]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Emv scan via contact interface (#789)
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include <stdarg.h>
14
15 #include "usb_cdc.h"
16 #include "cmd.h"
17 #include "proxmark3.h"
18 #include "apps.h"
19 #include "fpga.h"
20 #include "util.h"
21 #include "printf.h"
22 #include "string.h"
23 #include "legicrf.h"
24 #include "legicrfsim.h"
25 #include "hitag2.h"
26 #include "hitagS.h"
27 #include "iso15693.h"
28 #include "lfsampling.h"
29 #include "BigBuf.h"
30 #include "mifareutil.h"
31 #include "pcf7931.h"
32 #include "i2c.h"
33 #include "hfsnoop.h"
34 #include "fpgaloader.h"
35 #ifdef WITH_LCD
36 #include "LCD.h"
37 #endif
38
39 static uint32_t hw_capabilities;
40
41 // Craig Young - 14a stand-alone code
42 #ifdef WITH_ISO14443a
43 #include "iso14443a.h"
44 #endif
45
46 //=============================================================================
47 // A buffer where we can queue things up to be sent through the FPGA, for
48 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
49 // is the order in which they go out on the wire.
50 //=============================================================================
51
52 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
53 uint8_t ToSend[TOSEND_BUFFER_SIZE];
54 int ToSendMax;
55 static int ToSendBit;
56 struct common_area common_area __attribute__((section(".commonarea")));
57
58 void ToSendReset(void)
59 {
60 ToSendMax = -1;
61 ToSendBit = 8;
62 }
63
64 void ToSendStuffBit(int b)
65 {
66 if(ToSendBit >= 8) {
67 ToSendMax++;
68 ToSend[ToSendMax] = 0;
69 ToSendBit = 0;
70 }
71
72 if(b) {
73 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
74 }
75
76 ToSendBit++;
77
78 if(ToSendMax >= sizeof(ToSend)) {
79 ToSendBit = 0;
80 DbpString("ToSendStuffBit overflowed!");
81 }
82 }
83
84 //=============================================================================
85 // Debug print functions, to go out over USB, to the usual PC-side client.
86 //=============================================================================
87
88 void DbpString(char *str)
89 {
90 byte_t len = strlen(str);
91 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
92 }
93
94 #if 0
95 void DbpIntegers(int x1, int x2, int x3)
96 {
97 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
98 }
99 #endif
100
101 void Dbprintf(const char *fmt, ...) {
102 // should probably limit size here; oh well, let's just use a big buffer
103 char output_string[128];
104 va_list ap;
105
106 va_start(ap, fmt);
107 kvsprintf(fmt, output_string, 10, ap);
108 va_end(ap);
109
110 DbpString(output_string);
111 }
112
113 // prints HEX & ASCII
114 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
115 int l=0,i;
116 char ascii[9];
117
118 while (len>0) {
119 if (len>8) l=8;
120 else l=len;
121
122 memcpy(ascii,d,l);
123 ascii[l]=0;
124
125 // filter safe ascii
126 for (i=0;i<l;i++)
127 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
128
129 if (bAsci) {
130 Dbprintf("%-8s %*D",ascii,l,d," ");
131 } else {
132 Dbprintf("%*D",l,d," ");
133 }
134
135 len-=8;
136 d+=8;
137 }
138 }
139
140 //-----------------------------------------------------------------------------
141 // Read an ADC channel and block till it completes, then return the result
142 // in ADC units (0 to 1023). Also a routine to average 32 samples and
143 // return that.
144 //-----------------------------------------------------------------------------
145 static int ReadAdc(int ch)
146 {
147 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
148 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
149 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
150 //
151 // The maths are:
152 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
153 //
154 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
158 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
163 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
164
165 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
166
167 return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
168 }
169
170 int AvgAdc(int ch) // was static - merlok
171 {
172 int i;
173 int a = 0;
174
175 for(i = 0; i < 32; i++) {
176 a += ReadAdc(ch);
177 }
178
179 return (a + 15) >> 5;
180 }
181
182 static int AvgAdc_Voltage_HF(void)
183 {
184 int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
185
186 AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
187 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
188 if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
189 AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
190 if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
191 return AvgAdc_Voltage_High;
192 }
193 }
194 return AvgAdc_Voltage_Low;
195 }
196
197 static int AvgAdc_Voltage_LF(void)
198 {
199 return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
200 }
201
202 void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
203 {
204 int i, adcval = 0, peak = 0;
205
206 /*
207 * Sweeps the useful LF range of the proxmark from
208 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
209 * read the voltage in the antenna, the result left
210 * in the buffer is a graph which should clearly show
211 * the resonating frequency of your LF antenna
212 * ( hopefully around 95 if it is tuned to 125kHz!)
