abs(lc-clock/2) < tolerance) {
1460 // 32TO
1461 if((i - pmc) == lc) { /* 16T0 was previous one */
1462 /* It's a PMC ! */
1463 i += (128+127+16+32+33)-1;
1464 lastval = i;
1465 pmc = 0;
1466 block_done = 1;
1467 }
1468 else if(half_switch == 1) {
1469 BitStream[bitidx++] = 0;
1470 half_switch = 0;
1471 }
1472 else
1473 half_switch++;
1474 } else if (abs(lc-clock) < tolerance) {
1475 // 64TO
1476 BitStream[bitidx++] = 1;
1477 } else {
1478 // Error
1479 warnings++;
1480 if (warnings > 10)
1481 {
1482 Dbprintf("Error: too many detection errors, aborting.");
1483 return 0;
1484 }
1485 }
1486
1487 if(block_done == 1) {
1488 if(bitidx == 128) {
1489 for(j=0; j<16; j++) {
1490 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1491 64*BitStream[j*8+6]+
1492 32*BitStream[j*8+5]+
1493 16*BitStream[j*8+4]+
1494 8*BitStream[j*8+3]+
1495 4*BitStream[j*8+2]+
1496 2*BitStream[j*8+1]+
1497 BitStream[j*8];
1498 }
1499 num_blocks++;
1500 }
1501 bitidx = 0;
1502 block_done = 0;
1503 half_switch = 0;
1504 }
1505 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1506 else dir = 1;
1507 }
1508 if(bitidx==255)
1509 bitidx=0;
1510 warnings = 0;
1511 if(num_blocks == 4) break;
1512 }
1513 memcpy(outBlocks, Blocks, 16*num_blocks);
1514 return num_blocks;
1515 }
1516
1517 int IsBlock0PCF7931(uint8_t *Block) {
1518 // Assume RFU means 0 :)
1519 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1520 return 1;
1521 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1522 return 1;
1523 return 0;
1524 }
1525
1526 int IsBlock1PCF7931(uint8_t *Block) {
1527 // Assume RFU means 0 :)
1528 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1529 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1530 return 1;
1531
1532 return 0;
1533 }
1534 #define ALLOC 16
1535
1536 void ReadPCF7931() {
1537 uint8_t Blocks[8][17];
1538 uint8_t tmpBlocks[4][16];
1539 int i, j, ind, ind2, n;
1540 int num_blocks = 0;
1541 int max_blocks = 8;
1542 int ident = 0;
1543 int error = 0;
1544 int tries = 0;
1545
1546 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1547
1548 do {
1549 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1550 n = DemodPCF7931((uint8_t**)tmpBlocks);
1551 if(!n)
1552 error++;
1553 if(error==10 && num_blocks == 0) {
1554 Dbprintf("Error, no tag or bad tag");
1555 return;
1556 }
1557 else if (tries==20 || error==10) {
1558 Dbprintf("Error reading the tag");
1559 Dbprintf("Here is the partial content");
1560 goto end;
1561 }
1562
1563 for(i=0; i<n; i++)
1564 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1565 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1566 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1567 if(!ident) {
1568 for(i=0; i<n; i++) {
1569 if(IsBlock0PCF7931(tmpBlocks[i])) {
1570 // Found block 0 ?
1571 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1572 // Found block 1!
