]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
THIS REQUIRES A BOOTROM UPDATE!! To save FPGA area, split the LF and HF bitstreams...
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 uint8_t ToSend[512];
40 int ToSendMax;
41 static int ToSendBit;
42 struct common_area common_area __attribute__((section(".commonarea")));
43
44 void BufferClear(void)
45 {
46 memset(BigBuf,0,sizeof(BigBuf));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
48 }
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b)
57 {
58 if(ToSendBit >= 8) {
59 ToSendMax++;
60 ToSend[ToSendMax] = 0;
61 ToSendBit = 0;
62 }
63
64 if(b) {
65 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
66 }
67
68 ToSendBit++;
69
70 if(ToSendBit >= sizeof(ToSend)) {
71 ToSendBit = 0;
72 DbpString("ToSendStuffBit overflowed!");
73 }
74 }
75
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
79
80 void DbpString(char *str)
81 {
82 byte_t len = strlen(str);
83 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
86 // return;
87 //
88 // UsbCommand c;
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
93 // }
94 // memcpy(c.d.asBytes, str, c.arg[0]);
95 //
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
98 // SpinDelay(50);
99 }
100
101 #if 0
102 void DbpIntegers(int x1, int x2, int x3)
103 {
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
107 // return;
108 //
109 // UsbCommand c;
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
111 // c.arg[0] = x1;
112 // c.arg[1] = x2;
113 // c.arg[2] = x3;
114 //
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
116 // // XXX
117 // SpinDelay(50);
118 }
119 #endif
120
121 void Dbprintf(const char *fmt, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string[128];
124 va_list ap;
125
126 va_start(ap, fmt);
127 kvsprintf(fmt, output_string, 10, ap);
128 va_end(ap);
129
130 DbpString(output_string);
131 }
132
133 // prints HEX & ASCII
134 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
135 int l=0,i;
136 char ascii[9];
137
138 while (len>0) {
139 if (len>8) l=8;
140 else l=len;
141
142 memcpy(ascii,d,l);
143 ascii[l]=0;
144
145 // filter safe ascii
146 for (i=0;i<l;i++)
147 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
148
149 if (bAsci) {
150 Dbprintf("%-8s %*D",ascii,l,d," ");
151 } else {
152 Dbprintf("%*D",l,d," ");
153 }
154
155 len-=8;
156 d+=8;
157 }
158 }
159
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
163 // return that.
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch)
166 {
167 uint32_t d;
168
169 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
170 AT91C_BASE_ADC->ADC_MR =
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
175
176 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
177 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
178 ;
179 d = AT91C_BASE_ADC->ADC_CDR[ch];
180
181 return d;
182 }
183
184 int AvgAdc(int ch) // was static - merlok
185 {
186 int i;
187 int a = 0;
188
189 for(i = 0; i < 32; i++) {
190 a += ReadAdc(ch);
191 }
192
193 return (a + 15) >> 5;
194 }
195
196 void MeasureAntennaTuning(void)
197 {
198 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
199 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
200 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
201
202 // UsbCommand c;
203
204 LED_B_ON();
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
207
208 /*
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
215 */
216
217 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
219 for (i=255; i>19; i--) {
220 WDT_HIT();
221 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
222 SpinDelay(20);
223 // Vref = 3.3V, and a 10000:240 voltage divider on the input
224 // can measure voltages up to 137500 mV
225 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
226 if (i==95) vLf125 = adcval; // voltage at 125Khz
227 if (i==89) vLf134 = adcval; // voltage at 134Khz
228
229 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
230 if(dest[i] > peak) {
231 peakv = adcval;
232 peak = dest[i];
233 peakf = i;
234 //ptr = i;
235 }
236 }
237
238 LED_A_ON();
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
242 SpinDelay(20);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
246
247 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
248 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
249 // c.arg[1] = vHf;
250 // c.arg[2] = peakf | (peakv << 16);
251
252 DbpString("Measuring complete, sending report back to host");
253 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
254 // UsbSendPacket((uint8_t *)&c, sizeof(c));
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256 LED_A_OFF();
257 LED_B_OFF();
258 return;
259 }
260
261 void MeasureAntennaTuningHf(void)
262 {
263 int vHf = 0; // in mV
264
265 DbpString("Measuring HF antenna, press button to exit");
266
267 for (;;) {
268 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
269 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
270 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
271 SpinDelay(20);
272 // Vref = 3300mV, and an 10:1 voltage divider on the input
273 // can measure voltages up to 33000 mV
274 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
275
276 Dbprintf("%d mV",vHf);
277 if (BUTTON_PRESS()) break;
278 }
279 DbpString("cancelled");
280 }
281
282
283 void SimulateTagHfListen(void)
284 {
285 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
286 uint8_t v = 0;
287 int i;
288 int p = 0;
289
290 // We're using this mode just so that I can test it out; the simulated
291 // tag mode would work just as well and be simpler.