213 */
214
215 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
217 SpinDelay(50);
218
219 for (i=255; i>=19; i--) {
220 WDT_HIT();
221 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
222 SpinDelay(20);
223 adcval = AvgAdc_Voltage_LF();
224 if (i==95) *vLf125 = adcval; // voltage at 125Khz
225 if (i==89) *vLf134 = adcval; // voltage at 134Khz
226
227 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
228 if(LF_Results[i] > peak) {
229 *peakv = adcval;
230 peak = LF_Results[i];
231 *peakf = i;
232 //ptr = i;
233 }
234 }
235
236 for (i=18; i >= 0; i--) LF_Results[i] = 0;
237
238 return;
239 }
240
241 void MeasureAntennaTuningHfOnly(int *vHf)
242 {
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 LED_A_ON();
245 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
247 SpinDelay(20);
248 *vHf = AvgAdc_Voltage_HF();
249 LED_A_OFF();
250 return;
251 }
252
253 void MeasureAntennaTuning(int mode)
254 {
255 uint8_t LF_Results[256] = {0};
256 int peakv = 0, peakf = 0;
257 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
258
259 LED_B_ON();
260
261 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
262 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
263 MeasureAntennaTuningHfOnly(&vHf);
264 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
265 } else {
266 if (mode & FLAG_TUNE_LF) {
267 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
268 }
269 if (mode & FLAG_TUNE_HF) {
270 MeasureAntennaTuningHfOnly(&vHf);
271 }
272 }
273
274 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
275 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
276 LED_B_OFF();
277 return;
278 }
279
280 void MeasureAntennaTuningHf(void)
281 {
282 int vHf = 0; // in mV
283
284 DbpString("Measuring HF antenna, press button to exit");
285
286 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
287 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
288 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
289
290 for (;;) {
291 SpinDelay(500);
292 vHf = AvgAdc_Voltage_HF();
293
294 Dbprintf("%d mV",vHf);
295 if (BUTTON_PRESS()) break;
296 }
297 DbpString("cancelled");
298
299 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
300
301 }
302
303
304 void ReadMem(int addr)
305 {
306 const uint8_t *data = ((uint8_t *)addr);
307
308 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
309 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
310 }
311
312 /* osimage version information is linked in */
313 extern struct version_information version_information;
314 /* bootrom version information is pointed to from _bootphase1_version_pointer */
315 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
316
317
318 void set_hw_capabilities(void)
319 {
320 if (I2C_is_available()) {
321 hw_capabilities |= HAS_SMARTCARD_SLOT;
322 }
323
324 if (false) { // TODO: implement a test
325 hw_capabilities |= HAS_EXTRA_FLASH_MEM;
326 }
327 }
328
329
330 void SendVersion(void)
331 {
332 set_hw_capabilities();
333
334 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
335 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
336
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
340 */
341 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
342 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
343 strcat(VersionString, "bootrom version information appears invalid\n");
344 } else {
345 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
346 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
347 }
348
349 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
350 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
351
352 for (int i = 0; i < fpga_bitstream_num; i++) {
353 strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
354 strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
355 }
356
357 // test availability of SmartCard slot
358 if (I2C_is_available()) {
359 strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
360 } else {
361 strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
362 }
363
364 // Send Chip ID and used flash memory
365 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
366 uint32_t compressed_data_section_size = common_area.arg1;
367 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString));
368 }
369
370 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
371 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
372 void printUSBSpeed(void)
373 {
374 Dbprintf("USB Speed:");
375 Dbprintf(" Sending USB packets to client...");
376
377 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
378 uint8_t *test_data = BigBuf_get_addr();
379 uint32_t end_time;
380
381 uint32_t start_time = end_time = GetTickCount();
382 uint32_t bytes_transferred = 0;
383
384 LED_B_ON();
385 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
386 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
387 end_time = GetTickCount();
388 bytes_transferred += USB_CMD_DATA_SIZE;
389 }
390 LED_B_OFF();
391
392 Dbprintf(" Time elapsed: %dms", end_time - start_time);
393 Dbprintf(" Bytes transferred: %d", bytes_transferred);
394 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
395 1000 * bytes_transferred / (end_time - start_time));
396
397 }
398
399 /**
400 * Prints runtime information about the PM3.
