]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Update lfops.c
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21 #include "fpgaloader.h"
22
23 /**
24 * Function to do a modulation and then get samples.
25 * @param delay_off
26 * @param period_0
27 * @param period_1
28 * @param command
29 */
30 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
31 {
32 // start timer
33 StartTicks();
34
35 // use lf config settings
36 sample_config *sc = getSamplingConfig();
37
38 // Make sure the tag is reset
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
41 WaitMS(2500);
42
43 // clear read buffer (after fpga bitstream loaded...)
44 BigBuf_Clear_keep_EM();
45
46 // power on
47 LFSetupFPGAForADC(sc->divisor, 1);
48
49 // And a little more time for the tag to fully power up
50 WaitMS(2000);
51 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
52 bool bitbang = delay_off == 0;
53 // now modulate the reader field
54
55 if (bitbang) {
56 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
57 uint8_t hack_cnt = 7;
58 if (period_0 < hack_cnt || period_1 < hack_cnt) {
59 DbpString("Warning periods cannot be less than 7us in bit bang mode");
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
61 LED_D_OFF();
62 return;
63 }
64
65 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
66 // leading to ~ 1 to 2 125khz samples extra in every off period
67 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
68 // but is this time different for every antenna or other hw builds??? more testing needed
69
70 // prime cmd_len to save time comparing strings while modulating
71 int cmd_len = 0;
72 while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
73 cmd_len++;
74
75 int counter = 0;
76 bool off = false;
77 for (counter = 0; counter < cmd_len; counter++) {
78 // if cmd = 0 then turn field off
79 if (command[counter] == '0') {
80 // if field already off leave alone (affects timing otherwise)
81 if (off == false) {
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
83 LED_D_OFF();
84 off = true;
85 }
86 // note we appear to take about 7us to switch over (or run the if statements/loop...)
87 WaitUS(period_0-hack_cnt);
88 // else if cmd = 1 then turn field on
89 } else {
90 // if field already on leave alone (affects timing otherwise)
91 if (off) {
92 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
93 LED_D_ON();
94 off = false;
95 }
96 // note we appear to take about 7us to switch over (or run the if statements/loop...)
97 WaitUS(period_1-hack_cnt);
98 }
99 }
100 } else { // old mode of cmd read using delay as off period
101 while(*command != '\0' && *command != ' ') {
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
103 LED_D_OFF();
104 WaitUS(delay_off);
105 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
106 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
107 LED_D_ON();
108 if(*(command++) == '0') {
109 WaitUS(period_0);
110 } else {
111 WaitUS(period_1);
112 }
113 }
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 LED_D_OFF();
116 WaitUS(delay_off);
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
118 }
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
121
122 // now do the read
123 DoAcquisition_config(false, 0);
124
125 // Turn off antenna
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
127 // tell client we are done
128 cmd_send(CMD_ACK,0,0,0,0,0);
129 }
130
131 /* blank r/w tag data stream
132 ...0000000000000000 01111111
133 1010101010101010101010101010101010101010101010101010101010101010
134 0011010010100001
135 01111111
136 101010101010101[0]000...
137
138 [5555fe852c5555555555555555fe0000]
139 */
140 void ReadTItag(void)
141 {
142 // some hardcoded initial params
143 // when we read a TI tag we sample the zerocross line at 2Mhz
144 // TI tags modulate a 1 as 16 cycles of 123.2Khz
145 // TI tags modulate a 0 as 16 cycles of 134.2Khz
146 #define FSAMPLE 2000000
147 #define FREQLO 123200
148 #define FREQHI 134200
149
150 signed char *dest = (signed char *)BigBuf_get_addr();
151 uint16_t n = BigBuf_max_traceLen();
152 // 128 bit shift register [shift3:shift2:shift1:shift0]
153 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
154
155 int i, cycles=0, samples=0;
156 // how many sample points fit in 16 cycles of each frequency
157 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
158 // when to tell if we're close enough to one freq or another
159 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
160
161 // TI tags charge at 134.2Khz
162 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
163 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
164
165 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
166 // connects to SSP_DIN and the SSP_DOUT logic level controls
167 // whether we're modulating the antenna (high)
168 // or listening to the antenna (low)
169 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
170
171 // get TI tag data into the buffer
172 AcquireTiType();
173
174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
175
176 for (i=0; i<n-1; i++) {
177 // count cycles by looking for lo to hi zero crossings
178 if ( (dest[i]<0) && (dest[i+1]>0) ) {
179 cycles++;
180 // after 16 cycles, measure the frequency
181 if (cycles>15) {
182 cycles=0;
183 samples=i-samples; // number of samples in these 16 cycles
184
185 // TI bits are coming to us lsb first so shift them
186 // right through our 128 bit right shift register
187 shift0 = (shift0>>1) | (shift1 << 31);
188 shift1 = (shift1>>1) | (shift2 << 31);
189 shift2 = (shift2>>1) | (shift3 << 31);
190 shift3 >>= 1;
191
192 // check if the cycles fall close to the number
193 // expected for either the low or high frequency
194 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
195 // low frequency represents a 1
196 shift3 |= (1<<31);
197 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
198 // high frequency represents a 0
199 } else {
200 // probably detected a gay waveform or noise
201 // use this as gaydar or discard shift register and start again
202 shift3 = shift2 = shift1 = shift0 = 0;
203 }
204 samples = i;
205
206 // for each bit we receive, test if we've detected a valid tag
207
208 // if we see 17 zeroes followed by 6 ones, we might have a tag
209 // remember the bits are backwards
210 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
211 // if start and end bytes match, we have a tag so break out of the loop
212 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
213 cycles = 0xF0B; //use this as a flag (ugly but whatever)
214 break;
215 }
216 }
217 }
218 }
219 }
220
221 // if flag is set we have a tag
222 if (cycles!=0xF0B) {
223 DbpString("Info: No valid tag detected.");
224 } else {
225 // put 64 bit data into shift1 and shift0
226 shift0 = (shift0>>24) | (shift1 << 8);
227 shift1 = (shift1>>24) | (shift2 << 8);
228
229 // align 16 bit crc into lower half of shift2
230 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
231
232 // if r/w tag, check ident match
233 if (shift3 & (1<<15) ) {
234 DbpString("Info: TI tag is rewriteable");
235 // only 15 bits compare, last bit of ident is not valid
236 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
237 DbpString("Error: Ident mismatch!");
238 } else {
239 DbpString("Info: TI tag ident is valid");
240 }
241 } else {
242 DbpString("Info: TI tag is readonly");
243 }
244
245 // WARNING the order of the bytes in which we calc crc below needs checking
246 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
247 // bytes in reverse or something
248 // calculate CRC
249 uint32_t crc=0;
250
251 crc = update_crc16(crc, (shift0)&0xff);
252 crc = update_crc16(crc, (shift0>>8)&0xff);
253 crc = update_crc16(crc, (shift0>>16)&0xff);
254 crc = update_crc16(crc, (shift0>>24)&0xff);
255 crc = update_crc16(crc, (shift1)&0xff);
256 crc = update_crc16(crc, (shift1>>8)&0xff);
257 crc = update_crc16(crc, (shift1>>16)&0xff);
258 crc = update_crc16(crc, (shift1>>24)&0xff);
259
260 Dbprintf("Info: Tag data: %x%08x, crc=%x",
261 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
262 if (crc != (shift2&0xffff)) {
263 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
264 } else {
265 DbpString("Info: CRC is good");
266 }
267 }
268 }
269
270 void WriteTIbyte(uint8_t b)
271 {
272 int i = 0;
273
274 // modulate 8 bits out to the antenna
275 for (i=0; i<8; i++)
276 {
277 if (b&(1<<i)) {
278 // stop modulating antenna
279 LOW(GPIO_SSC_DOUT);
280 SpinDelayUs(1000);
281 // modulate antenna
282 HIGH(GPIO_SSC_DOUT);
283 SpinDelayUs(1000);
284 } else {
285 // stop modulating antenna
286 LOW(GPIO_SSC_DOUT);
287 SpinDelayUs(300);
288 // modulate antenna
289 HIGH(GPIO_SSC_DOUT);
290 SpinDelayUs(1700);
291 }
292 }
293 }
294
295 void AcquireTiType(void)
296 {
297 int i, j, n;
298 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
299 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
300 #define TIBUFLEN 1250
301
302 // clear buffer
303 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
304 BigBuf_Clear_ext(false);
305
306 // Set up the synchronous serial port
307 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
308 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
309
310 // steal this pin from the SSP and use it to control the modulation
311 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
312 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
313
314 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
315 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
316
317 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
318 // 48/2 = 24 MHz clock must be divided by 12
319 AT91C_BASE_SSC->SSC_CMR = 12;
320
321 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
322 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
323 AT91C_BASE_SSC->SSC_TCMR = 0;
324 AT91C_BASE_SSC->SSC_TFMR = 0;
325
326 LED_D_ON();
327
328 // modulate antenna
329 HIGH(GPIO_SSC_DOUT);
330
331 // Charge TI tag for 50ms.