292 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
293 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
294
295 // We need to listen to the high-frequency, peak-detected path.
296 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
297
298 FpgaSetupSsc();
299
300 i = 0;
301 for(;;) {
302 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
303 AT91C_BASE_SSC->SSC_THR = 0xff;
304 }
305 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
306 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
307
308 v <<= 1;
309 if(r & 1) {
310 v |= 1;
311 }
312 p++;
313
314 if(p >= 8) {
315 dest[i] = v;
316 v = 0;
317 p = 0;
318 i++;
319
320 if(i >= FREE_BUFFER_SIZE) {
321 break;
322 }
323 }
324 }
325 }
326 DbpString("simulate tag (now type bitsamples)");
327 }
328
329 void ReadMem(int addr)
330 {
331 const uint8_t *data = ((uint8_t *)addr);
332
333 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
334 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
335 }
336
337 /* osimage version information is linked in */
338 extern struct version_information version_information;
339 /* bootrom version information is pointed to from _bootphase1_version_pointer */
340 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
341 void SendVersion(void)
342 {
343 char temp[256]; /* Limited data payload in USB packets */
344 DbpString("Prox/RFID mark3 RFID instrument");
345
346 /* Try to find the bootrom version information. Expect to find a pointer at
347 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
348 * pointer, then use it.
349 */
350 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
351 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
352 DbpString("bootrom version information appears invalid");
353 } else {
354 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
355 DbpString(temp);
356 }
357
358 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
359 DbpString(temp);
360
361 FpgaGatherVersion(temp, sizeof(temp));
362 DbpString(temp);
363 // Send Chip ID
364 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
365 }
366
367 #ifdef WITH_LF
368 // samy's sniff and repeat routine
369 void SamyRun()
370 {
371 DbpString("Stand-alone mode! No PC necessary.");
372 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
373
374 // 3 possible options? no just 2 for now
375 #define OPTS 2
376
377 int high[OPTS], low[OPTS];
378
379 // Oooh pretty -- notify user we're in elite samy mode now
380 LED(LED_RED, 200);
381 LED(LED_ORANGE, 200);
382 LED(LED_GREEN, 200);
383 LED(LED_ORANGE, 200);
384 LED(LED_RED, 200);
385 LED(LED_ORANGE, 200);
386 LED(LED_GREEN, 200);
387 LED(LED_ORANGE, 200);
388 LED(LED_RED, 200);
389
390 int selected = 0;
391 int playing = 0;
392
393 // Turn on selected LED
394 LED(selected + 1, 0);
395
396 for (;;)
397 {
398 // UsbPoll(FALSE);
399 usb_poll();
400 WDT_HIT();
401
402 // Was our button held down or pressed?
403 int button_pressed = BUTTON_HELD(1000);
404 SpinDelay(300);
405
406 // Button was held for a second, begin recording
407 if (button_pressed > 0)
408 {
409 LEDsoff();
410 LED(selected + 1, 0);
411 LED(LED_RED2, 0);
412
413 // record
414 DbpString("Starting recording");
415
416 // wait for button to be released
417 while(BUTTON_PRESS())
418 WDT_HIT();
419
420 /* need this delay to prevent catching some weird data */
421 SpinDelay(500);
422
423 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
424 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
425
426 LEDsoff();
427 LED(selected + 1, 0);
428 // Finished recording
429
430 // If we were previously playing, set playing off
431 // so next button push begins playing what we recorded
432 playing = 0;
433 }
434
435 // Change where to record (or begin playing)
436 else if (button_pressed)
437 {
438 // Next option if we were previously playing
439 if (playing)
440 selected = (selected + 1) % OPTS;
441 playing = !playing;
442
443 LEDsoff();
444 LED(selected + 1, 0);
445
446 // Begin transmitting
447 if (playing)
448 {
449 LED(LED_GREEN, 0);
450 DbpString("Playing");
451 // wait for button to be released
452 while(BUTTON_PRESS())
453 WDT_HIT();
454 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
455 CmdHIDsimTAG(high[selected], low[selected], 0);
456 DbpString("Done playing");
457 if (BUTTON_HELD(1000) > 0)
458 {
459 DbpString("Exiting");
460 LEDsoff();
461 return;
462 }
463
464 /* We pressed a button so ignore it here with a delay */
465 SpinDelay(300);
466
467 // when done, we're done playing, move to next option
468 selected = (selected + 1) % OPTS;
469 playing = !playing;
470 LEDsoff();
471 LED(selected + 1, 0);
472 }
473 else
474 while(BUTTON_PRESS())
475 WDT_HIT();
476 }
477 }
478 }
479 #endif
480
481 /*
482 OBJECTIVE
483 Listen and detect an external reader. Determine the best location
484 for the antenna.
