]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
remove debug
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "usb_cdc.h" //test
20
21 /**
22 * Function to do a modulation and then get samples.
23 * @param delay_off
24 * @param period_0
25 * @param period_1
26 * @param command
27 */
28 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
29 {
30
31 int divisor_used = 95; // 125 KHz
32 // see if 'h' was specified
33
34 if (command[strlen((char *) command) - 1] == 'h')
35 divisor_used = 88; // 134.8 KHz
36
37 sample_config sc = { 0,0,1, divisor_used, 0};
38 setSamplingConfig(&sc);
39
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
43 SpinDelay(2500);
44
45 LFSetupFPGAForADC(sc.divisor, 1);
46
47 // And a little more time for the tag to fully power up
48 SpinDelay(2000);
49
50 // now modulate the reader field
51 while(*command != '\0' && *command != ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
53 LED_D_OFF();
54 SpinDelayUs(delay_off);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
56
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
58 LED_D_ON();
59 if(*(command++) == '0')
60 SpinDelayUs(period_0);
61 else
62 SpinDelayUs(period_1);
63 }
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
65 LED_D_OFF();
66 SpinDelayUs(delay_off);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
68
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
70
71 // now do the read
72 DoAcquisition_config(false);
73 }
74
75
76
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
80 0011010010100001
81 01111111
82 101010101010101[0]000...
83
84 [5555fe852c5555555555555555fe0000]
85 */
86 void ReadTItag(void)
87 {
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
93 #define FREQLO 123200
94 #define FREQHI 134200
95
96 signed char *dest = (signed char *)BigBuf_get_addr();
97 uint16_t n = BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
100
101 int i, cycles=0, samples=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
106
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
110
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
116
117 // get TI tag data into the buffer
118 AcquireTiType();
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
121
122 for (i=0; i<n-1; i++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest[i]<0) && (dest[i+1]>0) ) {
125 cycles++;
126 // after 16 cycles, measure the frequency
127 if (cycles>15) {
128 cycles=0;
129 samples=i-samples; // number of samples in these 16 cycles
130
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0 = (shift0>>1) | (shift1 << 31);
134 shift1 = (shift1>>1) | (shift2 << 31);
135 shift2 = (shift2>>1) | (shift3 << 31);
136 shift3 >>= 1;
137
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
141 // low frequency represents a 1
142 shift3 |= (1<<31);
143 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
144 // high frequency represents a 0
145 } else {
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3 = shift2 = shift1 = shift0 = 0;
149 }
150 samples = i;
151
152 // for each bit we receive, test if we've detected a valid tag
153
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
159 cycles = 0xF0B; //use this as a flag (ugly but whatever)
160 break;
161 }
162 }
163 }
164 }
165 }
166
167 // if flag is set we have a tag
168 if (cycles!=0xF0B) {
169 DbpString("Info: No valid tag detected.");
170 } else {
171 // put 64 bit data into shift1 and shift0
172 shift0 = (shift0>>24) | (shift1 << 8);
173 shift1 = (shift1>>24) | (shift2 << 8);
174
175 // align 16 bit crc into lower half of shift2
176 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
177
178 // if r/w tag, check ident match
179 if (shift3 & (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
184 } else {
185 DbpString("Info: TI tag ident is valid");
186 }
187 } else {
188 DbpString("Info: TI tag is readonly");
189 }
190
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
194 // calculate CRC
195 uint32_t crc=0;
196
197 crc = update_crc16(crc, (shift0)&0xff);
198 crc = update_crc16(crc, (shift0>>8)&0xff);
199 crc = update_crc16(crc, (shift0>>16)&0xff);
200 crc = update_crc16(crc, (shift0>>24)&0xff);
201 crc = update_crc16(crc, (shift1)&0xff);
202 crc = update_crc16(crc, (shift1>>8)&0xff);
203 crc = update_crc16(crc, (shift1>>16)&0xff);
204 crc = update_crc16(crc, (shift1>>24)&0xff);
205
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
214 }
215
216
217
218 void WriteTIbyte(uint8_t b)
219 {
220 int i = 0;
221
222 // modulate 8 bits out to the antenna
223 for (i=0; i<8; i++)
224 {
225 if (b&(1<<i)) {
226 // stop modulating antenna
227 LOW(GPIO_SSC_DOUT);
228 SpinDelayUs(1000);
229 // modulate antenna
230 HIGH(GPIO_SSC_DOUT);
231 SpinDelayUs(1000);
232 } else {
233 // stop modulating antenna
234 LOW(GPIO_SSC_DOUT);
235 SpinDelayUs(300);
236 // modulate antenna
237 HIGH(GPIO_SSC_DOUT);
238 SpinDelayUs(1700);
239 }
240 }
241 }
242
243 void AcquireTiType(void)
244 {
245 int i, j, n;
246 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
247 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
248 #define TIBUFLEN 1250
249
250 // clear buffer
251 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
252 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
253
254 // Set up the synchronous serial port
255 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
256 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
257
258 // steal this pin from the SSP and use it to control the modulation
259 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
260 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
261
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
263 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
264
265 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
266 // 48/2 = 24 MHz clock must be divided by 12
267 AT91C_BASE_SSC->SSC_CMR = 12;
268
269 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
270 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
271 AT91C_BASE_SSC->SSC_TCMR = 0;
272 AT91C_BASE_SSC->SSC_TFMR = 0;
273
274 LED_D_ON();
275
276 // modulate antenna
277 HIGH(GPIO_SSC_DOUT);
278
279 // Charge TI tag for 50ms.
280 SpinDelay(50);
281
282 // stop modulating antenna and listen
283 LOW(GPIO_SSC_DOUT);
284
285 LED_D_OFF();
286
287 i = 0;
288 for(;;) {
289 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
290 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
291 i++; if(i >= TIBUFLEN) break;
292 }
293 WDT_HIT();
294 }
295
296 // return stolen pin to SSP
297 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
298 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
299
300 char *dest = (char *)BigBuf_get_addr();
301 n = TIBUFLEN*32;
302 // unpack buffer
303 for (i=TIBUFLEN-1; i>=0; i--) {
304 for (j=0; j<32; j++) {
305 if(BigBuf[i] & (1 << j)) {
306 dest[--n] = 1;
307 } else {
308 dest[--n] = -1;
309 }
310 }
311 }
312 }
313
314
315
316
317 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
318 // if crc provided, it will be written with the data verbatim (even if bogus)
319 // if not provided a valid crc will be computed from the data and written.