401 **/
402 void SendStatus(void)
403 {
404 BigBuf_print_status();
405 Fpga_print_status();
406 #ifdef WITH_SMARTCARD
407 I2C_print_status();
408 #endif
409 printConfig(); //LF Sampling config
410 printUSBSpeed();
411 Dbprintf("Various");
412 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
413 Dbprintf(" ToSendMax..........%d", ToSendMax);
414 Dbprintf(" ToSendBit..........%d", ToSendBit);
415
416 cmd_send(CMD_ACK,1,0,0,0,0);
417 }
418
419 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
420
421 #define OPTS 2
422
423 void StandAloneMode()
424 {
425 DbpString("Stand-alone mode! No PC necessary.");
426 // Oooh pretty -- notify user we're in elite samy mode now
427 LED(LED_RED, 200);
428 LED(LED_ORANGE, 200);
429 LED(LED_GREEN, 200);
430 LED(LED_ORANGE, 200);
431 LED(LED_RED, 200);
432 LED(LED_ORANGE, 200);
433 LED(LED_GREEN, 200);
434 LED(LED_ORANGE, 200);
435 LED(LED_RED, 200);
436
437 }
438
439 #endif
440
441
442
443 #ifdef WITH_ISO14443a_StandAlone
444 void StandAloneMode14a()
445 {
446 StandAloneMode();
447 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
448
449 int selected = 0;
450 bool playing = false, GotoRecord = false, GotoClone = false;
451 bool cardRead[OPTS] = {false};
452 uint8_t readUID[10] = {0};
453 uint32_t uid_1st[OPTS]={0};
454 uint32_t uid_2nd[OPTS]={0};
455 uint32_t uid_tmp1 = 0;
456 uint32_t uid_tmp2 = 0;
457 iso14a_card_select_t hi14a_card[OPTS];
458
459 LED(selected + 1, 0);
460
461 for (;;)
462 {
463 usb_poll();
464 WDT_HIT();
465 SpinDelay(300);
466
467 if (GotoRecord || !cardRead[selected])
468 {
469 GotoRecord = false;
470 LEDsoff();
471 LED(selected + 1, 0);
472 LED(LED_RED2, 0);
473
474 // record
475 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
476 /* need this delay to prevent catching some weird data */
477 SpinDelay(500);
478 /* Code for reading from 14a tag */
479 uint8_t uid[10] ={0};
480 uint32_t cuid;
481 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
482
483 for ( ; ; )
484 {
485 WDT_HIT();
486 if (BUTTON_PRESS()) {
487 if (cardRead[selected]) {
488 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
489 break;
490 }
491 else if (cardRead[(selected+1)%OPTS]) {
492 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
493 selected = (selected+1)%OPTS;
494 break;
495 }
496 else {
497 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
498 SpinDelay(300);
499 }
500 }
501 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
502 continue;
503 else
504 {
505 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
506 memcpy(readUID,uid,10*sizeof(uint8_t));
507 uint8_t *dst = (uint8_t *)&uid_tmp1;
508 // Set UID byte order
509 for (int i=0; i<4; i++)
510 dst[i] = uid[3-i];
511 dst = (uint8_t *)&uid_tmp2;
512 for (int i=0; i<4; i++)
513 dst[i] = uid[7-i];
514 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
515 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
516 }
517 else {
518 if (uid_tmp2) {
519 Dbprintf("Bank[%d] received a 7-byte UID",selected);
520 uid_1st[selected] = (uid_tmp1)>>8;
521 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
522 }
523 else {
524 Dbprintf("Bank[%d] received a 4-byte UID",selected);
525 uid_1st[selected] = uid_tmp1;
526 uid_2nd[selected] = uid_tmp2;
527 }
528 break;
529 }
530 }
531 }
532 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
533 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
534 LEDsoff();
535 LED(LED_GREEN, 200);
536 LED(LED_ORANGE, 200);
537 LED(LED_GREEN, 200);
538 LED(LED_ORANGE, 200);
539
540 LEDsoff();
541 LED(selected + 1, 0);
542
543 // Next state is replay:
544 playing = true;
545
546 cardRead[selected] = true;
547 }
548 /* MF Classic UID clone */
549 else if (GotoClone)
550 {
551 GotoClone=false;
552 LEDsoff();
553 LED(selected + 1, 0);
554 LED(LED_ORANGE, 250);
555
556
557 // record
558 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
559
560 // wait for button to be released
561 while(BUTTON_PRESS())
562 {
563 // Delay cloning until card is in place
564 WDT_HIT();
565 }
566 Dbprintf("Starting clone. [Bank: %u]", selected);
567 // need this delay to prevent catching some weird data
568 SpinDelay(500);
569 // Begin clone function here:
570 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
571 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
572 memcpy(c.d.asBytes, data, 16);
