]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
update em4x05/em4x69 cmds
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "proxmark3.h"
15 #include "ui.h"
16 #include "util.h"
17 #include "graph.h"
18 #include "cmdparser.h"
19 #include "cmddata.h"
20 #include "cmdlf.h"
21 #include "cmdmain.h"
22 #include "cmdlfem4x.h"
23 #include "lfdemod.h"
24
25 char *global_em410xId;
26
27 static int CmdHelp(const char *Cmd);
28
29 int CmdEMdemodASK(const char *Cmd)
30 {
31 char cmdp = param_getchar(Cmd, 0);
32 int findone = (cmdp == '1') ? 1 : 0;
33 UsbCommand c={CMD_EM410X_DEMOD};
34 c.arg[0]=findone;
35 SendCommand(&c);
36 return 0;
37 }
38
39 /* Read the ID of an EM410x tag.
40 * Format:
41 * 1111 1111 1 <-- standard non-repeatable header
42 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
43 * ....
44 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
45 * 0 <-- stop bit, end of tag
46 */
47 int CmdEM410xRead(const char *Cmd)
48 {
49 uint32_t hi=0;
50 uint64_t lo=0;
51
52 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
53 PrintAndLog("EM410x pattern found: ");
54 printEM410x(hi, lo);
55 if (hi){
56 PrintAndLog ("EM410x XL pattern found");
57 return 0;
58 }
59 char id[12] = {0x00};
60 sprintf(id, "%010"PRIx64,lo);
61
62 global_em410xId = id;
63 return 1;
64 }
65
66 // emulate an EM410X tag
67 int CmdEM410xSim(const char *Cmd)
68 {
69 int i, n, j, binary[4], parity[4];
70
71 char cmdp = param_getchar(Cmd, 0);
72 uint8_t uid[5] = {0x00};
73
74 if (cmdp == 'h' || cmdp == 'H') {
75 PrintAndLog("Usage: lf em4x em410xsim <UID> <clock>");
76 PrintAndLog("");
77 PrintAndLog(" sample: lf em4x em410xsim 0F0368568B");
78 return 0;
79 }
80 /* clock is 64 in EM410x tags */
81 uint8_t clock = 64;
82
83 if (param_gethex(Cmd, 0, uid, 10)) {
84 PrintAndLog("UID must include 10 HEX symbols");
85 return 0;
86 }
87 param_getdec(Cmd,1, &clock);
88
89 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
90 PrintAndLog("Press pm3-button to about simulation");
91
92
93 /* clear our graph */
94 ClearGraph(0);
95
96 /* write 9 start bits */
97 for (i = 0; i < 9; i++)
98 AppendGraph(0, clock, 1);
99
100 /* for each hex char */
101 parity[0] = parity[1] = parity[2] = parity[3] = 0;
102 for (i = 0; i < 10; i++)
103 {
104 /* read each hex char */
105 sscanf(&Cmd[i], "%1x", &n);
106 for (j = 3; j >= 0; j--, n/= 2)
107 binary[j] = n % 2;
108
109 /* append each bit */
110 AppendGraph(0, clock, binary[0]);
111 AppendGraph(0, clock, binary[1]);
112 AppendGraph(0, clock, binary[2]);
113 AppendGraph(0, clock, binary[3]);
114
115 /* append parity bit */
116 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
117
118 /* keep track of column parity */
119 parity[0] ^= binary[0];
120 parity[1] ^= binary[1];
121 parity[2] ^= binary[2];
122 parity[3] ^= binary[3];
123 }
124
125 /* parity columns */
126 AppendGraph(0, clock, parity[0]);
127 AppendGraph(0, clock, parity[1]);
128 AppendGraph(0, clock, parity[2]);
129 AppendGraph(0, clock, parity[3]);
130
131 /* stop bit */
132 AppendGraph(1, clock, 0);
133
134 CmdLFSim("0"); //240 start_gap.
135 return 0;
136 }
137
138 /* Function is equivalent of lf read + data samples + em410xread
139 * looped until an EM410x tag is detected
140 *
141 * Why is CmdSamples("16000")?