320 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
321 {
322
323
324 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
325 if(crc == 0) {
326 crc = update_crc16(crc, (idlo)&0xff);
327 crc = update_crc16(crc, (idlo>>8)&0xff);
328 crc = update_crc16(crc, (idlo>>16)&0xff);
329 crc = update_crc16(crc, (idlo>>24)&0xff);
330 crc = update_crc16(crc, (idhi)&0xff);
331 crc = update_crc16(crc, (idhi>>8)&0xff);
332 crc = update_crc16(crc, (idhi>>16)&0xff);
333 crc = update_crc16(crc, (idhi>>24)&0xff);
334 }
335 Dbprintf("Writing to tag: %x%08x, crc=%x",
336 (unsigned int) idhi, (unsigned int) idlo, crc);
337
338 // TI tags charge at 134.2Khz
339 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
340 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
341 // connects to SSP_DIN and the SSP_DOUT logic level controls
342 // whether we're modulating the antenna (high)
343 // or listening to the antenna (low)
344 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
345 LED_A_ON();
346
347 // steal this pin from the SSP and use it to control the modulation
348 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
349 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
350
351 // writing algorithm:
352 // a high bit consists of a field off for 1ms and field on for 1ms
353 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
354 // initiate a charge time of 50ms (field on) then immediately start writing bits
355 // start by writing 0xBB (keyword) and 0xEB (password)
356 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
357 // finally end with 0x0300 (write frame)
358 // all data is sent lsb firts
359 // finish with 15ms programming time
360
361 // modulate antenna
362 HIGH(GPIO_SSC_DOUT);
363 SpinDelay(50); // charge time
364
365 WriteTIbyte(0xbb); // keyword
366 WriteTIbyte(0xeb); // password
367 WriteTIbyte( (idlo )&0xff );
368 WriteTIbyte( (idlo>>8 )&0xff );
369 WriteTIbyte( (idlo>>16)&0xff );
370 WriteTIbyte( (idlo>>24)&0xff );
371 WriteTIbyte( (idhi )&0xff );
372 WriteTIbyte( (idhi>>8 )&0xff );
373 WriteTIbyte( (idhi>>16)&0xff );
374 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
375 WriteTIbyte( (crc )&0xff ); // crc lo
376 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
377 WriteTIbyte(0x00); // write frame lo
378 WriteTIbyte(0x03); // write frame hi
379 HIGH(GPIO_SSC_DOUT);
380 SpinDelay(50); // programming time
381
382 LED_A_OFF();
383
384 // get TI tag data into the buffer
385 AcquireTiType();
386
387 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
388 DbpString("Now use tiread to check");
389 }
390
391 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
392 {
393 int i;
394 uint8_t *tab = BigBuf_get_addr();
395
396 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
397 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
398
399 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
400
401 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
402 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
403
404 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
405 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
406
407 i = 0;
408 for(;;) {
409 //wait until SSC_CLK goes HIGH
410 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
411 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
412 DbpString("Stopped");
413 return;
414 }
415 WDT_HIT();
416 }
417 if (ledcontrol)
418 LED_D_ON();
419
420 if(tab[i])
421 OPEN_COIL();
422 else
423 SHORT_COIL();
424
425 if (ledcontrol)
426 LED_D_OFF();
427 //wait until SSC_CLK goes LOW
428 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
429 if(BUTTON_PRESS()) {
430 DbpString("Stopped");
431 return;
432 }
433 WDT_HIT();
434 }
435
436 i++;
437 if(i == period) {
438
439 i = 0;
440 if (gap) {
441 SHORT_COIL();
442 SpinDelayUs(gap);
443 }
444 }
445 }
446 }
447
448 #define DEBUG_FRAME_CONTENTS 1
449 void SimulateTagLowFrequencyBidir(int divisor, int t0)
450 {
451 }
452
453 // compose fc/8 fc/10 waveform (FSK2)
454 static void fc(int c, int *n)
455 {
456 uint8_t *dest = BigBuf_get_addr();
457 int idx;
458
459 // for when we want an fc8 pattern every 4 logical bits
460 if(c==0) {
461 dest[((*n)++)]=1;
462 dest[((*n)++)]=1;
463 dest[((*n)++)]=1;
464 dest[((*n)++)]=1;
465 dest[((*n)++)]=0;
466 dest[((*n)++)]=0;
467 dest[((*n)++)]=0;
468 dest[((*n)++)]=0;
469 }
470
471 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
472 if(c==8) {
473 for (idx=0; idx<6; idx++) {
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=1;
476 dest[((*n)++)]=1;
477 dest[((*n)++)]=1;
478 dest[((*n)++)]=0;
479 dest[((*n)++)]=0;
480 dest[((*n)++)]=0;
481 dest[((*n)++)]=0;
482 }
483 }
484
485 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
486 if(c==10) {
487 for (idx=0; idx<5; idx++) {
488 dest[((*n)++)]=1;
489 dest[((*n)++)]=1;
490 dest[((*n)++)]=1;
491 dest[((*n)++)]=1;
492 dest[((*n)++)]=1;
493 dest[((*n)++)]=0;
494 dest[((*n)++)]=0;
495 dest[((*n)++)]=0;
496 dest[((*n)++)]=0;
497 dest[((*n)++)]=0;
498 }
499 }
500 }
501 // compose fc/X fc/Y waveform (FSKx)
502 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
503 {
504 uint8_t *dest = BigBuf_get_addr();
505 uint8_t halfFC = fc/2;
506 uint8_t wavesPerClock = clock/fc;
507 uint8_t mod = clock % fc; //modifier
508 uint8_t modAdj = fc/mod; //how often to apply modifier
509 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
510 // loop through clock - step field clock
511 for (uint8_t idx=0; idx < wavesPerClock; idx++){
512 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
513 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
514 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
515 *n += fc;
516 }
517 if (mod>0) (*modCnt)++;
518 if ((mod>0) && modAdjOk){ //fsk2
519 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
520 memset(dest+(*n), 0, fc-halfFC);
521 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
522 *n += fc;
523 }
524 }
525 if (mod>0 && !modAdjOk){ //fsk1
526 memset(dest+(*n), 0, mod-(mod/2));
527 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
528 *n += mod;
529 }
530 }
531
532 // prepare a waveform pattern in the buffer based on the ID given then
533 // simulate a HID tag until the button is pressed
534 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
535 {
536 int n=0, i=0;
537 /*
538 HID tag bitstream format
539 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
540 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
541 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
542 A fc8 is inserted before every 4 bits
543 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
544 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
545 */
546
547 if (hi>0xFFF) {
548 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
549 return;
550 }
551 fc(0,&n);
552 // special start of frame marker containing invalid bit sequences
553 fc(8, &n); fc(8, &n); // invalid
554 fc(8, &n); fc(10, &n); // logical 0
555 fc(10, &n); fc(10, &n); // invalid
556 fc(8, &n); fc(10, &n); // logical 0
557
558 WDT_HIT();
559 // manchester encode bits 43 to 32
560 for (i=11; i>=0; i--) {
561 if ((i%4)==3) fc(0,&n);
562 if ((hi>>i)&1) {
563 fc(10, &n); fc(8, &n); // low-high transition
564 } else {
565 fc(8, &n); fc(10, &n); // high-low transition
566 }
567 }
568
569 WDT_HIT();
570 // manchester encode bits 31 to 0
571 for (i=31; i>=0; i--) {
572 if ((i%4)==3) fc(0,&n);
573 if ((lo>>i)&1) {
574 fc(10, &n); fc(8, &n); // low-high transition
575 } else {
576 fc(8, &n); fc(10, &n); // high-low transition
577 }
578 }
579
580 if (ledcontrol)
581 LED_A_ON();
582 SimulateTagLowFrequency(n, 0, ledcontrol);
583
584 if (ledcontrol)
585 LED_A_OFF();
586 }
587
588 // prepare a waveform pattern in the buffer based on the ID given then
589 // simulate a FSK tag until the button is pressed
590 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
591 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
592 {
593 int ledcontrol=1;
594 int n=0, i=0;
595 uint8_t fcHigh = arg1 >> 8;
596 uint8_t fcLow = arg1 & 0xFF;
597 uint16_t modCnt = 0;
598 uint8_t clk = arg2 & 0xFF;
599 uint8_t invert = (arg2 >> 8) & 1;
600
601 for (i=0; i<size; i++){
602 if (BitStream[i] == invert){
603 fcAll(fcLow, &n, clk, &modCnt);
604 } else {