332 SpinDelay(50);
333
334 // stop modulating antenna and listen
335 LOW(GPIO_SSC_DOUT);
336
337 LED_D_OFF();
338
339 i = 0;
340 for(;;) {
341 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
342 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
343 i++; if(i >= TIBUFLEN) break;
344 }
345 WDT_HIT();
346 }
347
348 // return stolen pin to SSP
349 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
350 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
351
352 char *dest = (char *)BigBuf_get_addr();
353 n = TIBUFLEN*32;
354 // unpack buffer
355 for (i=TIBUFLEN-1; i>=0; i--) {
356 for (j=0; j<32; j++) {
357 if(BigBuf[i] & (1 << j)) {
358 dest[--n] = 1;
359 } else {
360 dest[--n] = -1;
361 }
362 }
363 }
364 }
365
366 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
367 // if crc provided, it will be written with the data verbatim (even if bogus)
368 // if not provided a valid crc will be computed from the data and written.
369 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
370 {
371 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
372 if(crc == 0) {
373 crc = update_crc16(crc, (idlo)&0xff);
374 crc = update_crc16(crc, (idlo>>8)&0xff);
375 crc = update_crc16(crc, (idlo>>16)&0xff);
376 crc = update_crc16(crc, (idlo>>24)&0xff);
377 crc = update_crc16(crc, (idhi)&0xff);
378 crc = update_crc16(crc, (idhi>>8)&0xff);
379 crc = update_crc16(crc, (idhi>>16)&0xff);
380 crc = update_crc16(crc, (idhi>>24)&0xff);
381 }
382 Dbprintf("Writing to tag: %x%08x, crc=%x",
383 (unsigned int) idhi, (unsigned int) idlo, crc);
384
385 // TI tags charge at 134.2Khz
386 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
387 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
388 // connects to SSP_DIN and the SSP_DOUT logic level controls
389 // whether we're modulating the antenna (high)
390 // or listening to the antenna (low)
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
392 LED_A_ON();
393
394 // steal this pin from the SSP and use it to control the modulation
395 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
397
398 // writing algorithm:
399 // a high bit consists of a field off for 1ms and field on for 1ms
400 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
401 // initiate a charge time of 50ms (field on) then immediately start writing bits
402 // start by writing 0xBB (keyword) and 0xEB (password)
403 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
404 // finally end with 0x0300 (write frame)
405 // all data is sent lsb firts
406 // finish with 15ms programming time
407
408 // modulate antenna
409 HIGH(GPIO_SSC_DOUT);
410 SpinDelay(50); // charge time
411
412 WriteTIbyte(0xbb); // keyword
413 WriteTIbyte(0xeb); // password
414 WriteTIbyte( (idlo )&0xff );
415 WriteTIbyte( (idlo>>8 )&0xff );
416 WriteTIbyte( (idlo>>16)&0xff );
417 WriteTIbyte( (idlo>>24)&0xff );
418 WriteTIbyte( (idhi )&0xff );
419 WriteTIbyte( (idhi>>8 )&0xff );
420 WriteTIbyte( (idhi>>16)&0xff );
421 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
422 WriteTIbyte( (crc )&0xff ); // crc lo
423 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
424 WriteTIbyte(0x00); // write frame lo
425 WriteTIbyte(0x03); // write frame hi
426 HIGH(GPIO_SSC_DOUT);
427 SpinDelay(50); // programming time
428
429 LED_A_OFF();
430
431 // get TI tag data into the buffer
432 AcquireTiType();
433
434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
435 DbpString("Now use `lf ti read` to check");
436 }
437
438 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
439 {
440 int i;
441 uint8_t *tab = BigBuf_get_addr();
442
443 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
444 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
445 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
446
447 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
448
449 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
450 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
451
452 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
453 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
454
455 i = 0;
456 for(;;) {
457 //wait until SSC_CLK goes HIGH
458 int ii = 0;
459 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
460 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
461 if ( ii == 1000 ) {
462 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
464 DbpString("Stopped");
465 return;
466 }
467 ii=0;
468 }
469 WDT_HIT();
470 ii++;
471 }
472 if (ledcontrol)
473 LED_D_ON();
474
475 if(tab[i])
476 OPEN_COIL();
477 else
478 SHORT_COIL();
479
480 if (ledcontrol)
481 LED_D_OFF();
482 ii=0;
483 //wait until SSC_CLK goes LOW
484 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
485 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
486 if ( ii == 1000 ) {
487 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
488 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
489 DbpString("Stopped");
490 return;
491 }
492 ii=0;
493 }
494 WDT_HIT();
495 ii++;
496 }
497
498 i++;
499 if(i == period) {
500
501 i = 0;
502 if (gap) {
503 SHORT_COIL();
504 SpinDelayUs(gap);
505 }
506 }
507
508 }
509 }
510
511 #define DEBUG_FRAME_CONTENTS 1
512 void SimulateTagLowFrequencyBidir(int divisor, int t0)
513 {
514 }
515
516 // compose fc/8 fc/10 waveform (FSK2)
517 static void fc(int c, int *n)
518 {
519 uint8_t *dest = BigBuf_get_addr();
520 int idx;
521
522 // for when we want an fc8 pattern every 4 logical bits
523 if(c==0) {
524 dest[((*n)++)]=1;
525 dest[((*n)++)]=1;
526 dest[((*n)++)]=1;
527 dest[((*n)++)]=1;
528 dest[((*n)++)]=0;
529 dest[((*n)++)]=0;
530 dest[((*n)++)]=0;
531 dest[((*n)++)]=0;
532 }
533
534 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
535 if(c==8) {
536 for (idx=0; idx<6; idx++) {
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=1;
540 dest[((*n)++)]=1;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 }
546 }
547
548 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
549 if(c==10) {
550 for (idx=0; idx<5; idx++) {
551 dest[((*n)++)]=1;
552 dest[((*n)++)]=1;
553 dest[((*n)++)]=1;
554 dest[((*n)++)]=1;
555 dest[((*n)++)]=1;
556 dest[((*n)++)]=0;
557 dest[((*n)++)]=0;
558 dest[((*n)++)]=0;
559 dest[((*n)++)]=0;
560 dest[((*n)++)]=0;
561 }
562 }
563 }
564 // compose fc/X fc/Y waveform (FSKx)
565 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
566 {
567 uint8_t *dest = BigBuf_get_addr();
568 uint8_t halfFC = fc/2;
569 uint8_t wavesPerClock = clock/fc;
570 uint8_t mod = clock % fc; //modifier
571 uint8_t modAdj = fc/mod; //how often to apply modifier
572 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
573 // loop through clock - step field clock
574 for (uint8_t idx=0; idx < wavesPerClock; idx++){
575 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
576 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
577 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
578 *n += fc;
579 }
580 if (mod>0) (*modCnt)++;
581 if ((mod>0) && modAdjOk){ //fsk2
582 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
583 memset(dest+(*n), 0, fc-halfFC);
584 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
585 *n += fc;
586 }
587 }
588 if (mod>0 && !modAdjOk){ //fsk1
589 memset(dest+(*n), 0, mod-(mod/2));
590 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
591 *n += mod;
592 }
593 }
594
595 // prepare a waveform pattern in the buffer based on the ID given then
596 // simulate a HID tag until the button is pressed
597 void CmdHIDsimTAG(int hi2, int hi, int lo, int ledcontrol)
598 {
599 int n=0, i=0;
600 /*
601 HID tag bitstream format
602 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
603 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
604 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
605 A fc8 is inserted before every 4 bits
606 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
607 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
608 */
609
610 if (hi2>0x0FFFFFFF) {
611 DbpString("Tags can only have 44 or 84 bits. - USE lf simfsk for larger tags");
612 return;
613 }
614 // set LF so we don't kill the bigbuf we are setting with simulation data.