1573 // \o/
1574 ident = 1;
1575 memcpy(Blocks[0], tmpBlocks[i], 16);
1576 Blocks[0][ALLOC] = 1;
1577 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1578 Blocks[1][ALLOC] = 1;
1579 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1580 // Debug print
1581 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1582 num_blocks = 2;
1583 // Handle following blocks
1584 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1585 if(j==n) j=0;
1586 if(j==i) break;
1587 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1588 Blocks[ind2][ALLOC] = 1;
1589 }
1590 break;
1591 }
1592 }
1593 }
1594 }
1595 else {
1596 for(i=0; i<n; i++) { // Look for identical block in known blocks
1597 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1598 for(j=0; j<max_blocks; j++) {
1599 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1600 // Found an identical block
1601 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1602 if(ind2 < 0)
1603 ind2 = max_blocks;
1604 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1605 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1606 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1607 Blocks[ind2][ALLOC] = 1;
1608 num_blocks++;
1609 if(num_blocks == max_blocks) goto end;
1610 }
1611 }
1612 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1613 if(ind2 > max_blocks)
1614 ind2 = 0;
1615 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1616 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1617 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1618 Blocks[ind2][ALLOC] = 1;
1619 num_blocks++;
1620 if(num_blocks == max_blocks) goto end;
1621 }
1622 }
1623 }
1624 }
1625 }
1626 }
1627 }
1628 tries++;
1629 if (BUTTON_PRESS()) return;
1630 } while (num_blocks != max_blocks);
1631 end:
1632 Dbprintf("-----------------------------------------");
1633 Dbprintf("Memory content:");
1634 Dbprintf("-----------------------------------------");
1635 for(i=0; i<max_blocks; i++) {
1636 if(Blocks[i][ALLOC]==1)
1637 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1638 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1639 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1640 else
1641 Dbprintf("<missing block %d>", i);
1642 }
1643 Dbprintf("-----------------------------------------");
1644
1645 return ;
1646 }
1647
1648
1649 //-----------------------------------
1650 // EM4469 / EM4305 routines
1651 //-----------------------------------
1652 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1653 #define FWD_CMD_WRITE 0xA
1654 #define FWD_CMD_READ 0x9
1655 #define FWD_CMD_DISABLE 0x5
1656
1657
1658 uint8_t forwardLink_data[64]; //array of forwarded bits
1659 uint8_t * forward_ptr; //ptr for forward message preparation
1660 uint8_t fwd_bit_sz; //forwardlink bit counter
1661 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1662
1663 //====================================================================
1664 // prepares command bits
1665 // see EM4469 spec
1666 //====================================================================
1667 //--------------------------------------------------------------------
1668 uint8_t Prepare_Cmd( uint8_t cmd ) {
1669 //--------------------------------------------------------------------
1670
1671 *forward_ptr++ = 0; //start bit
1672 *forward_ptr++ = 0; //second pause for 4050 code
1673
1674 *forward_ptr++ = cmd;
1675 cmd >>= 1;
1676 *forward_ptr++ = cmd;
1677 cmd >>= 1;
1678 *forward_ptr++ = cmd;
1679 cmd >>= 1;
1680 *forward_ptr++ = cmd;
1681
1682 return 6; //return number of emited bits
1683 }
1684
1685 //====================================================================
1686 // prepares address bits
1687 // see EM4469 spec
1688 //====================================================================
1689
1690 //--------------------------------------------------------------------
1691 uint8_t Prepare_Addr( uint8_t addr ) {
1692 //--------------------------------------------------------------------
1693
1694 register uint8_t line_parity;
1695
1696 uint8_t i;
1697 line_parity = 0;
1698 for(i=0;i<6;i++) {
1699 *forward_ptr++ = addr;
1700 line_parity ^= addr;
1701 addr >>= 1;
1702 }
1703
1704 *forward_ptr++ = (line_parity & 1);
1705
1706 return 7; //return number of emited bits
1707 }
1708
1709 //====================================================================
1710 // prepares data bits intreleaved with parity bits
1711 // see EM4469 spec
1712 //====================================================================
1713
1714 //--------------------------------------------------------------------
1715 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1716 //--------------------------------------------------------------------
1717
1718 register uint8_t line_parity;
1719 register uint8_t column_parity;
1720 register uint8_t i, j;
1721 register uint16_t data;
1722
1723 data = data_low;
1724 column_parity = 0;
1725
1726 for(i=0; i<4; i++) {
1727 line_parity = 0;
1728 for(j=0; j<8; j++) {
1729 line_parity ^= data;
1730 column_parity ^= (data & 1) << j;
1731 *forward_ptr++ = data;
1732 data >>= 1;
1733 }
1734 *forward_ptr++ = line_parity;
1735 if(i == 1)
1736 data = data_hi;
1737 }
1738
1739 for(j=0; j<8; j++) {
1740 *forward_ptr++ = column_parity;
1741 column_parity >>= 1;
1742 }
1743 *forward_ptr = 0;
1744
1745 return 45; //return number of emited bits
1746 }
1747
1748 //====================================================================
1749 // Forward Link send function
1750 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1751 // fwd_bit_count set with number of bits to be sent
1752 //====================================================================
1753 void SendForward(uint8_t fwd_bit_count) {
1754
1755 fwd_write_ptr = forwardLink_data;
1756 fwd_bit_sz = fwd_bit_count;
1757
1758 LED_D_ON();
1759
1760 //Field on
1761 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1762 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1763 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1764
1765 // Give it a bit of time for the resonant antenna to settle.