605 fcAll(fcHigh, &n, clk, &modCnt);
606 }
607 }
608 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
609 /*Dbprintf("DEBUG: First 32:");
610 uint8_t *dest = BigBuf_get_addr();
611 i=0;
612 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
613 i+=16;
614 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
615 */
616 if (ledcontrol)
617 LED_A_ON();
618
619 SimulateTagLowFrequency(n, 0, ledcontrol);
620
621 if (ledcontrol)
622 LED_A_OFF();
623 }
624
625 // compose ask waveform for one bit(ASK)
626 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
627 {
628 uint8_t *dest = BigBuf_get_addr();
629 uint8_t halfClk = clock/2;
630 // c = current bit 1 or 0
631 if (manchester==1){
632 memset(dest+(*n), c, halfClk);
633 memset(dest+(*n) + halfClk, c^1, halfClk);
634 } else {
635 memset(dest+(*n), c, clock);
636 }
637 *n += clock;
638 }
639
640 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
641 {
642 uint8_t *dest = BigBuf_get_addr();
643 uint8_t halfClk = clock/2;
644 if (c){
645 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
646 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
647 } else {
648 memset(dest+(*n), c ^ *phase, clock);
649 *phase ^= 1;
650 }
651
652 }
653
654 // args clock, ask/man or askraw, invert, transmission separator
655 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
656 {
657 int ledcontrol = 1;
658 int n=0, i=0;
659 uint8_t clk = (arg1 >> 8) & 0xFF;
660 uint8_t encoding = arg1 & 0xFF;
661 uint8_t separator = arg2 & 1;
662 uint8_t invert = (arg2 >> 8) & 1;
663
664 if (encoding==2){ //biphase
665 uint8_t phase=0;
666 for (i=0; i<size; i++){
667 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
668 }
669 if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
670 for (i=0; i<size; i++){
671 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
672 }
673 }
674 } else { // ask/manchester || ask/raw
675 for (i=0; i<size; i++){
676 askSimBit(BitStream[i]^invert, &n, clk, encoding);
677 }
678 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
679 for (i=0; i<size; i++){
680 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
681 }
682 }
683 }
684
685 if (separator==1) Dbprintf("sorry but separator option not yet available");
686
687 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
688 //DEBUG
689 //Dbprintf("First 32:");
690 //uint8_t *dest = BigBuf_get_addr();
691 //i=0;
692 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
693 //i+=16;
694 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
695
696 if (ledcontrol)
697 LED_A_ON();
698
699 SimulateTagLowFrequency(n, 0, ledcontrol);
700
701 if (ledcontrol)
702 LED_A_OFF();
703 }
704
705 //carrier can be 2,4 or 8
706 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
707 {
708 uint8_t *dest = BigBuf_get_addr();
709 uint8_t halfWave = waveLen/2;
710 //uint8_t idx;
711 int i = 0;
712 if (phaseChg){
713 // write phase change
714 memset(dest+(*n), *curPhase^1, halfWave);
715 memset(dest+(*n) + halfWave, *curPhase, halfWave);
716 *n += waveLen;
717 *curPhase ^= 1;
718 i += waveLen;
719 }
720 //write each normal clock wave for the clock duration
721 for (; i < clk; i+=waveLen){
722 memset(dest+(*n), *curPhase, halfWave);
723 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
724 *n += waveLen;
725 }
726 }
727
728 // args clock, carrier, invert,
729 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
730 {
731 int ledcontrol=1;
732 int n=0, i=0;
733 uint8_t clk = arg1 >> 8;
734 uint8_t carrier = arg1 & 0xFF;
735 uint8_t invert = arg2 & 0xFF;
736 uint8_t curPhase = 0;
737 for (i=0; i<size; i++){
738 if (BitStream[i] == curPhase){
739 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
740 } else {
741 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
742 }
743 }
744 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
745 //Dbprintf("DEBUG: First 32:");
746 //uint8_t *dest = BigBuf_get_addr();
747 //i=0;
748 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
749 //i+=16;
750 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
751
752 if (ledcontrol)
753 LED_A_ON();
754 SimulateTagLowFrequency(n, 0, ledcontrol);
755
756 if (ledcontrol)
757 LED_A_OFF();
758 }
759
760 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
761 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
762 {
763 uint8_t *dest = BigBuf_get_addr();
764 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
765 size_t size;
766 uint32_t hi2=0, hi=0, lo=0;
767 int idx=0;
768 // Configure to go in 125Khz listen mode
769 LFSetupFPGAForADC(95, true);
770
771 while(!BUTTON_PRESS()) {
772
773 WDT_HIT();
774 if (ledcontrol) LED_A_ON();
775
776 DoAcquisition_default(-1,true);
777 // FSK demodulator
778 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
779 size = 50*128*2; //big enough to catch 2 sequences of largest format
780 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
781
782 if (idx>0 && lo>0 && (size==96 || size==192)){
783 // go over previously decoded manchester data and decode into usable tag ID
784 if (hi2 != 0){ //extra large HID tags 88/192 bits
785 Dbprintf("TAG ID: %x%08x%08x (%d)",
786 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
787 }else { //standard HID tags 44/96 bits
788 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
789 uint8_t bitlen = 0;
790 uint32_t fc = 0;
791 uint32_t cardnum = 0;
792 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
793 uint32_t lo2=0;
794 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
795 uint8_t idx3 = 1;
796 while(lo2 > 1){ //find last bit set to 1 (format len bit)
797 lo2=lo2 >> 1;
798 idx3++;
799 }
800 bitlen = idx3+19;
801 fc =0;
802 cardnum=0;
803 if(bitlen == 26){
804 cardnum = (lo>>1)&0xFFFF;
805 fc = (lo>>17)&0xFF;
806 }
807 if(bitlen == 37){
808 cardnum = (lo>>1)&0x7FFFF;
809 fc = ((hi&0xF)<<12)|(lo>>20);
810 }
811 if(bitlen == 34){
812 cardnum = (lo>>1)&0xFFFF;
813 fc= ((hi&1)<<15)|(lo>>17);
814 }
815 if(bitlen == 35){
816 cardnum = (lo>>1)&0xFFFFF;
817 fc = ((hi&1)<<11)|(lo>>21);
818 }
819 }
820 else { //if bit 38 is not set then 37 bit format is used
821 bitlen= 37;
822 fc =0;
823 cardnum=0;
824 if(bitlen==37){
825 cardnum = (lo>>1)&0x7FFFF;
826 fc = ((hi&0xF)<<12)|(lo>>20);
827 }
828 }
829 //Dbprintf("TAG ID: %x%08x (%d)",
830 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
831 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
832 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
833 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
834 }
835 if (findone){
836 if (ledcontrol) LED_A_OFF();
837 *high = hi;
838 *low = lo;
839 return;
840 }
841 // reset
842 }
843 hi2 = hi = lo = idx = 0;
844 WDT_HIT();
845 }
846 DbpString("Stopped");
847 if (ledcontrol) LED_A_OFF();
848 }
849
850 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
851 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
852 {
853 uint8_t *dest = BigBuf_get_addr();
854 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
855 size_t size;
856 int idx=0;
857 // Configure to go in 125Khz listen mode
858 LFSetupFPGAForADC(95, true);
859
860 while(!BUTTON_PRESS()) {
861
862 WDT_HIT();
863 if (ledcontrol) LED_A_ON();
864
865 DoAcquisition_default(-1,true);
866 // FSK demodulator
867 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
868 size = 50*128*2; //big enough to catch 2 sequences of largest format
869 idx = AWIDdemodFSK(dest, &size);
870
871 if (idx>0 && size==96){
872 // Index map
873 // 0 10 20 30 40 50 60
874 // | | | | | | |
875 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
876 // -----------------------------------------------------------------------------
877 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
878 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
879 // |---26 bit---| |-----117----||-------------142-------------|
880 // b = format bit len, o = odd parity of last 3 bits
881 // f = facility code, c = card number
882 // w = wiegand parity
883 // (26 bit format shown)
884
885 //get raw ID before removing parities
886 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
887 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
888 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
889
890 size = removeParity(dest, idx+8, 4, 1, 88);
891 // ok valid card found!