615 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
616
617 fc(0,&n);
618 // special start of frame marker containing invalid bit sequences
619 fc(8, &n); fc(8, &n); // invalid
620 fc(8, &n); fc(10, &n); // logical 0
621 fc(10, &n); fc(10, &n); // invalid
622 fc(8, &n); fc(10, &n); // logical 0
623
624 WDT_HIT();
625 if (hi2 > 0 || hi > 0xFFF){
626 // manchester encode bits 91 to 64 (91-84 are part of the header)
627 for (i=27; i>=0; i--) {
628 if ((i%4)==3) fc(0,&n);
629 if ((hi2>>i)&1) {
630 fc(10, &n); fc(8, &n); // low-high transition
631 } else {
632 fc(8, &n); fc(10, &n); // high-low transition
633 }
634 }
635 WDT_HIT();
636 // manchester encode bits 63 to 32
637 for (i=31; i>=0; i--) {
638 if ((i%4)==3) fc(0,&n);
639 if ((hi>>i)&1) {
640 fc(10, &n); fc(8, &n); // low-high transition
641 } else {
642 fc(8, &n); fc(10, &n); // high-low transition
643 }
644 }
645 } else {
646 // manchester encode bits 43 to 32
647 for (i=11; i>=0; i--) {
648 if ((i%4)==3) fc(0,&n);
649 if ((hi>>i)&1) {
650 fc(10, &n); fc(8, &n); // low-high transition
651 } else {
652 fc(8, &n); fc(10, &n); // high-low transition
653 }
654 }
655 }
656
657 WDT_HIT();
658 // manchester encode bits 31 to 0
659 for (i=31; i>=0; i--) {
660 if ((i%4)==3) fc(0,&n);
661 if ((lo>>i)&1) {
662 fc(10, &n); fc(8, &n); // low-high transition
663 } else {
664 fc(8, &n); fc(10, &n); // high-low transition
665 }
666 }
667
668 if (ledcontrol)
669 LED_A_ON();
670 SimulateTagLowFrequency(n, 0, ledcontrol);
671
672 if (ledcontrol)
673 LED_A_OFF();
674 }
675
676 // prepare a waveform pattern in the buffer based on the ID given then
677 // simulate a FSK tag until the button is pressed
678 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
679 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
680 {
681 int ledcontrol=1;
682 int n=0, i=0;
683 uint8_t fcHigh = arg1 >> 8;
684 uint8_t fcLow = arg1 & 0xFF;
685 uint16_t modCnt = 0;
686 uint8_t clk = arg2 & 0xFF;
687 uint8_t invert = (arg2 >> 8) & 1;
688
689 // set LF so we don't kill the bigbuf we are setting with simulation data.
690 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
691
692 for (i=0; i<size; i++){
693 if (BitStream[i] == invert){
694 fcAll(fcLow, &n, clk, &modCnt);
695 } else {
696 fcAll(fcHigh, &n, clk, &modCnt);
697 }
698 }
699 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
700 /*Dbprintf("DEBUG: First 32:");
701 uint8_t *dest = BigBuf_get_addr();
702 i=0;
703 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 i+=16;
705 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
706 */
707 if (ledcontrol)
708 LED_A_ON();
709
710 SimulateTagLowFrequency(n, 0, ledcontrol);
711
712 if (ledcontrol)
713 LED_A_OFF();
714 }
715
716 // compose ask waveform for one bit(ASK)
717 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
718 {
719 uint8_t *dest = BigBuf_get_addr();
720 uint8_t halfClk = clock/2;
721 // c = current bit 1 or 0
722 if (manchester==1){
723 memset(dest+(*n), c, halfClk);
724 memset(dest+(*n) + halfClk, c^1, halfClk);
725 } else {
726 memset(dest+(*n), c, clock);
727 }
728 *n += clock;
729 }
730
731 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
732 {
733 uint8_t *dest = BigBuf_get_addr();
734 uint8_t halfClk = clock/2;
735 if (c){
736 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
737 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
738 } else {
739 memset(dest+(*n), c ^ *phase, clock);
740 *phase ^= 1;
741 }
742 *n += clock;
743 }
744
745 static void stAskSimBit(int *n, uint8_t clock) {
746 uint8_t *dest = BigBuf_get_addr();
747 uint8_t halfClk = clock/2;
748 //ST = .5 high .5 low 1.5 high .5 low 1 high
749 memset(dest+(*n), 1, halfClk);
750 memset(dest+(*n) + halfClk, 0, halfClk);
751 memset(dest+(*n) + clock, 1, clock + halfClk);
752 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
753 memset(dest+(*n) + clock*3, 1, clock);
754 *n += clock*4;
755 }
756
757 // args clock, ask/man or askraw, invert, transmission separator
758 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
759 {
760 int ledcontrol = 1;
761 int n=0, i=0;
762 uint8_t clk = (arg1 >> 8) & 0xFF;
763 uint8_t encoding = arg1 & 0xFF;
764 uint8_t separator = arg2 & 1;
765 uint8_t invert = (arg2 >> 8) & 1;
766
767 // set LF so we don't kill the bigbuf we are setting with simulation data.
768 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
769
770 if (encoding==2){ //biphase
771 uint8_t phase=0;
772 for (i=0; i<size; i++){
773 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
774 }
775 if (phase==1) { //run a second set inverted to keep phase in check
776 for (i=0; i<size; i++){
777 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
778 }
779 }
780 } else { // ask/manchester || ask/raw
781 for (i=0; i<size; i++){
782 askSimBit(BitStream[i]^invert, &n, clk, encoding);
783 }
784 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
785 for (i=0; i<size; i++){
786 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
787 }
788 }
789 }
790 if (separator==1 && encoding == 1)
791 stAskSimBit(&n, clk);
792 else if (separator==1)
793 Dbprintf("sorry but separator option not yet available");
794
795 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
796 //DEBUG
797 //Dbprintf("First 32:");
798 //uint8_t *dest = BigBuf_get_addr();
799 //i=0;
800 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
801 //i+=16;
802 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
803
804 if (ledcontrol) LED_A_ON();
805 SimulateTagLowFrequency(n, 0, ledcontrol);
806 if (ledcontrol) LED_A_OFF();
807 }
808
809 //carrier can be 2,4 or 8
810 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
811 {
812 uint8_t *dest = BigBuf_get_addr();
813 uint8_t halfWave = waveLen/2;
814 //uint8_t idx;
815 int i = 0;
816 if (phaseChg){
817 // write phase change
818 memset(dest+(*n), *curPhase^1, halfWave);
819 memset(dest+(*n) + halfWave, *curPhase, halfWave);
820 *n += waveLen;
821 *curPhase ^= 1;
822 i += waveLen;
823 }
824 //write each normal clock wave for the clock duration
825 for (; i < clk; i+=waveLen){
826 memset(dest+(*n), *curPhase, halfWave);
827 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
828 *n += waveLen;
829 }
830 }
831
832 // args clock, carrier, invert,
833 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
834 {
835 int ledcontrol=1;
836 int n=0, i=0;
837 uint8_t clk = arg1 >> 8;
838 uint8_t carrier = arg1 & 0xFF;
839 uint8_t invert = arg2 & 0xFF;
840 uint8_t curPhase = 0;
841 // set LF so we don't kill the bigbuf we are setting with simulation data.