573 SendCommand(&c);
574
575 Block read is similar:
576 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
577 We need to imitate that call with blockNo 0 to set a uid.
578
579 The get and set commands are handled in this file:
580 // Work with "magic Chinese" card
581 case CMD_MIFARE_CSETBLOCK:
582 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
583 break;
584 case CMD_MIFARE_CGETBLOCK:
585 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
586 break;
587
588 mfCSetUID provides example logic for UID set workflow:
589 -Read block0 from card in field with MifareCGetBlock()
590 -Configure new values without replacing reserved bytes
591 memcpy(block0, uid, 4); // Copy UID bytes from byte array
592 // Mifare UID BCC
593 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
594 Bytes 5-7 are reserved SAK and ATQA for mifare classic
595 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
596 */
597 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
598 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
599 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
600 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
601 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
602 playing = true;
603 }
604 else {
605 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
606 memcpy(newBlock0,oldBlock0,16);
607 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
608
609 newBlock0[0] = uid_1st[selected]>>24;
610 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
611 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
612 newBlock0[3] = 0xFF & (uid_1st[selected]);
613 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
614 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
615 MifareCSetBlock(0, 0xFF,0, newBlock0);
616 MifareCGetBlock(0x3F, 1, 0, testBlock0);
617 if (memcmp(testBlock0,newBlock0,16)==0)
618 {
619 DbpString("Cloned successfull!");
620 cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
621 playing = false;
622 GotoRecord = true;
623 selected = (selected+1) % OPTS;
624 }
625 else {
626 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
627 playing = true;
628 }
629 }
630 LEDsoff();
631 LED(selected + 1, 0);
632
633 }
634 // Change where to record (or begin playing)
635 else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
636 {
637 LEDsoff();
638 LED(selected + 1, 0);
639
640 // Begin transmitting
641 LED(LED_GREEN, 0);
642 DbpString("Playing");
643 for ( ; ; ) {
644 WDT_HIT();
645 int button_action = BUTTON_HELD(1000);
646 if (button_action == 0) { // No button action, proceed with sim
647 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
648 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
649 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
650 DbpString("Mifare Classic");
651 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
652 }
653 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
654 DbpString("Mifare Ultralight");
655 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
656 }
657 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
658 DbpString("Mifare DESFire");
659 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
660 }
661 else {
662 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
663 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
664 }
665 }
666 else if (button_action == BUTTON_SINGLE_CLICK) {
667 selected = (selected + 1) % OPTS;
668 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
669 GotoRecord = true;
670 break;
671 }
672 else if (button_action == BUTTON_HOLD) {
673 Dbprintf("Playtime over. Begin cloning...");
674 GotoClone = true;
675 break;
676 }
677 WDT_HIT();
678 }
679
680 /* We pressed a button so ignore it here with a delay */
681 SpinDelay(300);
682 LEDsoff();
683 LED(selected + 1, 0);
684 }
685 }
686 }
687 #elif WITH_LF_StandAlone
688 // samy's sniff and repeat routine
689 void SamyRun()
690 {
691 StandAloneMode();
692 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
693
694 int tops[OPTS], high[OPTS], low[OPTS];
695 int selected = 0;
696 int playing = 0;
697 int cardRead = 0;
698
699 // Turn on selected LED
700 LED(selected + 1, 0);
701
702 for (;;)
703 {
704 usb_poll();
705 WDT_HIT();
706
707 // Was our button held down or pressed?
708 int button_pressed = BUTTON_HELD(1000);
709 SpinDelay(300);
710
711 // Button was held for a second, begin recording
712 if (button_pressed > 0 && cardRead == 0)
713 {
714 LEDsoff();
715 LED(selected + 1, 0);
716 LED(LED_RED2, 0);
717
718 // record
719 DbpString("Starting recording");
720
721 // wait for button to be released
722 while(BUTTON_PRESS())
723 WDT_HIT();
724
725 /* need this delay to prevent catching some weird data */
726 SpinDelay(500);
727
728 CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
729 if (tops[selected] > 0)
730 Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
731 else
732 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
733
734 LEDsoff();
735 LED(selected + 1, 0);
736 // Finished recording
737
738 // If we were previously playing, set playing off
739 // so next button push begins playing what we recorded
740 playing = 0;
741
742 cardRead = 1;
743
744 }
745
746 else if (button_pressed > 0 && cardRead == 1)
747 {
748 LEDsoff();
749 LED(selected + 1, 0);
750 LED(LED_ORANGE, 0);
751
752 // record
753 if (tops[selected] > 0)
754 Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
755 else
756 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
757
758 // wait for button to be released
759 while(BUTTON_PRESS())
760 WDT_HIT();
761
762 /* need this delay to prevent catching some weird data */
763 SpinDelay(500);
764
765 CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
766 if (tops[selected] > 0)
767 Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
768 else
769 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
770
771 LEDsoff();
772 LED(selected + 1, 0);
773 // Finished recording
774
775 // If we were previously playing, set playing off
776 // so next button push begins playing what we recorded
777 playing = 0;
778
779 cardRead = 0;
780
781 }
782
783 // Change where to record (or begin playing)
784 else if (button_pressed)
785 {
786 // Next option if we were previously playing
787 if (playing)
788 selected = (selected + 1) % OPTS;
789 playing = !playing;
790
791 LEDsoff();
792 LED(selected + 1, 0);
793
794 // Begin transmitting
795 if (playing)
796 {
797 LED(LED_GREEN, 0);
798 DbpString("Playing");
799 // wait for button to be released
800 while(BUTTON_PRESS())
801 WDT_HIT();
802 if (tops[selected] > 0)
803 Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
804 else
805 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
806
807 CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
808 DbpString("Done playing");
809 if (BUTTON_HELD(1000) > 0)
810 {
811 DbpString("Exiting");
812 LEDsoff();
813 return;
814 }
815
816 /* We pressed a button so ignore it here with a delay */
817 SpinDelay(300);
818
819 // when done, we're done playing, move to next option
820 selected = (selected + 1) % OPTS;
821 playing = !playing;
822 LEDsoff();
823 LED(selected + 1, 0);
824 }
825 else
826 while(BUTTON_PRESS())
827 WDT_HIT();
828 }
829 }
830 }
831
832 #endif
833 /*
834 OBJECTIVE
835 Listen and detect an external reader. Determine the best location
836 for the antenna.