892
893 // Index map
894 // 0 10 20 30 40 50 60
895 // | | | | | | |
896 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
897 // -----------------------------------------------------------------------------
898 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
899 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
900 // |26 bit| |-117--| |-----142------|
901 // b = format bit len, o = odd parity of last 3 bits
902 // f = facility code, c = card number
903 // w = wiegand parity
904 // (26 bit format shown)
905
906 uint32_t fc = 0;
907 uint32_t cardnum = 0;
908 uint32_t code1 = 0;
909 uint32_t code2 = 0;
910 uint8_t fmtLen = bytebits_to_byte(dest,8);
911 if (fmtLen==26){
912 fc = bytebits_to_byte(dest+9, 8);
913 cardnum = bytebits_to_byte(dest+17, 16);
914 code1 = bytebits_to_byte(dest+8,fmtLen);
915 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
916 } else {
917 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
918 if (fmtLen>32){
919 code1 = bytebits_to_byte(dest+8,fmtLen-32);
920 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
921 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
922 } else{
923 code1 = bytebits_to_byte(dest+8,fmtLen);
924 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
925 }
926 }
927 if (findone){
928 if (ledcontrol) LED_A_OFF();
929 return;
930 }
931 // reset
932 }
933 idx = 0;
934 WDT_HIT();
935 }
936 DbpString("Stopped");
937 if (ledcontrol) LED_A_OFF();
938 }
939
940 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
941 {
942 uint8_t *dest = BigBuf_get_addr();
943
944 size_t size=0, idx=0;
945 int clk=0, invert=0, errCnt=0, maxErr=20;
946 uint32_t hi=0;
947 uint64_t lo=0;
948 // Configure to go in 125Khz listen mode
949 LFSetupFPGAForADC(95, true);
950
951 while(!BUTTON_PRESS()) {
952
953 WDT_HIT();
954 if (ledcontrol) LED_A_ON();
955
956 DoAcquisition_default(-1,true);
957 size = BigBuf_max_traceLen();
958 //askdemod and manchester decode
959 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
960 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
961 WDT_HIT();
962
963 if (errCnt<0) continue;
964
965 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
966 if (errCnt){
967 if (size>64){
968 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
969 hi,
970 (uint32_t)(lo>>32),
971 (uint32_t)lo,
972 (uint32_t)(lo&0xFFFF),
973 (uint32_t)((lo>>16LL) & 0xFF),
974 (uint32_t)(lo & 0xFFFFFF));
975 } else {
976 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
977 (uint32_t)(lo>>32),
978 (uint32_t)lo,
979 (uint32_t)(lo&0xFFFF),
980 (uint32_t)((lo>>16LL) & 0xFF),
981 (uint32_t)(lo & 0xFFFFFF));
982 }
983
984 if (findone){
985 if (ledcontrol) LED_A_OFF();
986 *high=lo>>32;
987 *low=lo & 0xFFFFFFFF;
988 return;
989 }
990 }
991 WDT_HIT();
992 hi = lo = size = idx = 0;
993 clk = invert = errCnt = 0;
994 }
995 DbpString("Stopped");
996 if (ledcontrol) LED_A_OFF();
997 }
998
999 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1000 {
1001 uint8_t *dest = BigBuf_get_addr();
1002 int idx=0;
1003 uint32_t code=0, code2=0;
1004 uint8_t version=0;
1005 uint8_t facilitycode=0;
1006 uint16_t number=0;
1007 // Configure to go in 125Khz listen mode
1008 LFSetupFPGAForADC(95, true);
1009
1010 while(!BUTTON_PRESS()) {
1011 WDT_HIT();
1012 if (ledcontrol) LED_A_ON();
1013 DoAcquisition_default(-1,true);
1014 //fskdemod and get start index
1015 WDT_HIT();
1016 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1017 if (idx<0) continue;
1018 //valid tag found
1019
1020 //Index map
1021 //0 10 20 30 40 50 60
1022 //| | | | | | |
1023 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1024 //-----------------------------------------------------------------------------
1025 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1026 //
1027 //XSF(version)facility:codeone+codetwo
1028 //Handle the data
1029 if(findone){ //only print binary if we are doing one
1030 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1031 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1032 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1033 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1034 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1037 }
1038 code = bytebits_to_byte(dest+idx,32);
1039 code2 = bytebits_to_byte(dest+idx+32,32);
1040 version = bytebits_to_byte(dest+idx+27,8); //14,4
1041 facilitycode = bytebits_to_byte(dest+idx+18,8);
1042 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1043
1044 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1045 // if we're only looking for one tag
1046 if (findone){
1047 if (ledcontrol) LED_A_OFF();
1048 //LED_A_OFF();
1049 *high=code;
1050 *low=code2;
1051 return;
1052 }
1053 code=code2=0;
1054 version=facilitycode=0;
1055 number=0;
1056 idx=0;
1057
1058 WDT_HIT();
1059 }
1060 DbpString("Stopped");
1061 if (ledcontrol) LED_A_OFF();
1062 }
1063
1064 /*------------------------------
1065 * T5555/T5557/T5567 routines
1066 *------------------------------
1067 */
1068
1069 /* T55x7 configuration register definitions */
1070 #define T55x7_POR_DELAY 0x00000001
1071 #define T55x7_ST_TERMINATOR 0x00000008
1072 #define T55x7_PWD 0x00000010
1073 #define T55x7_MAXBLOCK_SHIFT 5
1074 #define T55x7_AOR 0x00000200
1075 #define T55x7_PSKCF_RF_2 0
1076 #define T55x7_PSKCF_RF_4 0x00000400
1077 #define T55x7_PSKCF_RF_8 0x00000800
1078 #define T55x7_MODULATION_DIRECT 0
1079 #define T55x7_MODULATION_PSK1 0x00001000
1080 #define T55x7_MODULATION_PSK2 0x00002000
1081 #define T55x7_MODULATION_PSK3 0x00003000
1082 #define T55x7_MODULATION_FSK1 0x00004000
1083 #define T55x7_MODULATION_FSK2 0x00005000
1084 #define T55x7_MODULATION_FSK1a 0x00006000
1085 #define T55x7_MODULATION_FSK2a 0x00007000
1086 #define T55x7_MODULATION_MANCHESTER 0x00008000
1087 #define T55x7_MODULATION_BIPHASE 0x00010000
1088 #define T55x7_BITRATE_RF_8 0
1089 #define T55x7_BITRATE_RF_16 0x00040000
1090 #define T55x7_BITRATE_RF_32 0x00080000
1091 #define T55x7_BITRATE_RF_40 0x000C0000
1092 #define T55x7_BITRATE_RF_50 0x00100000
1093 #define T55x7_BITRATE_RF_64 0x00140000
1094 #define T55x7_BITRATE_RF_100 0x00180000
1095 #define T55x7_BITRATE_RF_128 0x001C0000
1096
1097 /* T5555 (Q5) configuration register definitions */
1098 #define T5555_ST_TERMINATOR 0x00000001
1099 #define T5555_MAXBLOCK_SHIFT 0x00000001
1100 #define T5555_MODULATION_MANCHESTER 0
1101 #define T5555_MODULATION_PSK1 0x00000010
1102 #define T5555_MODULATION_PSK2 0x00000020
1103 #define T5555_MODULATION_PSK3 0x00000030
1104 #define T5555_MODULATION_FSK1 0x00000040
1105 #define T5555_MODULATION_FSK2 0x00000050
1106 #define T5555_MODULATION_BIPHASE 0x00000060
1107 #define T5555_MODULATION_DIRECT 0x00000070
1108 #define T5555_INVERT_OUTPUT 0x00000080
1109 #define T5555_PSK_RF_2 0
1110 #define T5555_PSK_RF_4 0x00000100
1111 #define T5555_PSK_RF_8 0x00000200
1112 #define T5555_USE_PWD 0x00000400
1113 #define T5555_USE_AOR 0x00000800
1114 #define T5555_BITRATE_SHIFT 12
1115 #define T5555_FAST_WRITE 0x00004000
1116 #define T5555_PAGE_SELECT 0x00008000
1117
1118 /*
1119 * Relevant times in microsecond
1120 * To compensate antenna falling times shorten the write times
1121 * and enlarge the gap ones.
1122 */
1123 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1124 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1125 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1126 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1127
1128 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1129
1130 // Write one bit to card
1131 void T55xxWriteBit(int bit)
1132 {
1133 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1134 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1135 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1136 if (bit == 0)
1137 SpinDelayUs(WRITE_0);
1138 else
1139 SpinDelayUs(WRITE_1);
1140 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1141 SpinDelayUs(WRITE_GAP);
1142 }
1143
1144 // Write one card block in page 0, no lock
1145 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1146 {
1147 uint32_t i = 0;
1148
1149 // Set up FPGA, 125kHz
1150 // Wait for config.. (192+8190xPOW)x8 == 67ms
1151 LFSetupFPGAForADC(0, true);
1152
1153 // Now start writting
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1155 SpinDelayUs(START_GAP);
1156
1157 // Opcode
1158 T55xxWriteBit(1);
1159 T55xxWriteBit(0); //Page 0
1160 if (PwdMode == 1){
1161 // Pwd
1162 for (i = 0x80000000; i != 0; i >>= 1)
1163 T55xxWriteBit(Pwd & i);
1164 }
1165 // Lock bit
1166 T55xxWriteBit(0);
1167
1168 // Data
1169 for (i = 0x80000000; i != 0; i >>= 1)
1170 T55xxWriteBit(Data & i);
1171
1172 // Block
1173 for (i = 0x04; i != 0; i >>= 1)
1174 T55xxWriteBit(Block & i);
1175
1176 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1177 // so wait a little more)
1178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1180 SpinDelay(20);
1181 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1182 }
1183
1184 void TurnReadLFOn(){
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1186 // Give it a bit of time for the resonant antenna to settle.