842 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
843
844 for (i=0; i<size; i++){
845 if (BitStream[i] == curPhase){
846 pskSimBit(carrier, &n, clk, &curPhase, false);
847 } else {
848 pskSimBit(carrier, &n, clk, &curPhase, true);
849 }
850 }
851 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
852 //Dbprintf("DEBUG: First 32:");
853 //uint8_t *dest = BigBuf_get_addr();
854 //i=0;
855 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
856 //i+=16;
857 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
858
859 if (ledcontrol) LED_A_ON();
860 SimulateTagLowFrequency(n, 0, ledcontrol);
861 if (ledcontrol) LED_A_OFF();
862 }
863
864 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
865 void CmdHIDdemodFSK(int findone, int *high2, int *high, int *low, int ledcontrol)
866 {
867 uint8_t *dest = BigBuf_get_addr();
868 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
869 size_t size;
870 uint32_t hi2=0, hi=0, lo=0;
871 int idx=0;
872 int dummyIdx = 0;
873 // Configure to go in 125Khz listen mode
874 LFSetupFPGAForADC(95, true);
875
876 //clear read buffer
877 BigBuf_Clear_keep_EM();
878
879 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
880 WDT_HIT();
881 if (ledcontrol) LED_A_ON();
882
883 DoAcquisition_default(-1,true);
884 // FSK demodulator
885 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
886 size = 50*128*2; //big enough to catch 2 sequences of largest format
887 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
888
889 if (idx>0 && lo>0 && (size==96 || size==192)){
890 uint8_t bitlen = 0;
891 uint32_t fc = 0;
892 uint32_t cardnum = 0;
893 bool decoded = false;
894
895 // go over previously decoded manchester data and decode into usable tag ID
896 if ((hi2 & 0x000FFFF) != 0){ //extra large HID tags 88/192 bits
897 uint32_t bp = hi2 & 0x000FFFFF;
898 bitlen = 63;
899 while (bp > 0) {
900 bp = bp >> 1;
901 bitlen++;
902 }
903 } else if ((hi >> 6) > 0) {
904 uint32_t bp = hi;
905 bitlen = 31;
906 while (bp > 0) {
907 bp = bp >> 1;
908 bitlen++;
909 }
910 } else if (((hi >> 5) & 1) == 0) {
911 bitlen = 37;
912 } else if ((hi & 0x0000001F) > 0 ) {
913 uint32_t bp = (hi & 0x0000001F);
914 bitlen = 31;
915 while (bp > 0) {
916 bp = bp >> 1;
917 bitlen++;
918 }
919 } else {
920 uint32_t bp = lo;
921 bitlen = 0;
922 while (bp > 0) {
923 bp = bp >> 1;
924 bitlen++;
925 }
926 }
927 switch (bitlen){
928 case 26:
929 cardnum = (lo>>1)&0xFFFF;
930 fc = (lo>>17)&0xFF;
931 decoded = true;
932 break;
933 case 35:
934 cardnum = (lo>>1)&0xFFFFF;
935 fc = ((hi&1)<<11)|(lo>>21);
936 decoded = true;
937 break;
938 }
939
940 if (hi2 != 0) //extra large HID tags 88/192 bits
941 Dbprintf("TAG ID: %x%08x%08x (%d)",
942 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
943 else
944 Dbprintf("TAG ID: %x%08x (%d)",
945 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
946
947 if (decoded)
948 Dbprintf("Format Len: %dbits - FC: %d - Card: %d",
949 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
950
951 if (findone){
952 if (ledcontrol) LED_A_OFF();
953 *high2 = hi2;
954 *high = hi;
955 *low = lo;
956 break;
957 }
958 // reset
959 }
960 hi2 = hi = lo = idx = 0;
961 WDT_HIT();
962 }
963
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
965 DbpString("Stopped");
966 if (ledcontrol) LED_A_OFF();
967 }
968
969 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
970 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
971 {
972 uint8_t *dest = BigBuf_get_addr();
973 size_t size;
974 int idx=0, dummyIdx=0;
975 //clear read buffer
976 BigBuf_Clear_keep_EM();
977 // Configure to go in 125Khz listen mode
978 LFSetupFPGAForADC(95, true);
979
980 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
981
982 WDT_HIT();
983 if (ledcontrol) LED_A_ON();
984
985 DoAcquisition_default(-1,true);
986 // FSK demodulator
987 size = 50*128*2; //big enough to catch 2 sequences of largest format
988 idx = AWIDdemodFSK(dest, &size, &dummyIdx);
989
990 if (idx<=0 || size!=96) continue;
991 // Index map
992 // 0 10 20 30 40 50 60
993 // | | | | | | |
994 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
995 // -----------------------------------------------------------------------------
996 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
997 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
998 // |---26 bit---| |-----117----||-------------142-------------|
999 // b = format bit len, o = odd parity of last 3 bits
1000 // f = facility code, c = card number
1001 // w = wiegand parity
1002 // (26 bit format shown)
1003
1004 //get raw ID before removing parities
1005 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
1006 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
1007 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
1008
1009 size = removeParity(dest, idx+8, 4, 1, 88);
1010 if (size != 66) continue;
1011 // ok valid card found!
1012
1013 // Index map
1014 // 0 10 20 30 40 50 60
1015 // | | | | | | |
1016 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
1017 // -----------------------------------------------------------------------------
1018 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
1019 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1020 // |26 bit| |-117--| |-----142------|
1021 // b = format bit len, o = odd parity of last 3 bits
1022 // f = facility code, c = card number
1023 // w = wiegand parity
1024 // (26 bit format shown)
1025
1026 uint32_t fc = 0;
1027 uint32_t cardnum = 0;
1028 uint32_t code1 = 0;
1029 uint32_t code2 = 0;
1030 uint8_t fmtLen = bytebits_to_byte(dest,8);
1031 if (fmtLen==26){
1032 fc = bytebits_to_byte(dest+9, 8);
1033 cardnum = bytebits_to_byte(dest+17, 16);
1034 code1 = bytebits_to_byte(dest+8,fmtLen);
1035 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
1036 } else {
1037 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
1038 if (fmtLen>32){
1039 code1 = bytebits_to_byte(dest+8,fmtLen-32);
1040 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
1041 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
1042 } else{
1043 code1 = bytebits_to_byte(dest+8,fmtLen);
1044 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
1045 }
1046 }
1047 if (findone){
1048 if (ledcontrol) LED_A_OFF();
1049 break;
1050 }
1051 // reset
1052 idx = 0;
1053 WDT_HIT();
1054 }
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1056 DbpString("Stopped");
1057 if (ledcontrol) LED_A_OFF();
1058 }
1059
1060 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
1061 {
1062 uint8_t *dest = BigBuf_get_addr();
1063
1064 size_t size=0, idx=0;
1065 int clk=0, invert=0, errCnt=0, maxErr=20;
1066 uint32_t hi=0;
1067 uint64_t lo=0;
1068 //clear read buffer
1069 BigBuf_Clear_keep_EM();
1070 // Configure to go in 125Khz listen mode
1071 LFSetupFPGAForADC(95, true);
1072
1073 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1074
1075 WDT_HIT();
1076 if (ledcontrol) LED_A_ON();
1077
1078 DoAcquisition_default(-1,true);
1079 size = BigBuf_max_traceLen();
1080 //askdemod and manchester decode
1081 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
1082 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
1083 WDT_HIT();
1084
1085 if (errCnt<0) continue;
1086
1087 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
1088 if (errCnt){
1089 if (size>64){
1090 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1091 hi,
1092 (uint32_t)(lo>>32),
1093 (uint32_t)lo,
1094 (uint32_t)(lo&0xFFFF),
1095 (uint32_t)((lo>>16LL) & 0xFF),
1096 (uint32_t)(lo & 0xFFFFFF));
1097 } else {
1098 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1099 (uint32_t)(lo>>32),
1100 (uint32_t)lo,
1101 (uint32_t)(lo&0xFFFF),
1102 (uint32_t)((lo>>16LL) & 0xFF),
1103 (uint32_t)(lo & 0xFFFFFF));
1104 }
1105
1106 if (findone){
1107 if (ledcontrol) LED_A_OFF();
1108 *high=lo>>32;
1109 *low=lo & 0xFFFFFFFF;
1110 break;
1111 }
1112 }
1113 WDT_HIT();
1114 hi = lo = size = idx = 0;
1115 clk = invert = errCnt = 0;
1116 }
1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1118 DbpString("Stopped");
1119 if (ledcontrol) LED_A_OFF();
1120 }
1121
1122 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1123 {
1124 uint8_t *dest = BigBuf_get_addr();
1125 int idx=0;
1126 uint32_t code=0, code2=0;
1127 uint8_t version=0;
1128 uint8_t facilitycode=0;
1129 uint16_t number=0;
1130 int dummyIdx=0;
1131 //clear read buffer
1132 BigBuf_Clear_keep_EM();
1133 // Configure to go in 125Khz listen mode
1134 LFSetupFPGAForADC(95, true);
1135
1136 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1137 WDT_HIT();
1138 if (ledcontrol) LED_A_ON();
1139 DoAcquisition_default(-1,true);
1140 //fskdemod and get start index
1141 WDT_HIT();
1142 idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
1143 if (idx<0) continue;
1144 //valid tag found
1145
1146 //Index map
1147 //0 10 20 30 40 50 60
1148 //| | | | | | |
1149 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1150 //-----------------------------------------------------------------------------
1151 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1152 //
1153 //XSF(version)facility:codeone+codetwo
1154 //Handle the data
1155 if(findone){ //only print binary if we are doing one
1156 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1157 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1158 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1159 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1160 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1161 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1162 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1163 }
1164 code = bytebits_to_byte(dest+idx,32);
1165 code2 = bytebits_to_byte(dest+idx+32,32);
1166 version = bytebits_to_byte(dest+idx+27,8); //14,4
1167 facilitycode = bytebits_to_byte(dest+idx+18,8);
1168 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1169
1170 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1171 // if we're only looking for one tag
1172 if (findone){
1173 if (ledcontrol) LED_A_OFF();
1174 //LED_A_OFF();
1175 *high=code;
1176 *low=code2;
1177 break;
1178 }
1179 code=code2=0;
1180 version=facilitycode=0;
1181 number=0;
1182 idx=0;
1183
1184 WDT_HIT();
1185 }
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1187 DbpString("Stopped");
1188 if (ledcontrol) LED_A_OFF();
1189 }
1190
1191 /*------------------------------
1192 * T5555/T5557/T5567/T5577 routines
1193 *------------------------------
1194 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1195 *
1196 * Relevant communication times in microsecond
1197 * To compensate antenna falling times shorten the write times
1198 * and enlarge the gap ones.
1199 * Q5 tags seems to have issues when these values changes.