485
486 INSTRUCTIONS:
487 Inside the ListenReaderField() function, there is two mode.
488 By default, when you call the function, you will enter mode 1.
489 If you press the PM3 button one time, you will enter mode 2.
490 If you press the PM3 button a second time, you will exit the function.
491
492 DESCRIPTION OF MODE 1:
493 This mode just listens for an external reader field and lights up green
494 for HF and/or red for LF. This is the original mode of the detectreader
495 function.
496
497 DESCRIPTION OF MODE 2:
498 This mode will visually represent, using the LEDs, the actual strength of the
499 current compared to the maximum current detected. Basically, once you know
500 what kind of external reader is present, it will help you spot the best location to place
501 your antenna. You will probably not get some good results if there is a LF and a HF reader
502 at the same place! :-)
503
504 LIGHT SCHEME USED:
505 */
506 static const char LIGHT_SCHEME[] = {
507 0x0, /* ---- | No field detected */
508 0x1, /* X--- | 14% of maximum current detected */
509 0x2, /* -X-- | 29% of maximum current detected */
510 0x4, /* --X- | 43% of maximum current detected */
511 0x8, /* ---X | 57% of maximum current detected */
512 0xC, /* --XX | 71% of maximum current detected */
513 0xE, /* -XXX | 86% of maximum current detected */
514 0xF, /* XXXX | 100% of maximum current detected */
515 };
516 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
517
518 void ListenReaderField(int limit)
519 {
520 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
521 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
522 int mode=1, display_val, display_max, i;
523
524 #define LF_ONLY 1
525 #define HF_ONLY 2
526
527 LEDsoff();
528
529 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
530
531 if(limit != HF_ONLY) {
532 Dbprintf("LF 125/134 Baseline: %d", lf_av);
533 lf_baseline = lf_av;
534 }
535
536 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
537
538 if (limit != LF_ONLY) {
539 Dbprintf("HF 13.56 Baseline: %d", hf_av);
540 hf_baseline = hf_av;
541 }
542
543 for(;;) {
544 if (BUTTON_PRESS()) {
545 SpinDelay(500);
546 switch (mode) {
547 case 1:
548 mode=2;
549 DbpString("Signal Strength Mode");
550 break;
551 case 2:
552 default:
553 DbpString("Stopped");
554 LEDsoff();
555 return;
556 break;
557 }
558 }
559 WDT_HIT();
560
561 if (limit != HF_ONLY) {
562 if(mode==1) {
563 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
564 else LED_D_OFF();
565 }
566
567 ++lf_count;
568 lf_av_new= ReadAdc(ADC_CHAN_LF);
569 // see if there's a significant change
570 if(abs(lf_av - lf_av_new) > 10) {
571 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
572 lf_av = lf_av_new;
573 if (lf_av > lf_max)
574 lf_max = lf_av;
575 lf_count= 0;
576 }
577 }
578
579 if (limit != LF_ONLY) {
580 if (mode == 1){
581 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
582 else LED_B_OFF();
583 }
584
585 ++hf_count;
586 hf_av_new= ReadAdc(ADC_CHAN_HF);
587 // see if there's a significant change
588 if(abs(hf_av - hf_av_new) > 10) {
589 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
590 hf_av = hf_av_new;
591 if (hf_av > hf_max)
592 hf_max = hf_av;
593 hf_count= 0;
594 }
595 }
596
597 if(mode == 2) {
598 if (limit == LF_ONLY) {
599 display_val = lf_av;
600 display_max = lf_max;
601 } else if (limit == HF_ONLY) {
602 display_val = hf_av;
603 display_max = hf_max;
604 } else { /* Pick one at random */
605 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
606 display_val = hf_av;
607 display_max = hf_max;
608 } else {
609 display_val = lf_av;
610 display_max = lf_max;
611 }
612 }
613 for (i=0; i<LIGHT_LEN; i++) {
614 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
615 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
616 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
617 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
618 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
619 break;
620 }
621 }
622 }
623 }
624 }
625
626 void UsbPacketReceived(uint8_t *packet, int len)
627 {
628 UsbCommand *c = (UsbCommand *)packet;
629
630 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
631
632 switch(c->cmd) {
633 #ifdef WITH_LF
634 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
635 AcquireRawAdcSamples125k(c->arg[0]);
636 cmd_send(CMD_ACK,0,0,0,0,0);
637 break;
638 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
639 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
640 break;
641 case CMD_HID_DEMOD_FSK:
642 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
643 break;
644 case CMD_HID_SIM_TAG:
645 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
646 break;
647 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
648 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
649 break;
650 case CMD_IO_DEMOD_FSK:
651 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