1187 SpinDelayUs(8*150);
1188 }
1189
1190
1191 // Read one card block in page 0
1192 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1193 {
1194 uint32_t i = 0;
1195 uint8_t *dest = BigBuf_get_addr();
1196 uint16_t bufferlength = BigBuf_max_traceLen();
1197 if ( bufferlength > T55xx_SAMPLES_SIZE )
1198 bufferlength = T55xx_SAMPLES_SIZE;
1199
1200 // Clear destination buffer before sending the command
1201 memset(dest, 0x80, bufferlength);
1202
1203 // Set up FPGA, 125kHz
1204 // Wait for config.. (192+8190xPOW)x8 == 67ms
1205 LFSetupFPGAForADC(0, true);
1206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1207 SpinDelayUs(START_GAP);
1208
1209 // Opcode
1210 T55xxWriteBit(1);
1211 T55xxWriteBit(0); //Page 0
1212 if (PwdMode == 1){
1213 // Pwd
1214 for (i = 0x80000000; i != 0; i >>= 1)
1215 T55xxWriteBit(Pwd & i);
1216 }
1217 // Lock bit
1218 T55xxWriteBit(0);
1219 // Block
1220 for (i = 0x04; i != 0; i >>= 1)
1221 T55xxWriteBit(Block & i);
1222
1223 // Turn field on to read the response
1224 TurnReadLFOn();
1225 // Now do the acquisition
1226 i = 0;
1227 for(;;) {
1228 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1229 AT91C_BASE_SSC->SSC_THR = 0x43;
1230 LED_D_ON();
1231 }
1232 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1233 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1234 i++;
1235 LED_D_OFF();
1236 if (i >= bufferlength) break;
1237 }
1238 }
1239
1240 cmd_send(CMD_ACK,0,0,0,0,0);
1241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1242 LED_D_OFF();
1243 }
1244
1245 // Read card traceability data (page 1)
1246 void T55xxReadTrace(void){
1247
1248 uint32_t i = 0;
1249 uint8_t *dest = BigBuf_get_addr();
1250 uint16_t bufferlength = BigBuf_max_traceLen();
1251 if ( bufferlength > T55xx_SAMPLES_SIZE )
1252 bufferlength= T55xx_SAMPLES_SIZE;
1253
1254 // Clear destination buffer before sending the command
1255 memset(dest, 0x80, bufferlength);
1256
1257 LFSetupFPGAForADC(0, true);
1258 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1259 SpinDelayUs(START_GAP);
1260
1261 // Opcode
1262 T55xxWriteBit(1);
1263 T55xxWriteBit(1); //Page 1
1264
1265 // Turn field on to read the response
1266 TurnReadLFOn();
1267
1268 // Now do the acquisition
1269 for(;;) {
1270 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1271 AT91C_BASE_SSC->SSC_THR = 0x43;
1272 LED_D_ON();
1273 }
1274 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1275 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1276 i++;
1277 LED_D_OFF();
1278
1279 if (i >= bufferlength) break;
1280 }
1281 }
1282
1283 cmd_send(CMD_ACK,0,0,0,0,0);
1284 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1285 LED_D_OFF();
1286 }
1287
1288 /*-------------- Cloning routines -----------*/
1289 // Copy HID id to card and setup block 0 config
1290 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1291 {
1292 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1293 int last_block = 0;
1294
1295 if (longFMT){
1296 // Ensure no more than 84 bits supplied
1297 if (hi2>0xFFFFF) {
1298 DbpString("Tags can only have 84 bits.");
1299 return;
1300 }
1301 // Build the 6 data blocks for supplied 84bit ID
1302 last_block = 6;
1303 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1304 for (int i=0;i<4;i++) {
1305 if (hi2 & (1<<(19-i)))
1306 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1307 else
1308 data1 |= (1<<((3-i)*2)); // 0 -> 01
1309 }
1310
1311 data2 = 0;
1312 for (int i=0;i<16;i++) {
1313 if (hi2 & (1<<(15-i)))
1314 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1315 else
1316 data2 |= (1<<((15-i)*2)); // 0 -> 01
1317 }
1318
1319 data3 = 0;
1320 for (int i=0;i<16;i++) {
1321 if (hi & (1<<(31-i)))
1322 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1323 else
1324 data3 |= (1<<((15-i)*2)); // 0 -> 01
1325 }
1326
1327 data4 = 0;
1328 for (int i=0;i<16;i++) {
1329 if (hi & (1<<(15-i)))
1330 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1331 else
1332 data4 |= (1<<((15-i)*2)); // 0 -> 01
1333 }
1334
1335 data5 = 0;
1336 for (int i=0;i<16;i++) {
1337 if (lo & (1<<(31-i)))
1338 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1339 else
1340 data5 |= (1<<((15-i)*2)); // 0 -> 01
1341 }
1342
1343 data6 = 0;
1344 for (int i=0;i<16;i++) {
1345 if (lo & (1<<(15-i)))
1346 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1347 else
1348 data6 |= (1<<((15-i)*2)); // 0 -> 01
1349 }
1350 }
1351 else {
1352 // Ensure no more than 44 bits supplied
1353 if (hi>0xFFF) {
1354 DbpString("Tags can only have 44 bits.");
1355 return;
1356 }
1357
1358 // Build the 3 data blocks for supplied 44bit ID
1359 last_block = 3;
1360
1361 data1 = 0x1D000000; // load preamble
1362
1363 for (int i=0;i<12;i++) {
1364 if (hi & (1<<(11-i)))
1365 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1366 else
1367 data1 |= (1<<((11-i)*2)); // 0 -> 01
1368 }
1369
1370 data2 = 0;
1371 for (int i=0;i<16;i++) {
1372 if (lo & (1<<(31-i)))
1373 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1374 else
1375 data2 |= (1<<((15-i)*2)); // 0 -> 01
1376 }
1377
1378 data3 = 0;
1379 for (int i=0;i<16;i++) {
1380 if (lo & (1<<(15-i)))
1381 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1382 else
1383 data3 |= (1<<((15-i)*2)); // 0 -> 01
1384 }
1385 }
1386
1387 LED_D_ON();
1388 // Program the data blocks for supplied ID
1389 // and the block 0 for HID format
1390 T55xxWriteBlock(data1,1,0,0);
1391 T55xxWriteBlock(data2,2,0,0);
1392 T55xxWriteBlock(data3,3,0,0);
1393
1394 if (longFMT) { // if long format there are 6 blocks
1395 T55xxWriteBlock(data4,4,0,0);
1396 T55xxWriteBlock(data5,5,0,0);
1397 T55xxWriteBlock(data6,6,0,0);
1398 }
1399
1400 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1401 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1402 T55x7_MODULATION_FSK2a |
1403 last_block << T55x7_MAXBLOCK_SHIFT,
1404 0,0,0);
1405
1406 LED_D_OFF();
1407
1408 DbpString("DONE!");
1409 }
1410
1411 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1412 {
1413 int data1=0, data2=0; //up to six blocks for long format
1414
1415 data1 = hi; // load preamble
1416 data2 = lo;
1417
1418 LED_D_ON();
1419 // Program the data blocks for supplied ID
1420 // and the block 0 for HID format
1421 T55xxWriteBlock(data1,1,0,0);
1422 T55xxWriteBlock(data2,2,0,0);
1423
1424 //Config Block
1425 T55xxWriteBlock(0x00147040,0,0,0);
1426 LED_D_OFF();
1427
1428 DbpString("DONE!");
1429 }
1430
1431 // Define 9bit header for EM410x tags
1432 #define EM410X_HEADER 0x1FF
1433 #define EM410X_ID_LENGTH 40
1434
1435 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1436 {
1437 int i, id_bit;
1438 uint64_t id = EM410X_HEADER;
1439 uint64_t rev_id = 0; // reversed ID
1440 int c_parity[4]; // column parity
1441 int r_parity = 0; // row parity
1442 uint32_t clock = 0;
1443
1444 // Reverse ID bits given as parameter (for simpler operations)
1445 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1446 if (i < 32) {
1447 rev_id = (rev_id << 1) | (id_lo & 1);
1448 id_lo >>= 1;
1449 } else {
1450 rev_id = (rev_id << 1) | (id_hi & 1);
1451 id_hi >>= 1;
1452 }
1453 }
1454
1455 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1456 id_bit = rev_id & 1;
1457
1458 if (i % 4 == 0) {
1459 // Don't write row parity bit at start of parsing
1460 if (i)
1461 id = (id << 1) | r_parity;
1462 // Start counting parity for new row
1463 r_parity = id_bit;
1464 } else {
1465 // Count row parity
1466 r_parity ^= id_bit;
1467 }
1468
1469 // First elements in column?