1200 */
1201
1202 /*
1203 // Original Timings for reference
1204
1205 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1206 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1207 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1208 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1209
1210 */
1211 /* Q5 timing datasheet:
1212 * Type | MIN | Typical | Max |
1213 * Start_Gap | 10*8 | ? | 50*8 |
1214 * Write_Gap Normal mode | 8*8 | 14*8 | 20*8 |
1215 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1216 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1217 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1218 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1219 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1220 */
1221
1222 /* T5557 timing datasheet:
1223 * Type | MIN | Typical | Max |
1224 * Start_Gap | 10*8 | ? | 50*8 |
1225 * Write_Gap Normal mode | 8*8 |50-150us | 30*8 |
1226 * Write_Gap Fast Mode | 8*8 | ? | 20*8 |
1227 * Write_0 Normal mode | 16*8 | 24*8 | 31*8 |
1228 * Write_1 Normal mode | 48*8 | 54*8 | 63*8 |
1229 * Write_0 Fast Mode | 8*8 | 12*8 | 15*8 |
1230 * Write_1 Fast Mode | 24*8 | 28*8 | 31*8 |
1231 */
1232
1233 /* T5577C timing datasheet for Fixed-Bit-Length protocol (defualt):
1234 * Type | MIN | Typical | Max |
1235 * Start_Gap | 8*8 | 15*8 | 50*8 |
1236 * Write_Gap Normal mode | 8*8 | 10*8 | 20*8 |
1237 * Write_Gap Fast Mode | 8*8 | 10*8 | 20*8 |
1238 * Write_0 Normal mode | 16*8 | 24*8 | 32*8 |
1239 * Write_1 Normal mode | 48*8 | 56*8 | 64*8 |
1240 * Write_0 Fast Mode | 8*8 | 12*8 | 16*8 |
1241 * Write_1 Fast Mode | 24*8 | 28*8 | 32*8 |
1242 */
1243 /*
1244 //note startgap must be sent after tag has been powered up for more than 3ms (per T5557 ds)
1245 #define START_GAP 31*8 //31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) - T5557: 10*8 to 50*8
1246 #define WRITE_GAP 20*8 //20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) - T5557: 8*8 to 30*8 typ 50-150us
1247 #define WRITE_0 18*8 //18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) - T5557: 16*8 to 31*8 typ 24*8
1248 #define WRITE_1 50*8 //50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) - T5557: 48*8 to 63*8 typ 54*8 432 for T55x7; 448 for E5550
1249
1250 #define READ_GAP 15*8
1251 */
1252
1253 // Structure to hold Timing values. In future will be simplier to add user changable timings.
1254 typedef struct {
1255 uint16_t START_GAP;
1256 uint16_t WRITE_GAP;
1257 uint16_t WRITE_0;
1258 uint16_t WRITE_1;
1259 uint16_t WRITE_2;
1260 uint16_t WRITE_3;
1261 uint16_t READ_GAP;
1262 } T55xx_Timing;
1263
1264 // Set Initial/Default Values. Note: *8 can occure when used. This should keep things simplier here.
1265 T55xx_Timing T55xx_Timing_FixedBit = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1266 T55xx_Timing T55xx_Timing_LLR = { 31 * 8 , 20 * 8 , 18 * 8 , 50 * 8 , 0 , 0 , 15 * 8 };
1267 T55xx_Timing T55xx_Timing_Leading0 = { 31 * 8 , 20 * 8 , 18 * 8 , 40 * 8 , 0 , 0 , 15 * 8 };
1268 T55xx_Timing T55xx_Timing_1of4 = { 31 * 8 , 20 * 8 , 18 * 8 , 34 * 8 , 50 * 8 , 66 * 8 , 15 * 8 };
1269
1270 // Some defines for readability
1271 #define T55xx_DLMode_Fixed 0 // Default Mode
1272 #define T55xx_DLMode_LLR 1 // Long Leading Reference
1273 #define T55xx_DLMode_Leading0 2 // Leading Zero
1274 #define T55xx_DLMode_1of4 3 // 1 of 4
1275 #define T55xx_LongLeadingReference 4 // Value to tell Write Bit to send long reference
1276 // Macro for code readability
1277 #define BitStream_Byte(X) ((X) >> 3)
1278 #define BitStream_Bit(X) ((X) & 7)
1279
1280
1281 void TurnReadLFOn(int delay) {
1282 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1283 // Give it a bit of time for the resonant antenna to settle.
1284 WaitUS(delay); //155*8 //50*8
1285 }
1286
1287 // Write one bit to card
1288 void T55xxWriteBit(int bit, T55xx_Timing *Timings) {
1289
1290 // If bit = 4 Send Long Leading Reference which is 138 + WRITE_0
1291 // Dbprintf ("Bits : %d",bit);
1292 switch (bit){
1293 case 0 : TurnReadLFOn(Timings->WRITE_0); break; // Send bit 0/00
1294 case 1 : TurnReadLFOn(Timings->WRITE_1); break; // Send bit 1/01
1295 case 2 : TurnReadLFOn(Timings->WRITE_2); break; // Send bits 10
1296 case 3 : TurnReadLFOn(Timings->WRITE_3); break; // Send bits 11
1297 case 4 : TurnReadLFOn(Timings->WRITE_0 + (136 * 8)); break; // Send Long Leading Reference
1298 }
1299 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1300 WaitUS(Timings->WRITE_GAP);
1301 }
1302
1303 // Function to abstract an Arbitrary length byte array to store bit pattern.
1304 // bit_array - Array to hold data/bit pattern
1305 // start_offset - bit location to start storing new bits.
1306 // data - upto 32 bits of data to store
1307 // num_bits - how many bits (low x bits of data) Max 32 bits at a time
1308 // max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
1309 // returns "Next" bit offset / bits stored (for next store)
1310 //int T55xx_SetBits (uint8_t *bit_array, int start_offset, uint32_t data , int num_bits, int max_len)
1311 int T55xx_SetBits (uint8_t *BitStream, uint8_t start_offset, uint32_t data , uint8_t num_bits, uint8_t max_len)
1312 {
1313 int8_t offset;
1314 int8_t NextOffset = start_offset;
1315
1316 // Check if data will fit.
1317 if ((start_offset + num_bits) <= (max_len*8)) {
1318 // Loop through the data and store
1319 for (offset = (num_bits-1); offset >= 0; offset--) {
1320
1321 if ((data >> offset) & 1) BitStream[BitStream_Byte(NextOffset)] |= (1 << BitStream_Bit(NextOffset)); // Set the bit to 1
1322 else BitStream[BitStream_Byte(NextOffset)] &= (0xff ^ (1 << BitStream_Bit(NextOffset))); // Set the bit to 0
1323
1324 NextOffset++;
1325 }
1326 }
1327 else{
1328 // Note: This should never happen unless some code changes cause it.
1329 // So short message for coders when testing.
1330 Dbprintf ("T55 too many bits");
1331 }
1332 return NextOffset;
1333 }
1334
1335 // Send one downlink command to the card
1336 void T55xx_SendCMD (uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1337
1338 /*
1339 arg bits
1340 xxxxxxx1 0x01 PwdMode
1341 xxxxxx1x 0x02 Page
1342 xxxxx1xx 0x04 testMode
1343 xxx11xxx 0x18 downlink mode
1344 xx1xxxxx 0x20 !reg_readmode
1345 x1xxxxxx 0x40 called for a read, so no data packet
1346 1xxxxxxx 0x80 reset
1347
1348 */
1349 bool PwdMode = ((arg & 0x01) == 0x01);
1350 bool Page = (arg & 0x02);
1351 bool testMode = ((arg & 0x04) == 0x04);
1352 uint8_t downlink_mode = (arg >> 3) & 0x03;
1353 bool reg_readmode = ((arg & 0x20) == 0x20);
1354 bool read_cmd = ((arg & 0x40) == 0x40);
1355 bool reset = (arg & 0x80);
1356
1357 uint8_t i = 0;
1358 uint8_t BitStream[10]; // Max Downlink Command size ~74 bits, so 10 bytes (80 bits)
1359 uint8_t BitStreamLen;
1360 T55xx_Timing *Timing;
1361 uint8_t SendBits;
1362
1363 // Assigning Downlink Timeing for write
1364 switch (downlink_mode)
1365 {
1366 case T55xx_DLMode_Fixed : Timing = &T55xx_Timing_FixedBit; break;
1367 case T55xx_DLMode_LLR : Timing = &T55xx_Timing_LLR; break;
1368 case T55xx_DLMode_Leading0 : Timing = &T55xx_Timing_Leading0; break;
1369 case T55xx_DLMode_1of4 : Timing = &T55xx_Timing_1of4; break;
1370 default:
1371 Timing = &T55xx_Timing_FixedBit;
1372 }
1373
1374 // Build Bit Stream to send.