1766 // And for the tag to fully power up
1767 SpinDelay(150);
1768
1769 // force 1st mod pulse (start gap must be longer for 4305)
1770 fwd_bit_sz--; //prepare next bit modulation
1771 fwd_write_ptr++;
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1773 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1774 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1775 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1776 SpinDelayUs(16*8); //16 cycles on (8us each)
1777
1778 // now start writting
1779 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1780 if(((*fwd_write_ptr++) & 1) == 1)
1781 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1782 else {
1783 //These timings work for 4469/4269/4305 (with the 55*8 above)
1784 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1785 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1786 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1787 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1788 SpinDelayUs(9*8); //16 cycles on (8us each)
1789 }
1790 }
1791 }
1792
1793
1794 void EM4xLogin(uint32_t Password) {
1795
1796 uint8_t fwd_bit_count;
1797
1798 forward_ptr = forwardLink_data;
1799 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1800 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1801
1802 SendForward(fwd_bit_count);
1803
1804 //Wait for command to complete
1805 SpinDelay(20);
1806
1807 }
1808
1809 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1810
1811 uint8_t *dest = mifare_get_bigbufptr();
1812 uint16_t bufferlength = 12000;
1813 uint32_t i = 0;
1814
1815 // Clear destination buffer before sending the command 0x80 = average.
1816 memset(dest, 0x80, bufferlength);
1817
1818 uint8_t fwd_bit_count;
1819
1820 //If password mode do login
1821 if (PwdMode == 1) EM4xLogin(Pwd);
1822
1823 forward_ptr = forwardLink_data;
1824 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1825 fwd_bit_count += Prepare_Addr( Address );
1826
1827 // Connect the A/D to the peak-detected low-frequency path.
1828 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1829 // Now set up the SSC to get the ADC samples that are now streaming at us.
1830 FpgaSetupSsc();
1831
1832 SendForward(fwd_bit_count);
1833
1834 // // Turn field on to read the response
1835 // TurnReadLFOn();
1836
1837 // Now do the acquisition
1838 i = 0;
1839 for(;;) {
1840 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1841 AT91C_BASE_SSC->SSC_THR = 0x43;
1842 }
1843 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1844 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1845 ++i;
1846 if (i >= bufferlength) break;
1847 }
1848 }
1849
1850 cmd_send(CMD_ACK,0,0,0,0,0);
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1852 LED_D_OFF();
1853 }
1854
1855 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1856
1857 uint8_t fwd_bit_count;
1858
1859 //If password mode do login
1860 if (PwdMode == 1) EM4xLogin(Pwd);
1861
1862 forward_ptr = forwardLink_data;
1863 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1864 fwd_bit_count += Prepare_Addr( Address );
1865 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1866
1867 SendForward(fwd_bit_count);
1868
1869 //Wait for write to complete
1870 SpinDelay(20);
1871 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1872 LED_D_OFF();
1873 }
Impressum, Datenschutz