1470 if (i < 4)
1471 // Fill out first elements
1472 c_parity[i] = id_bit;
1473 else
1474 // Count column parity
1475 c_parity[i % 4] ^= id_bit;
1476
1477 // Insert ID bit
1478 id = (id << 1) | id_bit;
1479 rev_id >>= 1;
1480 }
1481
1482 // Insert parity bit of last row
1483 id = (id << 1) | r_parity;
1484
1485 // Fill out column parity at the end of tag
1486 for (i = 0; i < 4; ++i)
1487 id = (id << 1) | c_parity[i];
1488
1489 // Add stop bit
1490 id <<= 1;
1491
1492 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1493 LED_D_ON();
1494
1495 // Write EM410x ID
1496 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1497 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1498
1499 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1500 if (card) {
1501 // Clock rate is stored in bits 8-15 of the card value
1502 clock = (card & 0xFF00) >> 8;
1503 Dbprintf("Clock rate: %d", clock);
1504 switch (clock)
1505 {
1506 case 32:
1507 clock = T55x7_BITRATE_RF_32;
1508 break;
1509 case 16:
1510 clock = T55x7_BITRATE_RF_16;
1511 break;
1512 case 0:
1513 // A value of 0 is assumed to be 64 for backwards-compatibility
1514 // Fall through...
1515 case 64:
1516 clock = T55x7_BITRATE_RF_64;
1517 break;
1518 default:
1519 Dbprintf("Invalid clock rate: %d", clock);
1520 return;
1521 }
1522
1523 // Writing configuration for T55x7 tag
1524 T55xxWriteBlock(clock |
1525 T55x7_MODULATION_MANCHESTER |
1526 2 << T55x7_MAXBLOCK_SHIFT,
1527 0, 0, 0);
1528 }
1529 else
1530 // Writing configuration for T5555(Q5) tag
1531 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1532 T5555_MODULATION_MANCHESTER |
1533 2 << T5555_MAXBLOCK_SHIFT,
1534 0, 0, 0);
1535
1536 LED_D_OFF();
1537 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1538 (uint32_t)(id >> 32), (uint32_t)id);
1539 }
1540
1541 // Clone Indala 64-bit tag by UID to T55x7
1542 void CopyIndala64toT55x7(int hi, int lo)
1543 {
1544
1545 //Program the 2 data blocks for supplied 64bit UID
1546 // and the block 0 for Indala64 format
1547 T55xxWriteBlock(hi,1,0,0);
1548 T55xxWriteBlock(lo,2,0,0);
1549 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1550 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1551 T55x7_MODULATION_PSK1 |
1552 2 << T55x7_MAXBLOCK_SHIFT,
1553 0, 0, 0);
1554 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1555 // T5567WriteBlock(0x603E1042,0);
1556
1557 DbpString("DONE!");
1558
1559 }
1560
1561 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1562 {
1563
1564 //Program the 7 data blocks for supplied 224bit UID
1565 // and the block 0 for Indala224 format
1566 T55xxWriteBlock(uid1,1,0,0);
1567 T55xxWriteBlock(uid2,2,0,0);
1568 T55xxWriteBlock(uid3,3,0,0);
1569 T55xxWriteBlock(uid4,4,0,0);
1570 T55xxWriteBlock(uid5,5,0,0);
1571 T55xxWriteBlock(uid6,6,0,0);
1572 T55xxWriteBlock(uid7,7,0,0);
1573 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1574 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1575 T55x7_MODULATION_PSK1 |
1576 7 << T55x7_MAXBLOCK_SHIFT,
1577 0,0,0);
1578 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1579 // T5567WriteBlock(0x603E10E2,0);
1580
1581 DbpString("DONE!");
1582
1583 }
1584
1585
1586 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1587 #define max(x,y) ( x<y ? y:x)
1588
1589 int DemodPCF7931(uint8_t **outBlocks) {
1590 uint8_t BitStream[256];
1591 uint8_t Blocks[8][16];
1592 uint8_t *GraphBuffer = BigBuf_get_addr();
1593 int GraphTraceLen = BigBuf_max_traceLen();
1594 int i, j, lastval, bitidx, half_switch;
1595 int clock = 64;
1596 int tolerance = clock / 8;
1597 int pmc, block_done;
1598 int lc, warnings = 0;
1599 int num_blocks = 0;
1600 int lmin=128, lmax=128;
1601 uint8_t dir;
1602
1603 LFSetupFPGAForADC(95, true);
1604 DoAcquisition_default(0, 0);
1605
1606
1607 lmin = 64;
1608 lmax = 192;
1609
1610 i = 2;
1611
1612 /* Find first local max/min */
1613 if(GraphBuffer[1] > GraphBuffer[0]) {
1614 while(i < GraphTraceLen) {
1615 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1616 break;
1617 i++;
1618 }
1619 dir = 0;
1620 }
1621 else {
1622 while(i < GraphTraceLen) {
1623 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1624 break;
1625 i++;
1626 }
1627 dir = 1;
1628 }
1629
1630 lastval = i++;
1631 half_switch = 0;
1632 pmc = 0;
1633 block_done = 0;
1634
1635 for (bitidx = 0; i < GraphTraceLen; i++)
1636 {
1637 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1638 {
1639 lc = i - lastval;
1640 lastval = i;
1641
1642 // Switch depending on lc length:
1643 // Tolerance is 1/8 of clock rate (arbitrary)
1644 if (abs(lc-clock/4) < tolerance) {
1645 // 16T0
1646 if((i - pmc) == lc) { /* 16T0 was previous one */
1647 /* It's a PMC ! */
1648 i += (128+127+16+32+33+16)-1;
1649 lastval = i;
1650 pmc = 0;
1651 block_done = 1;
1652 }
1653 else {
1654 pmc = i;
1655 }
1656 } else if (abs(lc-clock/2) < tolerance) {
1657 // 32TO
1658 if((i - pmc) == lc) { /* 16T0 was previous one */
1659 /* It's a PMC ! */
1660 i += (128+127+16+32+33)-1;
1661 lastval = i;
1662 pmc = 0;
1663 block_done = 1;
1664 }
1665 else if(half_switch == 1) {
1666 BitStream[bitidx++] = 0;
1667 half_switch = 0;
1668 }
1669 else
1670 half_switch++;
1671 } else if (abs(lc-clock) < tolerance) {
1672 // 64TO
1673 BitStream[bitidx++] = 1;
1674 } else {
1675 // Error
1676 warnings++;
1677 if (warnings > 10)
1678 {
1679 Dbprintf("Error: too many detection errors, aborting.");
1680 return 0;
1681 }
1682 }
1683
1684 if(block_done == 1) {
1685 if(bitidx == 128) {
1686 for(j=0; j<16; j++) {
1687 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1688 64*BitStream[j*8+6]+
1689 32*BitStream[j*8+5]+
1690 16*BitStream[j*8+4]+
1691 8*BitStream[j*8+3]+
1692 4*BitStream[j*8+2]+
1693 2*BitStream[j*8+1]+
1694 BitStream[j*8];
1695 }
1696 num_blocks++;
1697 }
1698 bitidx = 0;
1699 block_done = 0;
1700 half_switch = 0;
1701 }
1702 if(i < GraphTraceLen)
1703 {
1704 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1705 else dir = 1;
1706 }
1707 }
1708 if(bitidx==255)
1709 bitidx=0;
1710 warnings = 0;
1711 if(num_blocks == 4) break;
1712 }
1713 memcpy(outBlocks, Blocks, 16*num_blocks);
1714 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1715
1716 return num_blocks;
1717 }
1718
1719 int IsBlock0PCF7931(uint8_t *Block) {
1720 // Assume RFU means 0 :)
1721 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1722 return 1;
1723 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1724 return 1;
1725 return 0;
1726 }
1727
1728 int IsBlock1PCF7931(uint8_t *Block) {
1729 // Assume RFU means 0 :)
1730 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1731 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1732 return 1;
1733
1734 return 0;
1735 }
1736
1737 #define ALLOC 16
1738
1739 void ReadPCF7931() {
1740 uint8_t Blocks[8][17];
1741 uint8_t tmpBlocks[4][16];
1742 int i, j, ind, ind2, n;
1743 int num_blocks = 0;
1744 int max_blocks = 8;
1745 int ident = 0;
1746 int error = 0;
1747 int tries = 0;
1748
1749 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1750
1751 do {
1752 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1753 n = DemodPCF7931((uint8_t**)tmpBlocks);
1754 if(!n)
1755 error++;
1756 if(error==10 && num_blocks == 0) {
1757 Dbprintf("Error, no tag or bad tag");
1758 return;
1759 }
1760 else if (tries==20 || error==10) {
1761 Dbprintf("Error reading the tag");
1762 Dbprintf("Here is the partial content");
1763 goto end;
1764 }
1765
1766 for(i=0; i<n; i++)
1767 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1768 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1769 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1770 if(!ident) {
1771 for(i=0; i<n; i++) {
1772 if(IsBlock0PCF7931(tmpBlocks[i])) {
1773 // Found block 0 ?