1375 memset (BitStream,0x00,sizeof(BitStream));
1376
1377 BitStreamLen = 0;
1378
1379 // Add Leading 0 and 1 of 4 reference bit
1380 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4))
1381 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1382
1383 // Add extra reference 0 for 1 of 4
1384 if (downlink_mode == T55xx_DLMode_1of4)
1385 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1386
1387 // Add Opcode
1388 if (reset) {
1389 // Reset : r*) 00
1390 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
1391 }
1392 else
1393 {
1394 if (testMode) Dbprintf("TestMODE");
1395 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 0 : 1 , 1,sizeof(BitStream));
1396 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen,testMode ? 1 : Page , 1,sizeof(BitStream));
1397
1398 if (PwdMode) {
1399 // Leading 0 and 1 of 4 00 fixed bits if passsword used
1400 if ((downlink_mode == T55xx_DLMode_Leading0) || (downlink_mode == T55xx_DLMode_1of4)) {
1401 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 2,sizeof(BitStream));
1402 }
1403 BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Pwd, 32,sizeof(BitStream));
1404 }
1405
1406 // Add Lock bit 0
1407 if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, 0, 1,sizeof(BitStream));
1408
1409 // Add Data if a write command
1410 if (!read_cmd) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Data, 32,sizeof(BitStream));
1411
1412 // Add Address
1413 if (!reg_readmode) BitStreamLen = T55xx_SetBits (BitStream, BitStreamLen, Block, 3,sizeof(BitStream));
1414 }
1415
1416 // Send Bits to T55xx
1417 // Set up FPGA, 125kHz
1418 LFSetupFPGAForADC(95, true);
1419 StartTicks();
1420 // make sure tag is fully powered up...
1421 WaitMS(5);
1422 // Trigger T55x7 in mode.
1423 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1424 WaitUS(Timing->START_GAP);
1425
1426 // If long leading 0 send long reference pulse
1427 if (downlink_mode == T55xx_DLMode_LLR)
1428 T55xxWriteBit (T55xx_LongLeadingReference,Timing); // Send Long Leading Start Reference
1429
1430 if (downlink_mode == T55xx_DLMode_1of4) { // 1 of 4 need to send 2 bits at a time
1431 for ( i = 0; i < BitStreamLen; i+=2 ) {
1432 SendBits = (BitStream[BitStream_Byte(i )] >> (BitStream_Bit(i )) & 1) << 1; // Bit i
1433 SendBits += (BitStream[BitStream_Byte(i+1)] >> (BitStream_Bit(i+1)) & 1); // Bit i+1;
1434 T55xxWriteBit (SendBits & 3,Timing);
1435 }
1436 }
1437 else {
1438 for (i = 0; i < BitStreamLen; i++) {
1439 SendBits = (BitStream[BitStream_Byte(i)] >> BitStream_Bit(i));
1440 T55xxWriteBit (SendBits & 1,Timing);
1441 }
1442 }
1443 }
1444
1445 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1446 void T55xxResetRead(void) {
1447 LED_A_ON();
1448 /*
1449 //clear buffer now so it does not interfere with timing later
1450 BigBuf_Clear_keep_EM();
1451
1452 // Set up FPGA, 125kHz
1453 LFSetupFPGAForADC(95, true);
1454 StartTicks();
1455 // make sure tag is fully powered up...
1456 WaitMS(5);
1457
1458 // Trigger T55x7 in mode.
1459 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1460 WaitUS(T55xx_Timing_FixedBit.START_GAP);
1461
1462 // reset tag - op code 00
1463 T55xxWriteBit(0,&T55xx_Timing_FixedBit);
1464 T55xxWriteBit(0,&T55xx_Timing_FixedBit);
1465
1466 TurnReadLFOn(T55xx_Timing_FixedBit.READ_GAP);
1467 */
1468
1469 // send r* 00
1470 uint8_t arg = 0x80; // SendCMD will add correct reference mode based on flags (when added).
1471
1472 // Add in downlink_mode when ready
1473 // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
1474
1475 T55xx_SendCMD (0, 0, 0, arg); //, true);
1476
1477 // Acquisition
1478 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1479
1480 // Turn the field off
1481 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1482 cmd_send(CMD_ACK,0,0,0,0,0);
1483 LED_A_OFF();
1484 }
1485
1486 // Write one card block in page 0, no lock
1487 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1488 /*
1489 arg bits
1490 xxxxxxx1 0x01 PwdMode
1491 xxxxxx1x 0x02 Page
1492 xxxxx1xx 0x04 testMode
1493 xxx11xxx 0x18 downlink mode
1494 xx1xxxxx 0x20 !reg_readmode
1495 x1xxxxxx 0x40 called for a read, so no data packet
1496 1xxxxxxx 0x80 reset
1497 */
1498
1499 bool testMode = ((arg & 0x04) == 0x04);
1500 arg &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
1501
1502 LED_A_ON ();
1503 T55xx_SendCMD (Data, Block, Pwd, arg) ;//, false);
1504
1505 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1506 // so wait a little more)
1507
1508 // "there is a clock delay before programming"
1509 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1510 // so we should wait 1 clock + 5.6ms then read response?
1511 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1512 if (testMode) {
1513 //TESTMODE TIMING TESTS:
1514 // <566us does nothing
1515 // 566-568 switches between wiping to 0s and doing nothing
1516 // 5184 wipes and allows 1 block to be programmed.
1517 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1518 TurnReadLFOn(5184);
1519
1520 } else {
1521 TurnReadLFOn(20 * 1000);
1522 //could attempt to do a read to confirm write took
1523 // as the tag should repeat back the new block
1524 // until it is reset, but to confirm it we would
1525 // need to know the current block 0 config mode for
1526 // modulation clock an other details to demod the response...
1527 // response should be (for t55x7) a 0 bit then (ST if on)
1528 // block data written in on repeat until reset.
1529
1530 //DoPartialAcquisition(20, true, 12000);
1531 }
1532 // turn field off
1533 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1534
1535 cmd_send(CMD_ACK,0,0,0,0,0);
1536
1537 LED_A_OFF ();
1538 }
1539
1540 // Read one card block in page [page]
1541 void T55xxReadBlock (uint16_t arg0, uint8_t Block, uint32_t Pwd) {//, struct T55xx_Timing *Timing) {
1542
1543 LED_A_ON();
1544
1545 /*
1546 arg bits
1547 xxxxxxx1 0x01 PwdMode
1548 xxxxxx1x 0x02 Page
1549 xxxxx1xx 0x04 testMode
1550 xxx11xxx 0x18 downlink mode
1551 xx1xxxxx 0x20 !reg_readmode
1552 x1xxxxxx 0x40 called for a read, so no data packet
1553 1xxxxxxx 0x80 reset
1554 */
1555
1556 // Set Read Flag to ensure SendCMD does not add "data" to the packet
1557 arg0 |= 0x40;
1558
1559 // RegRead Mode true of block 0xff
1560 if (Block == 0xff) arg0 |= 0x20;
1561
1562 //make sure block is at max 7
1563 Block &= 0x7;
1564
1565 //clear buffer now so it does not interfere with timing later
1566 BigBuf_Clear_ext(false);
1567
1568 T55xx_SendCMD (0, Block, Pwd, arg0); //, true);
1569
1570 /*
1571 // the send has been moved to the above SendCMD Call
1572 =======
1573
1574 // Set up FPGA, 125kHz to power up the tag
1575 LFSetupFPGAForADC(95, true);
1576 StartTicks();
1577 // make sure tag is fully powered up...
1578 WaitMS(5);
1579 // Trigger T55x7 Direct Access Mode with start gap
1580 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1581 WaitUS(START_GAP);
1582
1583 // Opcode 1[page]
1584 T55xxWriteBit(1);
1585 T55xxWriteBit(Page); //Page 0
1586
1587 if (PwdMode) {
1588 // Send Pwd
1589 for (i = 0x80000000; i != 0; i >>= 1)
1590 T55xxWriteBit(Pwd & i);
1591 }
1592 // Send a zero bit separation
1593 T55xxWriteBit(0);
1594
1595 // Send Block number (if direct access mode)
1596 if (!RegReadMode)
1597 for (i = 0x04; i != 0; i >>= 1)
1598 T55xxWriteBit(Block & i);
1599
1600
1601 */
1602 // Turn field on to read the response
1603 // 137*8 seems to get to the start of data pretty well...
1604 // but we want to go past the start and let the repeating data settle in...