142 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
143 * rate gets lower, then grow the number of samples
144 * Changed by martin, 4000 x 4 = 16000,
145 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
146 */
147 int CmdEM410xWatch(const char *Cmd)
148 {
149 do {
150 if (ukbhit()) {
151 printf("\naborted via keyboard!\n");
152 break;
153 }
154
155 CmdLFRead("s");
156 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
157 } while (!CmdEM410xRead(""));
158
159 return 0;
160 }
161
162 //currently only supports manchester modulations
163 int CmdEM410xWatchnSpoof(const char *Cmd)
164 {
165 CmdEM410xWatch(Cmd);
166 PrintAndLog("# Replaying captured ID: %s",global_em410xId);
167 CmdLFaskSim("");
168 return 0;
169 }
170
171 int CmdEM410xWrite(const char *Cmd)
172 {
173 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
174 int card = 0xFF; // invalid card value
175 unsigned int clock = 0; // invalid clock value
176
177 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
178
179 // Check ID
180 if (id == 0xFFFFFFFFFFFFFFFF) {
181 PrintAndLog("Error! ID is required.\n");
182 return 0;
183 }
184 if (id >= 0x10000000000) {
185 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
186 return 0;
187 }
188
189 // Check Card
190 if (card == 0xFF) {
191 PrintAndLog("Error! Card type required.\n");
192 return 0;
193 }
194 if (card < 0) {
195 PrintAndLog("Error! Bad card type selected.\n");
196 return 0;
197 }
198
199 // Check Clock
200 // Default: 64
201 if (clock == 0)
202 clock = 64;
203
204 // Allowed clock rates: 16, 32, 40 and 64
205 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
206 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
207 return 0;
208 }
209
210 if (card == 1) {
211 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
212 // NOTE: We really should pass the clock in as a separate argument, but to
213 // provide for backwards-compatibility for older firmware, and to avoid
214 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
215 // the clock rate in bits 8-15 of the card value
216 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
217 } else if (card == 0) {
218 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
219 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
220 } else {
221 PrintAndLog("Error! Bad card type selected.\n");
222 return 0;
223 }
224
225 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
226 SendCommand(&c);
227
228 return 0;
229 }
230
231 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
232 {
233 if (rows*cols>size) return false;
234 uint8_t colP=0;
235 //assume last col is a parity and do not test
236 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
237 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
238 colP ^= BitStream[(rowNum*cols)+colNum];
239 }
240 if (colP != pType) return false;
241 }
242 return true;
243 }
244
245 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
246 {
247 if (rows*cols>size) return false;
248 uint8_t rowP=0;
249 //assume last row is a parity row and do not test
250 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
251 for (uint8_t colNum = 0; colNum < cols; colNum++) {
252 rowP ^= BitStream[(rowNum*cols)+colNum];
253 }
254 if (rowP != pType) return false;
255 }
256 return true;
257 }
258
259 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
260 {
261 if (size<45) return 0;
262 uint32_t code = bytebits_to_byte(BitStream,8);
263 code = code<<8 | bytebits_to_byte(BitStream+9,8);
264 code = code<<8 | bytebits_to_byte(BitStream+18,8);
265 code = code<<8 | bytebits_to_byte(BitStream+27,8);
266 if (verbose || g_debugMode){
267 for (uint8_t i = 0; i<5; i++){
268 if (i == 4) PrintAndLog(""); //parity byte spacer
269 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
270 BitStream[i*9],
271 BitStream[i*9+1],
272 BitStream[i*9+2],
273 BitStream[i*9+3],
274 BitStream[i*9+4],
275 BitStream[i*9+5],
276 BitStream[i*9+6],
277 BitStream[i*9+7],
278 BitStream[i*9+8],
279 bytebits_to_byte(BitStream+i*9,8)
280 );
281 }
282 if (pTest)
283 PrintAndLog("Parity Passed");
284 else
285 PrintAndLog("Parity Failed");
286 }
287 return code;
288 }
289 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
290 * Format:
291 *
292 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
293 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
294 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
295 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
296 * CCCCCCCC <- column parity bits
297 * 0 <- stop bit
298 * LW <- Listen Window
299 *
300 * This pattern repeats for every block of data being transmitted.