1774 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1775 // Found block 1!
1776 // \o/
1777 ident = 1;
1778 memcpy(Blocks[0], tmpBlocks[i], 16);
1779 Blocks[0][ALLOC] = 1;
1780 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1781 Blocks[1][ALLOC] = 1;
1782 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1783 // Debug print
1784 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1785 num_blocks = 2;
1786 // Handle following blocks
1787 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1788 if(j==n) j=0;
1789 if(j==i) break;
1790 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1791 Blocks[ind2][ALLOC] = 1;
1792 }
1793 break;
1794 }
1795 }
1796 }
1797 }
1798 else {
1799 for(i=0; i<n; i++) { // Look for identical block in known blocks
1800 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1801 for(j=0; j<max_blocks; j++) {
1802 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1803 // Found an identical block
1804 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1805 if(ind2 < 0)
1806 ind2 = max_blocks;
1807 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1808 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1809 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1810 Blocks[ind2][ALLOC] = 1;
1811 num_blocks++;
1812 if(num_blocks == max_blocks) goto end;
1813 }
1814 }
1815 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1816 if(ind2 > max_blocks)
1817 ind2 = 0;
1818 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1819 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1820 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1821 Blocks[ind2][ALLOC] = 1;
1822 num_blocks++;
1823 if(num_blocks == max_blocks) goto end;
1824 }
1825 }
1826 }
1827 }
1828 }
1829 }
1830 }
1831 tries++;
1832 if (BUTTON_PRESS()) return;
1833 } while (num_blocks != max_blocks);
1834 end:
1835 Dbprintf("-----------------------------------------");
1836 Dbprintf("Memory content:");
1837 Dbprintf("-----------------------------------------");
1838 for(i=0; i<max_blocks; i++) {
1839 if(Blocks[i][ALLOC]==1){
1840 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1841 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1842 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1843 }else
1844 Dbprintf("<missing block %d>", i);
1845 }
1846 Dbprintf("-----------------------------------------");
1847
1848
1849 return ;
1850 }
1851
1852
1853 //-----------------------------------
1854 // EM4469 / EM4305 routines
1855 //-----------------------------------
1856 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1857 #define FWD_CMD_WRITE 0xA
1858 #define FWD_CMD_READ 0x9
1859 #define FWD_CMD_DISABLE 0x5
1860
1861
1862 uint8_t forwardLink_data[64]; //array of forwarded bits
1863 uint8_t * forward_ptr; //ptr for forward message preparation
1864 uint8_t fwd_bit_sz; //forwardlink bit counter
1865 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1866
1867 //====================================================================
1868 // prepares command bits
1869 // see EM4469 spec
1870 //====================================================================
1871 //--------------------------------------------------------------------
1872 uint8_t Prepare_Cmd( uint8_t cmd ) {
1873 //--------------------------------------------------------------------
1874
1875 *forward_ptr++ = 0; //start bit
1876 *forward_ptr++ = 0; //second pause for 4050 code
1877
1878 *forward_ptr++ = cmd;
1879 cmd >>= 1;
1880 *forward_ptr++ = cmd;
1881 cmd >>= 1;
1882 *forward_ptr++ = cmd;
1883 cmd >>= 1;
1884 *forward_ptr++ = cmd;
1885
1886 return 6; //return number of emited bits
1887 }
1888
1889 //====================================================================
1890 // prepares address bits
1891 // see EM4469 spec
1892 //====================================================================
1893
1894 //--------------------------------------------------------------------
1895 uint8_t Prepare_Addr( uint8_t addr ) {
1896 //--------------------------------------------------------------------
1897
1898 register uint8_t line_parity;
1899
1900 uint8_t i;
1901 line_parity = 0;
1902 for(i=0;i<6;i++) {
1903 *forward_ptr++ = addr;
1904 line_parity ^= addr;
1905 addr >>= 1;
1906 }
1907
1908 *forward_ptr++ = (line_parity & 1);
1909
1910 return 7; //return number of emited bits
1911 }
1912
1913 //====================================================================
1914 // prepares data bits intreleaved with parity bits
1915 // see EM4469 spec
1916 //====================================================================
1917
1918 //--------------------------------------------------------------------
1919 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1920 //--------------------------------------------------------------------
1921
1922 register uint8_t line_parity;
1923 register uint8_t column_parity;
1924 register uint8_t i, j;
1925 register uint16_t data;
1926
1927 data = data_low;
1928 column_parity = 0;
1929
1930 for(i=0; i<4; i++) {
1931 line_parity = 0;
1932 for(j=0; j<8; j++) {
1933 line_parity ^= data;
1934 column_parity ^= (data & 1) << j;
1935 *forward_ptr++ = data;
1936 data >>= 1;
1937 }
1938 *forward_ptr++ = line_parity;
1939 if(i == 1)
1940 data = data_hi;
1941 }
1942
1943 for(j=0; j<8; j++) {
1944 *forward_ptr++ = column_parity;
1945 column_parity >>= 1;
1946 }
1947 *forward_ptr = 0;
1948
1949 return 45; //return number of emited bits
1950 }
1951
1952 //====================================================================
1953 // Forward Link send function
1954 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1955 // fwd_bit_count set with number of bits to be sent
1956 //====================================================================
1957 void SendForward(uint8_t fwd_bit_count) {
1958
1959 fwd_write_ptr = forwardLink_data;
1960 fwd_bit_sz = fwd_bit_count;
1961
1962 LED_D_ON();
1963
1964 //Field on
1965 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1966 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1967 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1968
1969 // Give it a bit of time for the resonant antenna to settle.
1970 // And for the tag to fully power up
1971 SpinDelay(150);
1972
1973 // force 1st mod pulse (start gap must be longer for 4305)
1974 fwd_bit_sz--; //prepare next bit modulation
1975 fwd_write_ptr++;
1976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1977 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1978 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1979 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1980 SpinDelayUs(16*8); //16 cycles on (8us each)
1981
1982 // now start writting
1983 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1984 if(((*fwd_write_ptr++) & 1) == 1)
1985 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1986 else {
1987 //These timings work for 4469/4269/4305 (with the 55*8 above)
1988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1989 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1990 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1991 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1992 SpinDelayUs(9*8); //16 cycles on (8us each)
1993 }
1994 }
1995 }
1996
1997 void EM4xLogin(uint32_t Password) {
1998
1999 uint8_t fwd_bit_count;
2000
2001 forward_ptr = forwardLink_data;
2002 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2003 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2004
2005 SendForward(fwd_bit_count);
2006
2007 //Wait for command to complete
2008 SpinDelay(20);
2009
2010 }
2011
2012 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2013
2014 uint8_t fwd_bit_count;
2015 uint8_t *dest = BigBuf_get_addr();
2016 int m=0, i=0;
2017
2018 //If password mode do login
2019 if (PwdMode == 1) EM4xLogin(Pwd);
2020
2021 forward_ptr = forwardLink_data;
2022 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2023 fwd_bit_count += Prepare_Addr( Address );
2024
2025 m = BigBuf_max_traceLen();
2026 // Clear destination buffer before sending the command
2027 memset(dest, 128, m);
2028 // Connect the A/D to the peak-detected low-frequency path.
2029 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2030 // Now set up the SSC to get the ADC samples that are now streaming at us.