1605 TurnReadLFOn(210*8);
1606
1607 // Acquisition
1608 // Now do the acquisition
1609 DoPartialAcquisition(0, true, 12000, 0);
1610
1611 // Turn the field off
1612 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1613 cmd_send(CMD_ACK,0,0,0,0,0);
1614
1615 LED_A_OFF();
1616 }
1617
1618 void T55xxWakeUp(uint32_t Pwd){
1619 LED_B_ON();
1620 /*
1621 uint32_t i = 0;
1622 // Set up FPGA, 125kHz
1623 LFSetupFPGAForADC(95, true);
1624 StartTicks();
1625 // make sure tag is fully powered up...
1626 WaitMS(5);
1627
1628 // Trigger T55x7 Direct Access Mode
1629 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1630 WaitUS(T55xx_Timing_FixedBit.START_GAP);
1631
1632 // Opcode 10
1633 T55xxWriteBit(1,&T55xx_Timing_FixedBit);
1634 T55xxWriteBit(0,&T55xx_Timing_FixedBit); //Page 0
1635
1636 // Send Pwd
1637 for (i = 0x80000000; i != 0; i >>= 1)
1638 T55xxWriteBit(Pwd & i,&T55xx_Timing_FixedBit);
1639 */
1640 /*
1641 arg bits
1642 xxxxxxx1 0x01 PwdMode
1643 xxxxxx1x 0x02 Page
1644 xxxxx1xx 0x04 testMode
1645 xxx11xxx 0x18 downlink mode
1646 xx1xxxxx 0x20 !reg_readmode
1647 x1xxxxxx 0x40 called for a read, so no data packet
1648 1xxxxxxx 0x80 reset
1649 */
1650
1651 // r* 10 (00) <pwd> r* for llr , L0 and 1/4 - (00) for L0 and 1/4 - All handled in SendCMD
1652 // So, default Opcode 10 and pwd.
1653 uint8_t arg = 0x01 | 0x40 | 0x20; //Password Read Call no data | reg_read no block
1654
1655 // Add in downlink_mode when ready
1656 // arg |= 0x00; // dlmode << 3 (00 default - 08 leading 0 - 10 Fixed - 18 1 of 4 )
1657
1658 T55xx_SendCMD (0, 0, Pwd, arg); //, true);
1659
1660 // Turn and leave field on to let the begin repeating transmission
1661 TurnReadLFOn(20*1000);
1662 }
1663
1664 /*-------------- Cloning routines -----------*/
1665
1666 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1667 // write last block first and config block last (if included)
1668 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1669 T55xxWriteBlock(blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1670 // T55xx_SendCMD (blockdata[i-1],i-1,0,0);//,false); //,&T55xx_Timing_FixedBit);
1671 }
1672 }
1673
1674 // Copy a HID-like card (e.g. HID Proximity, Paradox) to a T55x7 compatible card
1675 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, uint8_t preamble) {
1676 uint32_t data[] = {0,0,0,0,0,0,0};
1677 uint8_t last_block = 0;
1678
1679 if (longFMT) {
1680 // Ensure no more than 84 bits supplied
1681 if (hi2>0xFFFFF) {
1682 DbpString("Tags can only have 84 bits.");
1683 return;
1684 }
1685 // Build the 6 data blocks for supplied 84bit ID
1686 last_block = 6;
1687 // load preamble & long format identifier (9E manchester encoded)
1688 data[1] = (preamble << 24) | 0x96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1689 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1690 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1691 data[3] = manchesterEncode2Bytes(hi >> 16);
1692 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1693 data[5] = manchesterEncode2Bytes(lo >> 16);
1694 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1695 } else {
1696 // Ensure no more than 44 bits supplied
1697 if (hi>0xFFF) {
1698 DbpString("Tags can only have 44 bits.");
1699 return;
1700 }
1701 // Build the 3 data blocks for supplied 44bit ID
1702 last_block = 3;
1703 // load preamble
1704 data[1] = (preamble << 24) | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1705 data[2] = manchesterEncode2Bytes(lo >> 16);
1706 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1707 }
1708 // load chip config block
1709 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1710
1711 //TODO add selection of chip for Q5 or T55x7
1712 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1713
1714 LED_D_ON();
1715 // Program the data blocks for supplied ID
1716 // and the block 0 for HID format
1717 WriteT55xx(data, 0, last_block+1);
1718
1719 LED_D_OFF();
1720
1721 DbpString("DONE!");
1722 }
1723
1724 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1725 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1726 //TODO add selection of chip for Q5 or T55x7
1727 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1728
1729 LED_D_ON();
1730 // Program the data blocks for supplied ID
1731 // and the block 0 config
1732 WriteT55xx(data, 0, 3);
1733
1734 LED_D_OFF();
1735
1736 DbpString("DONE!");
1737 }
1738
1739 // Clone Indala 64-bit tag by UID to T55x7
1740 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1741 //Program the 2 data blocks for supplied 64bit UID
1742 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1743 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1744 //TODO add selection of chip for Q5 or T55x7
1745 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1746
1747 WriteT55xx(data, 0, 3);
1748 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1749 // T5567WriteBlock(0x603E1042,0);
1750 DbpString("DONE!");
1751 }
1752 // Clone Indala 224-bit tag by UID to T55x7
1753 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1754 //Program the 7 data blocks for supplied 224bit UID
1755 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1756 // and the block 0 for Indala224 format
1757 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1758 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
1759 //TODO add selection of chip for Q5 or T55x7
1760 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1761 WriteT55xx(data, 0, 8);
1762 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1763 // T5567WriteBlock(0x603E10E2,0);
1764 DbpString("DONE!");
1765 }
1766 // clone viking tag to T55xx
1767 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1768 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1769 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1770 // Program the data blocks for supplied ID and the block 0 config
1771 WriteT55xx(data, 0, 3);
1772 LED_D_OFF();
1773 cmd_send(CMD_ACK,0,0,0,0,0);
1774 }
1775
1776 // Define 9bit header for EM410x tags
1777 #define EM410X_HEADER 0x1FF
1778 #define EM410X_ID_LENGTH 40
1779
1780 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1781 int i, id_bit;
1782 uint64_t id = EM410X_HEADER;
1783 uint64_t rev_id = 0; // reversed ID
1784 int c_parity[4]; // column parity
1785 int r_parity = 0; // row parity
1786 uint32_t clock = 0;
1787
1788 // Reverse ID bits given as parameter (for simpler operations)
1789 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1790 if (i < 32) {
1791 rev_id = (rev_id << 1) | (id_lo & 1);
1792 id_lo >>= 1;
1793 } else {
1794 rev_id = (rev_id << 1) | (id_hi & 1);
1795 id_hi >>= 1;
1796 }
1797 }
1798
1799 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1800 id_bit = rev_id & 1;
1801
1802 if (i % 4 == 0) {
1803 // Don't write row parity bit at start of parsing
1804 if (i)
1805 id = (id << 1) | r_parity;
1806 // Start counting parity for new row
1807 r_parity = id_bit;
1808 } else {
1809 // Count row parity
1810 r_parity ^= id_bit;
1811 }
1812
1813 // First elements in column?