301 * Transmission starts with two Listen Windows (LW - a modulated
302 * pattern of 320 cycles each (32/32/128/64/64)).
303 *
304 * Note that this data may or may not be the UID. It is whatever data
305 * is stored in the blocks defined in the control word First and Last
306 * Word Read values. UID is stored in block 32.
307 */
308 //completed by Marshmellow
309 int EM4x50Read(const char *Cmd, bool verbose)
310 {
311 uint8_t fndClk[] = {8,16,32,40,50,64,128};
312 int clk = 0;
313 int invert = 0;
314 int tol = 0;
315 int i, j, startblock, skip, block, start, end, low, high, minClk;
316 bool complete = false;
317 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
318 uint32_t Code[6];
319 char tmp[6];
320 char tmp2[20];
321 int phaseoff;
322 high = low = 0;
323 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
324
325 // get user entry if any
326 sscanf(Cmd, "%i %i", &clk, &invert);
327
328 // save GraphBuffer - to restore it later
329 save_restoreGB(1);
330
331 // first get high and low values
332 for (i = 0; i < GraphTraceLen; i++) {
333 if (GraphBuffer[i] > high)
334 high = GraphBuffer[i];
335 else if (GraphBuffer[i] < low)
336 low = GraphBuffer[i];
337 }
338
339 i = 0;
340 j = 0;
341 minClk = 255;
342 // get to first full low to prime loop and skip incomplete first pulse
343 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
344 ++i;
345 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
346 ++i;
347 skip = i;
348
349 // populate tmpbuff buffer with pulse lengths
350 while (i < GraphTraceLen) {
351 // measure from low to low
352 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
353 ++i;
354 start= i;
355 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
356 ++i;
357 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
358 ++i;
359 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
360 break;
361 }
362 tmpbuff[j++]= i - start;
363 if (i-start < minClk && i < GraphTraceLen) {
364 minClk = i - start;
365 }
366 }
367 // set clock
368 if (!clk) {
369 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
370 tol = fndClk[clkCnt]/8;
371 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
372 clk=fndClk[clkCnt];
373 break;
374 }
375 }
376 if (!clk) return 0;
377 } else tol = clk/8;
378
379 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
380 start = -1;
381 for (i= 0; i < j - 4 ; ++i) {
382 skip += tmpbuff[i];
383 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
384 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
385 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
386 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
387 {
388 start= i + 4;
389 break;
390 }
391 }
392 startblock = i + 4;
393
394 // skip over the remainder of LW
395 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
396 if (tmpbuff[i+3]>clk)
397 phaseoff = tmpbuff[i+3]-clk;
398 else
399 phaseoff = 0;
400 // now do it again to find the end
401 end = skip;
402 for (i += 3; i < j - 4 ; ++i) {
403 end += tmpbuff[i];
404 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
405 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
406 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
407 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
408 {
409 complete= true;
410 break;
411 }
412 }
413 end = i;
414 // report back
415 if (verbose || g_debugMode) {
416 if (start >= 0) {
417 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
418 } else {
419 PrintAndLog("No data found!, clock tried:%d",clk);
420 PrintAndLog("Try again with more samples.");
421 PrintAndLog(" or after a 'data askedge' command to clean up the read");
422 return 0;
423 }
424 } else if (start < 0) return 0;
425 start = skip;
426 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
427 // get rid of leading crap
428 snprintf(tmp, sizeof(tmp), "%i", skip);
429 CmdLtrim(tmp);
430 bool pTest;
431 bool AllPTest = true;
432 // now work through remaining buffer printing out data blocks
433 block = 0;