2031 FpgaSetupSsc();
2032
2033 SendForward(fwd_bit_count);
2034
2035 // Now do the acquisition
2036 i = 0;
2037 for(;;) {
2038 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2039 AT91C_BASE_SSC->SSC_THR = 0x43;
2040 }
2041 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2042 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2043 i++;
2044 if (i >= m) break;
2045 }
2046 }
2047 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2048 LED_D_OFF();
2049 }
2050
2051 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2052
2053 uint8_t fwd_bit_count;
2054
2055 //If password mode do login
2056 if (PwdMode == 1) EM4xLogin(Pwd);
2057
2058 forward_ptr = forwardLink_data;
2059 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2060 fwd_bit_count += Prepare_Addr( Address );
2061 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2062
2063 SendForward(fwd_bit_count);
2064
2065 //Wait for write to complete
2066 SpinDelay(20);
2067 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2068 LED_D_OFF();
2069 }
2070
2071
2072 #define T0_PCF 8 //period for the pcf7931 in us
2073
2074 /* Write on a byte of a PCF7931 tag
2075 * @param address : address of the block to write
2076 @param byte : address of the byte to write
2077 @param data : data to write
2078 */
2079 void WritePCF7931(uint8_t pass1, uint8_t pass2, uint8_t pass3, uint8_t pass4, uint8_t pass5, uint8_t pass6, uint8_t pass7, uint16_t init_delay, int32_t l, int32_t p, uint8_t address, uint8_t byte, uint8_t data)
2080 {
2081
2082 uint32_t tab[1024]={0}; // data times frame
2083 uint32_t u = 0;
2084 uint8_t parity = 0;
2085 bool comp = 0;
2086
2087
2088 //BUILD OF THE DATA FRAME
2089
2090 //alimentation of the tag (time for initializing)
2091 AddPatternPCF7931(init_delay, 0, 8192/2*T0_PCF, tab);
2092
2093 //PMC
2094 Dbprintf("Initialization delay : %d us", init_delay);
2095 AddPatternPCF7931(8192/2*T0_PCF + 319*T0_PCF+70, 3*T0_PCF, 29*T0_PCF, tab);
2096
2097 Dbprintf("Offsets : %d us on the low pulses width, %d us on the low pulses positions", l, p);
2098
2099 //password indication bit
2100 AddBitPCF7931(1, tab, l, p);
2101
2102
2103 //password (on 56 bits)
2104 Dbprintf("Password (LSB first on each byte) : %02x %02x %02x %02x %02x %02x %02x", pass1,pass2,pass3,pass4,pass5,pass6,pass7);
2105 AddBytePCF7931(pass1, tab, l, p);
2106 AddBytePCF7931(pass2, tab, l, p);
2107 AddBytePCF7931(pass3, tab, l, p);
2108 AddBytePCF7931(pass4, tab, l, p);
2109 AddBytePCF7931(pass5, tab, l, p);
2110 AddBytePCF7931(pass6, tab, l, p);
2111 AddBytePCF7931(pass7, tab, l, p);
2112
2113
2114 //programming mode (0 or 1)
2115 AddBitPCF7931(0, tab, l, p);
2116
2117 //block adress on 6 bits
2118 Dbprintf("Block address : %02x", address);
2119 for (u=0; u<6; u++)
2120 {
2121 if (address&(1<<u)) { // bit 1
2122 parity++;
2123 AddBitPCF7931(1, tab, l, p);
2124 } else{ // bit 0
2125 AddBitPCF7931(0, tab, l, p);
2126 }
2127 }
2128
2129 //byte address on 4 bits
2130 Dbprintf("Byte address : %02x", byte);
2131 for (u=0; u<4; u++)
2132 {
2133 if (byte&(1<<u)) { // bit 1
2134 parity++;
2135 AddBitPCF7931(1, tab, l, p);
2136 } else{ // bit 0
2137 AddBitPCF7931(0, tab, l, p);
2138 }
2139 }
2140
2141 //data on 8 bits
2142 Dbprintf("Data : %02x", data);
2143 for (u=0; u<8; u++)
2144 {
2145 if (data&(1<<u)) { // bit 1
2146 parity++;
2147 AddBitPCF7931(1, tab, l, p);
2148 } else{ //bit 0
2149 AddBitPCF7931(0, tab, l, p);
2150 }
2151 }
2152
2153
2154 //parity bit
2155 if((parity%2)==0){
2156 AddBitPCF7931(0, tab, l, p); //even parity
2157 }else{
2158 AddBitPCF7931(1, tab, l, p);//odd parity
2159 }
2160
2161 //time access memory
2162 AddPatternPCF7931(5120+2680, 0, 0, tab);
2163
2164 //conversion of the scale time
2165 for(u=0;u<500;u++){
2166 tab[u]=(tab[u] * 3)/2;
2167 }
2168
2169
2170 //compennsation of the counter reload
2171 while (!comp){
2172 comp = 1;
2173 for(u=0;tab[u]!=0;u++){
2174 if(tab[u] > 0xFFFF){
2175 tab[u] -= 0xFFFF;
2176 comp = 0;
2177 }
2178 }
2179 }
2180
2181 SendCmdPCF7931(tab);
2182 }
2183
2184
2185
2186 /* Send a trame to a PCF7931 tags
2187 * @param tab : array of the data frame
2188 */
2189
2190 void SendCmdPCF7931(uint32_t * tab){
2191 uint16_t u=0;
2192 uint16_t tempo=0;
2193
2194 Dbprintf("SENDING DATA FRAME...");
2195
2196 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2197
2198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2199
2200 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU );
2201
2202 LED_A_ON();
2203
2204 // steal this pin from the SSP and use it to control the modulation
2205 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
2206 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
2207
2208 //initialization of the timer
2209 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
2210 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
2211 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
2212 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz
2213 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
2214 AT91C_BASE_TCB->TCB_BCR = 1;
2215
2216
2217 tempo = AT91C_BASE_TC0->TC_CV;
2218 for(u=0;tab[u]!= 0;u+=3){
2219
2220
2221 // modulate antenna
2222 HIGH(GPIO_SSC_DOUT);
2223 while(tempo != tab[u]){
2224 tempo = AT91C_BASE_TC0->TC_CV;
2225 }
2226
2227 // stop modulating antenna
2228 LOW(GPIO_SSC_DOUT);
2229 while(tempo != tab[u+1]){
2230 tempo = AT91C_BASE_TC0->TC_CV;
2231 }
2232
2233
2234 // modulate antenna
2235 HIGH(GPIO_SSC_DOUT);
2236 while(tempo != tab[u+2]){
2237 tempo = AT91C_BASE_TC0->TC_CV;
2238 }
2239
2240
2241 }
2242
2243 LED_A_OFF();
2244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2245 SpinDelay(200);
2246
2247
2248 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
2249 DbpString("FINISH !");
2250 DbpString("(Could be usefull to send the same trame many times)");
2251 LED(0xFFFF, 1000);
2252 }
2253
2254
2255 /* Add a byte for building the data frame of PCF7931 tags
2256 * @param b : byte to add
2257 * @param tab : array of the data frame
2258 * @param l : offset on low pulse width
2259 * @param p : offset on low pulse positioning
2260 */
2261
2262 bool AddBytePCF7931(uint8_t byte, uint32_t * tab, int32_t l, int32_t p){
2263
2264 uint32_t u;
2265 for (u=0; u<8; u++)
2266 {
2267 if (byte&(1<<u)) { //bit à 1
2268 if(AddBitPCF7931(1, tab, l, p)==1)return 1;
2269 } else { //bit à 0
2270 if(AddBitPCF7931(0, tab, l, p)==1)return 1;
2271 }
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* Add a bits for building the data frame of PCF7931 tags
2278 * @param b : bit to add
2279 * @param tab : array of the data frame
2280 * @param l : offset on low pulse width
2281 * @param p : offset on low pulse positioning
2282 */
2283 bool AddBitPCF7931(bool b, uint32_t * tab, int32_t l, int32_t p){
2284 uint8_t u = 0;
2285
2286 for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array
2287
2288
2289 if(b==1){ //add a bit 1
2290 if(u==0) tab[u] = 34*T0_PCF+p;
2291 else tab[u] = 34*T0_PCF+tab[u-1]+p;
2292
2293 tab[u+1] = 6*T0_PCF+tab[u]+l;
2294 tab[u+2] = 88*T0_PCF+tab[u+1]-l-p;
2295 return 0;
2296 }else{ //add a bit 0
2297
2298 if(u==0) tab[u] = 98*T0_PCF+p;
2299 else tab[u] = 98*T0_PCF+tab[u-1]+p;
2300
2301 tab[u+1] = 6*T0_PCF+tab[u]+l;
2302 tab[u+2] = 24*T0_PCF+tab[u+1]-l-p;
2303 return 0;
2304 }
2305
2306
2307 return 1;
2308 }
2309
2310 /* Add a custom pattern in the data frame
2311 * @param a : delay of the first high pulse
2312 * @param b : delay of the low pulse
2313 * @param c : delay of the last high pulse
2314 * @param tab : array of the data frame
2315 */
2316 bool AddPatternPCF7931(uint32_t a, uint32_t b, uint32_t c, uint32_t * tab){
2317 uint32_t u = 0;
2318 for(u=0;tab[u]!=0;u+=3){} //we put the cursor at the last value of the array
2319
2320 if(u==0) tab[u] = a;
2321 else tab[u] = a + tab[u-1];
2322
2323 tab[u+1] = b+tab[u];
2324 tab[u+2] = c+tab[u+1];
2325
2326 return 0;
2327 }
Impressum, Datenschutz