837
838 INSTRUCTIONS:
839 Inside the ListenReaderField() function, there is two mode.
840 By default, when you call the function, you will enter mode 1.
841 If you press the PM3 button one time, you will enter mode 2.
842 If you press the PM3 button a second time, you will exit the function.
843
844 DESCRIPTION OF MODE 1:
845 This mode just listens for an external reader field and lights up green
846 for HF and/or red for LF. This is the original mode of the detectreader
847 function.
848
849 DESCRIPTION OF MODE 2:
850 This mode will visually represent, using the LEDs, the actual strength of the
851 current compared to the maximum current detected. Basically, once you know
852 what kind of external reader is present, it will help you spot the best location to place
853 your antenna. You will probably not get some good results if there is a LF and a HF reader
854 at the same place! :-)
855
856 LIGHT SCHEME USED:
857 */
858 static const char LIGHT_SCHEME[] = {
859 0x0, /* ---- | No field detected */
860 0x1, /* X--- | 14% of maximum current detected */
861 0x2, /* -X-- | 29% of maximum current detected */
862 0x4, /* --X- | 43% of maximum current detected */
863 0x8, /* ---X | 57% of maximum current detected */
864 0xC, /* --XX | 71% of maximum current detected */
865 0xE, /* -XXX | 86% of maximum current detected */
866 0xF, /* XXXX | 100% of maximum current detected */
867 };
868 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
869
870 void ListenReaderField(int limit)
871 {
872 int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
873 int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
874 int mode=1, display_val, display_max, i;
875
876 #define LF_ONLY 1
877 #define HF_ONLY 2
878 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
879 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
880 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
881
882
883 // switch off FPGA - we don't want to measure our own signal
884 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
885 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
886
887 LEDsoff();
888
889 lf_av = lf_max = AvgAdc_Voltage_LF();
890
891 if(limit != HF_ONLY) {
892 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
893 lf_baseline = lf_av;
894 }
895
896 hf_av = hf_max = AvgAdc_Voltage_HF();
897
898 if (limit != LF_ONLY) {
899 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
900 hf_baseline = hf_av;
901 }
902
903 for(;;) {
904 SpinDelay(500);
905 if (BUTTON_PRESS()) {
906 switch (mode) {
907 case 1:
908 mode=2;
909 DbpString("Signal Strength Mode");
910 break;
911 case 2:
912 default:
913 DbpString("Stopped");
914 LEDsoff();
915 return;
916 break;
917 }
918 while (BUTTON_PRESS());
919 }
920 WDT_HIT();
921
922 if (limit != HF_ONLY) {
923 if(mode == 1) {
924 if (lf_av - lf_baseline > MIN_LF_FIELD)
925 LED_D_ON();
926 else
927 LED_D_OFF();
928 }
929
930 lf_av_new = AvgAdc_Voltage_LF();
931 // see if there's a significant change
932 if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
933 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
934 lf_av = lf_av_new;
935 if (lf_av > lf_max)
936 lf_max = lf_av;
937 }
938 }
939
940 if (limit != LF_ONLY) {
941 if (mode == 1){
942 if (hf_av - hf_baseline > MIN_HF_FIELD)
943 LED_B_ON();
944 else
945 LED_B_OFF();
946 }
947
948 hf_av_new = AvgAdc_Voltage_HF();
949
950 // see if there's a significant change
951 if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
952 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
953 hf_av = hf_av_new;
954 if (hf_av > hf_max)
955 hf_max = hf_av;
956 }
957 }
958
959 if(mode == 2) {
960 if (limit == LF_ONLY) {
961 display_val = lf_av;
962 display_max = lf_max;
963 } else if (limit == HF_ONLY) {
964 display_val = hf_av;
965 display_max = hf_max;
966 } else { /* Pick one at random */
967 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
968 display_val = hf_av;
969 display_max = hf_max;
970 } else {
971 display_val = lf_av;
972 display_max = lf_max;
973 }
974 }
975 for (i=0; i<LIGHT_LEN; i++) {
976 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
977 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
978 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
979 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
980 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
981 break;
982 }
983 }
984 }
985 }
986 }
987
988 void UsbPacketReceived(uint8_t *packet, int len)
989 {
990 UsbCommand *c = (UsbCommand *)packet;
991
992 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
993
994 switch(c->cmd) {
995 #ifdef WITH_LF
996 case CMD_SET_LF_SAMPLING_CONFIG:
997 setSamplingConfig((sample_config *) c->d.asBytes);
998 break;
999 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1000 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
1001 break;
1002 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
1003 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1004 break;
1005 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
1006 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
1007 break;
1008 case CMD_HID_DEMOD_FSK:
1009 CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
1010 break;
1011 case CMD_HID_SIM_TAG:
1012 CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
1013 break;
1014 case CMD_FSK_SIM_TAG:
1015 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1016 break;
1017 case CMD_ASK_SIM_TAG:
1018 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1019 break;
1020 case CMD_PSK_SIM_TAG:
1021 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1022 break;
1023 case CMD_HID_CLONE_TAG:
1024 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
1025 break;
1026 case CMD_PARADOX_CLONE_TAG:
1027 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1028 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
1029 break;
1030 case CMD_IO_DEMOD_FSK:
1031 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
1032 break;
1033 case CMD_IO_CLONE_TAG:
1034 CopyIOtoT55x7(c->arg[0], c->arg[1]);
1035 break;
1036 case CMD_EM410X_DEMOD:
1037 CmdEM410xdemod(c->arg[0], 0, 0, 1);
1038 break;
1039 case CMD_EM410X_WRITE_TAG:
1040 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
1041 break;
1042 case CMD_READ_TI_TYPE:
1043 ReadTItag();
1044 break;
1045 case CMD_WRITE_TI_TYPE:
1046 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
1047 break;
1048 case CMD_SIMULATE_TAG_125K:
1049 LED_A_ON();
1050 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
1051 LED_A_OFF();
1052 break;
1053 case CMD_LF_SIMULATE_BIDIR:
1054 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
1055 break;
1056 case CMD_INDALA_CLONE_TAG:
1057 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
1058 break;
1059 case CMD_INDALA_CLONE_TAG_L:
1060 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
1061 break;
1062 case CMD_T55XX_READ_BLOCK:
1063 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1064 break;
1065 case CMD_T55XX_WRITE_BLOCK:
1066 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1067 break;
1068 case CMD_T55XX_WAKEUP:
1069 T55xxWakeUp(c->arg[0]);
1070 break;
1071 case CMD_T55XX_RESET_READ:
1072 T55xxResetRead();
1073 break;
1074 case CMD_PCF7931_READ:
1075 ReadPCF7931();
1076 break;
1077 case CMD_PCF7931_WRITE:
1078 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1079 break;
1080 case CMD_PCF7931_BRUTEFORCE:
1081 BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
1082 break;
1083 case CMD_EM4X_READ_WORD:
1084 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1085 break;
1086 case CMD_EM4X_WRITE_WORD:
1087 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1088 break;
1089 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1090 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1091 break;
1092 case CMD_VIKING_CLONE_TAG:
1093 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1094 break;
1095 case CMD_COTAG:
1096 Cotag(c->arg[0]);
1097 break;
1098 #endif
1099
1100 #ifdef WITH_HITAG
1101 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1102 SnoopHitag(c->arg[0]);
1103 break;
1104 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1105 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1106 break;
1107 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1108 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1109 break;
1110 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1111 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1112 break;
1113 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1114 check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
1115 break;
1116 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
1117 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
1118 break;
1119 case CMD_READ_HITAG_S_BLK:
1120 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
1121 break;
1122 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
1123 if ((hitag_function)c->arg[0] < 10) {
1124 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1125 }
1126 else if ((hitag_function)c->arg[0] >= 10) {
1127 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1128 }
1129 break;
1130 #endif
1131
1132 #ifdef WITH_ISO15693
1133 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1134 AcquireRawAdcSamplesIso15693();
1135 break;
1136
1137 case CMD_SNOOP_ISO_15693:
1138 SnoopIso15693();
1139 break;
1140
1141 case CMD_ISO_15693_COMMAND:
1142 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1143 break;
1144
1145 case CMD_ISO_15693_FIND_AFI:
1146 BruteforceIso15693Afi(c->arg[0]);
1147 break;
1148
1149 case CMD_ISO_15693_DEBUG:
1150 SetDebugIso15693(c->arg[0]);
1151 break;
1152
1153 case CMD_READER_ISO_15693:
1154 ReaderIso15693(c->arg[0]);
1155 break;
1156 case CMD_SIMTAG_ISO_15693:
1157 SimTagIso15693(c->arg[0], c->d.asBytes);
1158 break;
1159 #endif
1160
1161 #ifdef WITH_LEGICRF
1162 case CMD_SIMULATE_TAG_LEGIC_RF:
1163 LegicRfSimulate(c->arg[0]);
1164 break;
1165
1166 case CMD_WRITER_LEGIC_RF:
1167 LegicRfWriter(c->arg[1], c->arg[0]);
1168 break;
1169
1170 case CMD_READER_LEGIC_RF:
1171 LegicRfReader(c->arg[0], c->arg[1]);
1172 break;
1173 #endif
1174
1175 #ifdef WITH_ISO14443b
1176 case CMD_READ_SRI512_TAG:
1177 ReadSTMemoryIso14443b(0x0F);
1178 break;
1179 case CMD_READ_SRIX4K_TAG:
1180 ReadSTMemoryIso14443b(0x7F);