434 i = startblock;
435 while (block < 6) {
436 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
437 skip = phaseoff;
438
439 // look for LW before start of next block
440 for ( ; i < j - 4 ; ++i) {
441 skip += tmpbuff[i];
442 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
443 if (tmpbuff[i+1] >= clk-tol)
444 break;
445 }
446 if (i >= j-4) break; //next LW not found
447 skip += clk;
448 if (tmpbuff[i+1]>clk)
449 phaseoff = tmpbuff[i+1]-clk;
450 else
451 phaseoff = 0;
452 i += 2;
453 if (ASKDemod(tmp2, false, false, 1) < 1) {
454 save_restoreGB(0);
455 return 0;
456 }
457 //set DemodBufferLen to just one block
458 DemodBufferLen = skip/clk;
459 //test parities
460 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
461 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
462 AllPTest &= pTest;
463 //get output
464 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
465 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
466 //skip to start of next block
467 snprintf(tmp,sizeof(tmp),"%i",skip);
468 CmdLtrim(tmp);
469 block++;
470 if (i >= end) break; //in case chip doesn't output 6 blocks
471 }
472 //print full code:
473 if (verbose || g_debugMode || AllPTest){
474 if (!complete) {
475 PrintAndLog("*** Warning!");
476 PrintAndLog("Partial data - no end found!");
477 PrintAndLog("Try again with more samples.");
478 }
479 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
480 end = block;
481 for (block=0; block < end; block++){
482 PrintAndLog("Block %d: %08x",block,Code[block]);
483 }
484 if (AllPTest) {
485 PrintAndLog("Parities Passed");
486 } else {
487 PrintAndLog("Parities Failed");
488 PrintAndLog("Try cleaning the read samples with 'data askedge'");
489 }
490 }
491
492 //restore GraphBuffer
493 save_restoreGB(0);
494 return (int)AllPTest;
495 }
496
497 int CmdEM4x50Read(const char *Cmd)
498 {
499 return EM4x50Read(Cmd, true);
500 }
501
502 int usage_lf_em_read(void) {
503 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
504 PrintAndLog("");
505 PrintAndLog("Usage: lf em readword [h] <address> <pwd>");
506 PrintAndLog("Options:");
507 PrintAndLog(" h - this help");
508 PrintAndLog(" address - memory address to read. (0-15)");
509 PrintAndLog(" pwd - password (hex) (optional)");
510 PrintAndLog("samples:");
511 PrintAndLog(" lf em readword 1");
512 PrintAndLog(" lf em readword 1 11223344");
513 return 0;
514 }
515 int CmdReadWord(const char *Cmd) {
516 int addr, pwd;
517 bool usePwd = false;
518 uint8_t ctmp = param_getchar(Cmd, 0);
519 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
520
521 addr = param_get8ex(Cmd, 0, -1, 10);
522 pwd = param_get32ex(Cmd, 1, -1, 16);
523
524 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
525 PrintAndLog("Address must be between 0 and 15");
526 return 1;
527 }
528 if ( pwd == -1 )
529 PrintAndLog("Reading address %d", addr);
530 else {
531 usePwd = true;
532 PrintAndLog("Reading address %d | password %08X", addr, pwd);
533 }
534
535 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
536 clearCommandBuffer();
537 SendCommand(&c);
538 UsbCommand resp;
539 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
540 PrintAndLog("Command timed out");
541 return -1;
542 }
543
544 uint8_t got[6000]; // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
545 GetFromBigBuf(got, sizeof(got), 0);
546 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 8000) ) {
547 PrintAndLog("command execution time out");
548 return 0;
549 }
550 setGraphBuf(got, sizeof(got));
551 //todo: demodulate read data
552 return 1;
553 }
554
555 int usage_lf_em_write(void) {
556 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
557 PrintAndLog("");
558 PrintAndLog("Usage: lf em writeword [h] <address> <data> <pwd>");
559 PrintAndLog("Options:");
560 PrintAndLog(" h - this help");
561 PrintAndLog(" address - memory address to write to. (0-15)");
562 PrintAndLog(" data - data to write (hex)");
563 PrintAndLog(" pwd - password (hex) (optional)");