1814 if (i < 4)
1815 // Fill out first elements
1816 c_parity[i] = id_bit;
1817 else
1818 // Count column parity
1819 c_parity[i % 4] ^= id_bit;
1820
1821 // Insert ID bit
1822 id = (id << 1) | id_bit;
1823 rev_id >>= 1;
1824 }
1825
1826 // Insert parity bit of last row
1827 id = (id << 1) | r_parity;
1828
1829 // Fill out column parity at the end of tag
1830 for (i = 0; i < 4; ++i)
1831 id = (id << 1) | c_parity[i];
1832
1833 // Add stop bit
1834 id <<= 1;
1835
1836 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1837 LED_D_ON();
1838
1839 // Write EM410x ID
1840 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1841
1842 clock = (card & 0xFF00) >> 8;
1843 clock = (clock == 0) ? 64 : clock;
1844 Dbprintf("Clock rate: %d", clock);
1845 if (card & 0xFF) { //t55x7
1846 clock = GetT55xxClockBit(clock);
1847 if (clock == 0) {
1848 Dbprintf("Invalid clock rate: %d", clock);
1849 return;
1850 }
1851 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1852 } else { //t5555 (Q5)
1853 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1854 }
1855
1856 WriteT55xx(data, 0, 3);
1857
1858 LED_D_OFF();
1859 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1860 (uint32_t)(id >> 32), (uint32_t)id);
1861 }
1862
1863 //-----------------------------------
1864 // EM4469 / EM4305 routines
1865 //-----------------------------------
1866 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1867 #define FWD_CMD_WRITE 0xA
1868 #define FWD_CMD_READ 0x9
1869 #define FWD_CMD_DISABLE 0x5
1870 #define FWD_CMD_PROTECT 0x3
1871
1872 uint8_t forwardLink_data[64]; //array of forwarded bits
1873 uint8_t * forward_ptr; //ptr for forward message preparation
1874 uint8_t fwd_bit_sz; //forwardlink bit counter
1875 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1876
1877 //====================================================================
1878 // prepares command bits
1879 // see EM4469 spec
1880 //====================================================================
1881 //--------------------------------------------------------------------
1882 // VALUES TAKEN FROM EM4x function: SendForward
1883 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1884 // WRITE_GAP = 128; (16*8)
1885 // WRITE_1 = 256 32*8; (32*8)
1886
1887 // These timings work for 4469/4269/4305 (with the 55*8 above)
1888 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1889
1890 uint8_t Prepare_Cmd( uint8_t cmd ) {
1891
1892 *forward_ptr++ = 0; //start bit
1893 *forward_ptr++ = 0; //second pause for 4050 code
1894
1895 *forward_ptr++ = cmd;
1896 cmd >>= 1;
1897 *forward_ptr++ = cmd;
1898 cmd >>= 1;
1899 *forward_ptr++ = cmd;
1900 cmd >>= 1;
1901 *forward_ptr++ = cmd;
1902
1903 return 6; //return number of emited bits
1904 }
1905
1906 //====================================================================
1907 // prepares address bits
1908 // see EM4469 spec
1909 //====================================================================
1910 uint8_t Prepare_Addr( uint8_t addr ) {
1911
1912 register uint8_t line_parity;
1913
1914 uint8_t i;
1915 line_parity = 0;
1916 for(i=0;i<6;i++) {
1917 *forward_ptr++ = addr;
1918 line_parity ^= addr;
1919 addr >>= 1;
1920 }
1921
1922 *forward_ptr++ = (line_parity & 1);
1923
1924 return 7; //return number of emited bits
1925 }
1926
1927 //====================================================================
1928 // prepares data bits intreleaved with parity bits
1929 // see EM4469 spec
1930 //====================================================================
1931 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1932
1933 register uint8_t line_parity;
1934 register uint8_t column_parity;
1935 register uint8_t i, j;
1936 register uint16_t data;
1937
1938 data = data_low;
1939 column_parity = 0;
1940
1941 for(i=0; i<4; i++) {
1942 line_parity = 0;
1943 for(j=0; j<8; j++) {
1944 line_parity ^= data;
1945 column_parity ^= (data & 1) << j;
1946 *forward_ptr++ = data;
1947 data >>= 1;
1948 }
1949 *forward_ptr++ = line_parity;
1950 if(i == 1)
1951 data = data_hi;
1952 }
1953
1954 for(j=0; j<8; j++) {
1955 *forward_ptr++ = column_parity;
1956 column_parity >>= 1;
1957 }
1958 *forward_ptr = 0;
1959
1960 return 45; //return number of emited bits
1961 }
1962
1963 //====================================================================
1964 // Forward Link send function
1965 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1966 // fwd_bit_count set with number of bits to be sent
1967 //====================================================================
1968 void SendForward(uint8_t fwd_bit_count) {
1969
1970 fwd_write_ptr = forwardLink_data;
1971 fwd_bit_sz = fwd_bit_count;
1972
1973 // Set up FPGA, 125kHz or 95 divisor
1974 LFSetupFPGAForADC(95, true);
1975
1976 // force 1st mod pulse (start gap must be longer for 4305)
1977 fwd_bit_sz--; //prepare next bit modulation
1978 fwd_write_ptr++;
1979 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1980 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1981 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1982 WaitUS(18*8); //18 cycles on (8us each)
1983
1984 // now start writting
1985 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1986 if(((*fwd_write_ptr++) & 1) == 1)
1987 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1988 else {
1989 //These timings work for 4469/4269/4305 (with the 55*8 above)
1990 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1991 WaitUS(23*8); //23 cycles off (8us each)
1992 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1993 WaitUS(18*8); //18 cycles on (8us each)
1994 }
1995 }
1996 }
1997
1998 void EM4xLogin(uint32_t Password) {
1999
2000 uint8_t fwd_bit_count;
2001
2002 forward_ptr = forwardLink_data;
2003 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2004 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2005
2006 SendForward(fwd_bit_count);
2007
2008 //Wait for command to complete
2009 SpinDelay(20);
2010 }
2011
2012 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2013
2014 uint8_t fwd_bit_count;
2015
2016 // Clear destination buffer before sending the command
2017 BigBuf_Clear_ext(false);
2018
2019 LED_A_ON();
2020 StartTicks();
2021 //If password mode do login
2022 if (PwdMode == 1) EM4xLogin(Pwd);
2023
2024 forward_ptr = forwardLink_data;
2025 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2026 fwd_bit_count += Prepare_Addr( Address );
2027
2028 SendForward(fwd_bit_count);
2029 WaitUS(400);
2030 // Now do the acquisition
2031 DoPartialAcquisition(20, true, 6000, 1000);
2032
2033 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2034 LED_A_OFF();
2035 cmd_send(CMD_ACK,0,0,0,0,0);
2036 }
2037
2038 void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
2039
2040 bool PwdMode = (flag & 0x1);
2041 uint8_t Address = (flag >> 8) & 0xFF;
2042 uint8_t fwd_bit_count;
2043
2044 //clear buffer now so it does not interfere with timing later
2045 BigBuf_Clear_ext(false);
2046
2047 LED_A_ON();
2048 StartTicks();
2049 //If password mode do login
2050 if (PwdMode) EM4xLogin(Pwd);
2051
2052 forward_ptr = forwardLink_data;
2053 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2054 fwd_bit_count += Prepare_Addr( Address );
2055 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2056
2057 SendForward(fwd_bit_count);
2058
2059 //Wait for write to complete
2060 //SpinDelay(10);
2061
2062 WaitUS(6500);
2063 //Capture response if one exists
2064 DoPartialAcquisition(20, true, 6000, 1000);
2065
2066 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2067 LED_A_OFF();
2068 cmd_send(CMD_ACK,0,0,0,0,0);
2069 }
2070
2071 void EM4xProtect(uint32_t flag, uint32_t Data, uint32_t Pwd) {
2072
2073 bool PwdMode = (flag & 0x1);
2074 uint8_t fwd_bit_count;
2075
2076 //clear buffer now so it does not interfere with timing later
2077 BigBuf_Clear_ext(false);
2078
2079 LED_A_ON();
2080 StartTicks();
2081 //If password mode do login
2082 if (PwdMode) EM4xLogin(Pwd);
2083
2084 forward_ptr = forwardLink_data;
2085 fwd_bit_count = Prepare_Cmd( FWD_CMD_PROTECT );
2086
2087 //unsure if this needs the full packet config...
2088 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2089
2090 SendForward(fwd_bit_count);
2091
2092 //Wait for write to complete
2093 //SpinDelay(10);
2094
2095 WaitUS(6500);
2096 //Capture response if one exists
2097 DoPartialAcquisition(20, true, 6000, 1000);
2098
2099 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2100 LED_A_OFF();
2101 cmd_send(CMD_ACK,0,0,0,0,0);
2102 }
2103 /*
2104 Reading a COTAG.
2105
2106 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
2107 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
2108
2109 READER START SEQUENCE:
2110 burst 800 us, gap 2.2 msecs
2111 burst 3.6 msecs gap 2.2 msecs
2112 burst 800 us gap 2.2 msecs
2113 pulse 3.6 msecs
2114
2115 This triggers a COTAG tag to response
2116 */
2117 void Cotag(uint32_t arg0) {
2118
2119 #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
2120 #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
2121
2122 uint8_t rawsignal = arg0 & 0xF;
2123
2124 LED_A_ON();
2125
2126 // Switching to LF image on FPGA. This might empty BigBuff
2127 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2128
2129 //clear buffer now so it does not interfere with timing later
2130 BigBuf_Clear_ext(false);
2131
2132 // Set up FPGA, 132kHz to power up the tag
2133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
2134 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2135
2136 // Connect the A/D to the peak-detected low-frequency path.
2137 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2138
2139 // Now set up the SSC to get the ADC samples that are now streaming at us.
2140 FpgaSetupSsc(FPGA_MAJOR_MODE_LF_ADC);
2141
2142 // start clock - 1.5ticks is 1us
2143 StartTicks();
2144
2145 //send COTAG start pulse
2146 ON(740) OFF
2147 ON(3330) OFF
2148 ON(740) OFF
2149 ON(1000)
2150
2151 switch(rawsignal) {
2152 case 0: doCotagAcquisition(50000); break;
2153 case 1: doCotagAcquisitionManchester(); break;
2154 case 2: DoAcquisition_config(true, 0); break;
2155 }
2156
2157 // Turn the field off
2158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2159 cmd_send(CMD_ACK,0,0,0,0,0);
2160 LED_A_OFF();
2161 }
Impressum, Datenschutz