1181 break;
1182 case CMD_SNOOP_ISO_14443B:
1183 SnoopIso14443b();
1184 break;
1185 case CMD_SIMULATE_TAG_ISO_14443B:
1186 SimulateIso14443bTag();
1187 break;
1188 case CMD_ISO_14443B_COMMAND:
1189 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1190 break;
1191 #endif
1192
1193 #ifdef WITH_ISO14443a
1194 case CMD_SNOOP_ISO_14443a:
1195 SnoopIso14443a(c->arg[0]);
1196 break;
1197 case CMD_READER_ISO_14443a:
1198 ReaderIso14443a(c);
1199 break;
1200 case CMD_SIMULATE_TAG_ISO_14443a:
1201 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1202 break;
1203
1204 case CMD_EPA_PACE_COLLECT_NONCE:
1205 EPA_PACE_Collect_Nonce(c);
1206 break;
1207 case CMD_EPA_PACE_REPLAY:
1208 EPA_PACE_Replay(c);
1209 break;
1210
1211 case CMD_READER_MIFARE:
1212 ReaderMifare(c->arg[0]);
1213 break;
1214 case CMD_MIFARE_READBL:
1215 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1216 break;
1217 case CMD_MIFAREU_READBL:
1218 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1219 break;
1220 case CMD_MIFAREUC_AUTH:
1221 MifareUC_Auth(c->arg[0],c->d.asBytes);
1222 break;
1223 case CMD_MIFAREU_READCARD:
1224 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1225 break;
1226 case CMD_MIFAREUC_SETPWD:
1227 MifareUSetPwd(c->arg[0], c->d.asBytes);
1228 break;
1229 case CMD_MIFARE_READSC:
1230 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1231 break;
1232 case CMD_MIFARE_WRITEBL:
1233 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1234 break;
1235 //case CMD_MIFAREU_WRITEBL_COMPAT:
1236 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1237 //break;
1238 case CMD_MIFAREU_WRITEBL:
1239 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1240 break;
1241 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1242 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1243 break;
1244 case CMD_MIFARE_NESTED:
1245 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1246 break;
1247 case CMD_MIFARE_CHKKEYS:
1248 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1249 break;
1250 case CMD_SIMULATE_MIFARE_CARD:
1251 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1252 break;
1253
1254 // emulator
1255 case CMD_MIFARE_SET_DBGMODE:
1256 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1257 break;
1258 case CMD_MIFARE_EML_MEMCLR:
1259 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1260 break;
1261 case CMD_MIFARE_EML_MEMSET:
1262 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1263 break;
1264 case CMD_MIFARE_EML_MEMGET:
1265 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1266 break;
1267 case CMD_MIFARE_EML_CARDLOAD:
1268 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1269 break;
1270
1271 // Work with "magic Chinese" card
1272 case CMD_MIFARE_CWIPE:
1273 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1274 break;
1275 case CMD_MIFARE_CSETBLOCK:
1276 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1277 break;
1278 case CMD_MIFARE_CGETBLOCK:
1279 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1280 break;
1281 case CMD_MIFARE_CIDENT:
1282 MifareCIdent();
1283 break;
1284
1285 // mifare sniffer
1286 case CMD_MIFARE_SNIFFER:
1287 SniffMifare(c->arg[0]);
1288 break;
1289
1290 #endif
1291
1292 #ifdef WITH_ICLASS
1293 // Makes use of ISO14443a FPGA Firmware
1294 case CMD_SNOOP_ICLASS:
1295 SnoopIClass();
1296 break;
1297 case CMD_SIMULATE_TAG_ICLASS:
1298 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1299 break;
1300 case CMD_READER_ICLASS:
1301 ReaderIClass(c->arg[0]);
1302 break;
1303 case CMD_READER_ICLASS_REPLAY:
1304 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1305 break;
1306 case CMD_ICLASS_EML_MEMSET:
1307 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1308 break;
1309 case CMD_ICLASS_WRITEBLOCK:
1310 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1311 break;
1312 case CMD_ICLASS_READCHECK: // auth step 1
1313 iClass_ReadCheck(c->arg[0], c->arg[1]);
1314 break;
1315 case CMD_ICLASS_READBLOCK:
1316 iClass_ReadBlk(c->arg[0]);
1317 break;
1318 case CMD_ICLASS_AUTHENTICATION: //check
1319 iClass_Authentication(c->d.asBytes);
1320 break;
1321 case CMD_ICLASS_DUMP:
1322 iClass_Dump(c->arg[0], c->arg[1]);
1323 break;
1324 case CMD_ICLASS_CLONE:
1325 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1326 break;
1327 #endif
1328
1329 #ifdef WITH_HFSNOOP
1330 case CMD_HF_SNIFFER:
1331 HfSnoop(c->arg[0], c->arg[1]);
1332 break;
1333 case CMD_HF_PLOT:
1334 HfPlot();
1335 break;
1336 #endif
1337
1338 #ifdef WITH_SMARTCARD
1339 case CMD_SMART_ATR: {
1340 SmartCardAtr();
1341 break;
1342 }
1343 case CMD_SMART_SETCLOCK:{
1344 SmartCardSetClock(c->arg[0]);
1345 break;
1346 }
1347 case CMD_SMART_RAW: {
1348 SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
1349 break;
1350 }
1351 case CMD_SMART_UPLOAD: {
1352 // upload file from client
1353 uint8_t *mem = BigBuf_get_addr();
1354 memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1355 cmd_send(CMD_ACK,1,0,0,0,0);
1356 break;
1357 }
1358 case CMD_SMART_UPGRADE: {
1359 SmartCardUpgrade(c->arg[0]);
1360 break;
1361 }
1362 #endif
1363
1364 case CMD_BUFF_CLEAR:
1365 BigBuf_Clear();
1366 break;