564 PrintAndLog("samples:");
565 PrintAndLog(" lf em writeword 1");
566 PrintAndLog(" lf em writeword 1 deadc0de 11223344");
567 return 0;
568 }
569 int CmdWriteWord(const char *Cmd) {
570 uint8_t ctmp = param_getchar(Cmd, 0);
571 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
572
573 bool usePwd = false;
574
575 int addr = 16; // default to invalid address
576 int data = 0xFFFFFFFF; // default to blank data
577 int pwd = 0xFFFFFFFF; // default to blank password
578
579 addr = param_get8ex(Cmd, 0, -1, 10);
580 data = param_get32ex(Cmd, 1, -1, 16);
581 pwd = param_get32ex(Cmd, 2, -1, 16);
582
583
584 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
585 PrintAndLog("Address must be between 0 and 15");
586 return 1;
587 }
588 if ( pwd == -1 )
589 PrintAndLog("Writing address %d data %08X", addr, data);
590 else {
591 usePwd = true;
592 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
593 }
594
595 uint16_t flag = (addr << 8 ) | usePwd;
596
597 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
598 clearCommandBuffer();
599 SendCommand(&c);
600 UsbCommand resp;
601 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1000)){
602 PrintAndLog("Error occurred, device did not respond during write operation.");
603 return -1;
604 }
605 //get response if there is one
606 uint8_t got[6000]; // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
607 GetFromBigBuf(got, sizeof(got), 0);
608 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 8000) ) {
609 PrintAndLog("command execution time out");
610 return 0;
611 }
612 setGraphBuf(got, sizeof(got));
613 //todo: check response for 00001010 then write data for write confirmation!
614 return 0;
615 }
616
617 /*
618 int CmdWriteWord(const char *Cmd)
619 {
620 int Word = 16; //default to invalid block
621 int Data = 0xFFFFFFFF; //default to blank data
622 UsbCommand c;
623
624 sscanf(Cmd, "%x %d", &Data, &Word);
625
626 if (Word > 15) {
627 PrintAndLog("Word must be between 0 and 15");
628 return 1;
629 }
630
631 PrintAndLog("Writing word %d with data %08X", Word, Data);
632
633 c.cmd = CMD_EM4X_WRITE_WORD;
634 c.d.asBytes[0] = 0x0; //Normal mode
635 c.arg[0] = Data;
636 c.arg[1] = Word;
637 c.arg[2] = 0;
638 SendCommand(&c);
639 return 0;
640 }
641
642 int CmdWriteWordPWD(const char *Cmd)
643 {
644 int Word = 16; //default to invalid word
645 int Data = 0xFFFFFFFF; //default to blank data
646 int Password = 0xFFFFFFFF; //default to blank password
647 UsbCommand c;
648
649 sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
650
651 if (Word > 15) {
652 PrintAndLog("Word must be between 0 and 15");
653 return 1;
654 }
655
656 PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password);
657
658 c.cmd = CMD_EM4X_WRITE_WORD;
659 c.d.asBytes[0] = 0x1; //Password mode
660 c.arg[0] = Data;
661 c.arg[1] = Word;
662 c.arg[2] = Password;
663 SendCommand(&c);
664 return 0;
665 }
666 */
667 static command_t CommandTable[] =
668 {
669 {"help", CmdHelp, 1, "This help"},
670 {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
671 {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
672 {"em410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
673 {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
674 {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
675 {"em410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
676 {"em4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
677 {"readword", CmdReadWord, 1, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
678 //{"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
679 {"writeword", CmdWriteWord, 1, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
680 //{"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
681 {NULL, NULL, 0, NULL}
682 };
683
684 int CmdLFEM4X(const char *Cmd)
685 {
686 CmdsParse(CommandTable, Cmd);
687 return 0;
688 }
689
690 int CmdHelp(const char *Cmd)
691 {
692 CmdsHelp(CommandTable);
693 return 0;
694 }
Impressum, Datenschutz