1367
1368 case CMD_MEASURE_ANTENNA_TUNING:
1369 MeasureAntennaTuning(c->arg[0]);
1370 break;
1371
1372 case CMD_MEASURE_ANTENNA_TUNING_HF:
1373 MeasureAntennaTuningHf();
1374 break;
1375
1376 case CMD_LISTEN_READER_FIELD:
1377 ListenReaderField(c->arg[0]);
1378 break;
1379
1380 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1382 SpinDelay(200);
1383 LED_D_OFF(); // LED D indicates field ON or OFF
1384 break;
1385
1386 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1387 LED_B_ON();
1388 uint8_t *BigBuf = BigBuf_get_addr();
1389 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1390 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1391 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1392 }
1393 // Trigger a finish downloading signal with an ACK frame
1394 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1395 LED_B_OFF();
1396 break;
1397
1398 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1399 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1400 // to be able to use this one for uploading data to device
1401 // arg1 = 0 upload for LF usage
1402 // 1 upload for HF usage
1403 if (c->arg[1] == 0)
1404 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1405 else
1406 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1407
1408 uint8_t *b = BigBuf_get_addr();
1409 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1410 cmd_send(CMD_ACK,0,0,0,0,0);
1411 break;
1412 }
1413 case CMD_READ_MEM:
1414 ReadMem(c->arg[0]);
1415 break;
1416
1417 case CMD_SET_LF_DIVISOR:
1418 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1419 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1420 break;
1421
1422 case CMD_SET_ADC_MUX:
1423 switch(c->arg[0]) {
1424 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1425 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1426 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1427 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1428 }
1429 break;
1430
1431 case CMD_VERSION:
1432 SendVersion();
1433 break;
1434 case CMD_STATUS:
1435 SendStatus();
1436 break;
1437 case CMD_PING:
1438 cmd_send(CMD_ACK,0,0,0,0,0);
1439 break;
1440 #ifdef WITH_LCD
1441 case CMD_LCD_RESET:
1442 LCDReset();
1443 break;
1444 case CMD_LCD:
1445 LCDSend(c->arg[0]);
1446 break;
1447 #endif
1448 case CMD_SETUP_WRITE:
1449 case CMD_FINISH_WRITE:
1450 case CMD_HARDWARE_RESET:
1451 usb_disable();
1452 SpinDelay(1000);
1453 SpinDelay(1000);
1454 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1455 for(;;) {
1456 // We're going to reset, and the bootrom will take control.
1457 }
1458 break;
1459
1460 case CMD_START_FLASH:
1461 if(common_area.flags.bootrom_present) {
1462 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1463 }
1464 usb_disable();
1465 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1466 for(;;);
1467 break;
1468
1469 case CMD_DEVICE_INFO: {
1470 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1471 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1472 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1473 break;
1474 }
1475 default:
1476 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1477 break;
1478 }
1479 }
1480
1481 void __attribute__((noreturn)) AppMain(void)
1482 {
1483 SpinDelay(100);
1484 clear_trace();
1485 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1486 /* Initialize common area */
1487 memset(&common_area, 0, sizeof(common_area));
1488 common_area.magic = COMMON_AREA_MAGIC;
1489 common_area.version = 1;
1490 }
1491 common_area.flags.osimage_present = 1;
1492
1493 LED_D_OFF();
1494 LED_C_OFF();
1495 LED_B_OFF();
1496 LED_A_OFF();
1497
1498 // Init USB device
1499 usb_enable();
1500
1501 // The FPGA gets its clock from us from PCK0 output, so set that up.
1502 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1503 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1504 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1505 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1506 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1507 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1508 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1509
1510 // Reset SPI
1511 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1512 // Reset SSC
1513 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1514
1515 // Load the FPGA image, which we have stored in our flash.
1516 // (the HF version by default)
1517 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1518
1519 StartTickCount();
1520
1521 #ifdef WITH_LCD
1522 LCDInit();
1523 #endif
1524
1525 byte_t rx[sizeof(UsbCommand)];
1526 size_t rx_len;
1527
1528 for(;;) {
1529 if (usb_poll()) {
1530 rx_len = usb_read(rx,sizeof(UsbCommand));
1531 if (rx_len) {
1532 UsbPacketReceived(rx,rx_len);
1533 }
1534 }
1535 WDT_HIT();
1536
1537 #ifdef WITH_LF_StandAlone
1538 #ifndef WITH_ISO14443a_StandAlone
1539 if (BUTTON_HELD(1000) > 0)
1540 SamyRun();
1541 #endif
1542 #endif
1543 #ifdef WITH_ISO14443a
1544 #ifdef WITH_ISO14443a_StandAlone
1545 if (BUTTON_HELD(1000) > 0)
1546 StandAloneMode14a();
1547 #endif
1548 #endif
1549 }
1550 }
Impressum, Datenschutz