652 break;
653 case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
654 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
655 break;
656 case CMD_EM410X_WRITE_TAG:
657 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
658 break;
659 case CMD_READ_TI_TYPE:
660 ReadTItag();
661 break;
662 case CMD_WRITE_TI_TYPE:
663 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
664 break;
665 case CMD_SIMULATE_TAG_125K:
666 LED_A_ON();
667 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
668 LED_A_OFF();
669 break;
670 case CMD_LF_SIMULATE_BIDIR:
671 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
672 break;
673 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
674 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
675 break;
676 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
677 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
678 break;
679 case CMD_T55XX_READ_BLOCK:
680 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
681 break;
682 case CMD_T55XX_WRITE_BLOCK:
683 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
684 break;
685 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
686 T55xxReadTrace();
687 break;
688 case CMD_PCF7931_READ: // Read PCF7931 tag
689 ReadPCF7931();
690 cmd_send(CMD_ACK,0,0,0,0,0);
691 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
692 break;
693 case CMD_EM4X_READ_WORD:
694 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
695 break;
696 case CMD_EM4X_WRITE_WORD:
697 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
698 break;
699 #endif
700
701 #ifdef WITH_HITAG
702 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
703 SnoopHitag(c->arg[0]);
704 break;
705 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
706 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
707 break;
708 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
709 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
710 break;
711 #endif
712
713 #ifdef WITH_ISO15693
714 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
715 AcquireRawAdcSamplesIso15693();
716 break;
717 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
718 RecordRawAdcSamplesIso15693();
719 break;
720
721 case CMD_ISO_15693_COMMAND:
722 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
723 break;
724
725 case CMD_ISO_15693_FIND_AFI:
726 BruteforceIso15693Afi(c->arg[0]);
727 break;
728
729 case CMD_ISO_15693_DEBUG:
730 SetDebugIso15693(c->arg[0]);
731 break;
732
733 case CMD_READER_ISO_15693:
734 ReaderIso15693(c->arg[0]);
735 break;
736 case CMD_SIMTAG_ISO_15693:
737 SimTagIso15693(c->arg[0]);
738 break;
739 #endif
740
741 #ifdef WITH_LEGICRF
742 case CMD_SIMULATE_TAG_LEGIC_RF:
743 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
744 break;
745
746 case CMD_WRITER_LEGIC_RF:
747 LegicRfWriter(c->arg[1], c->arg[0]);
748 break;
749
750 case CMD_READER_LEGIC_RF:
751 LegicRfReader(c->arg[0], c->arg[1]);
752 break;
753 #endif
754
755 #ifdef WITH_ISO14443b
756 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
757 AcquireRawAdcSamplesIso14443(c->arg[0]);
758 break;
759 case CMD_READ_SRI512_TAG:
760 ReadSTMemoryIso14443(0x0F);
761 break;
762 case CMD_READ_SRIX4K_TAG:
763 ReadSTMemoryIso14443(0x7F);
764 break;
765 case CMD_SNOOP_ISO_14443:
766 SnoopIso14443();
767 break;
768 case CMD_SIMULATE_TAG_ISO_14443:
769 SimulateIso14443Tag();
770 break;
771 case CMD_ISO_14443B_COMMAND:
772 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
773 break;
774 #endif
775
776 #ifdef WITH_ISO14443a
777 case CMD_SNOOP_ISO_14443a:
778 SnoopIso14443a(c->arg[0]);
779 break;
780 case CMD_READER_ISO_14443a:
781 ReaderIso14443a(c);
782 break;
783 case CMD_SIMULATE_TAG_ISO_14443a:
784 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
785 break;
786 case CMD_EPA_PACE_COLLECT_NONCE:
787 EPA_PACE_Collect_Nonce(c);
788 break;
789
790 case CMD_READER_MIFARE:
791 ReaderMifare(c->arg[0]);
792 break;
793 case CMD_MIFARE_READBL:
794 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
795 break;
796 case CMD_MIFAREU_READBL:
797 MifareUReadBlock(c->arg[0],c->d.asBytes);
798 break;
799 case CMD_MIFAREU_READCARD:
800 MifareUReadCard(c->arg[0],c->d.asBytes);
801 break;
802 case CMD_MIFARE_READSC:
803 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
804 break;
805 case CMD_MIFARE_WRITEBL:
806 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
807 break;
808 case CMD_MIFAREU_WRITEBL_COMPAT:
809 MifareUWriteBlock(c->arg[0], c->d.asBytes);
810 break;
811 case CMD_MIFAREU_WRITEBL:
812 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
813 break;
814 case CMD_MIFARE_NESTED:
815 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
816 break;
817 case CMD_MIFARE_CHKKEYS:
818 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
819 break;
820 case CMD_SIMULATE_MIFARE_CARD:
821 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
822 break;
823
824 // emulator
825 case CMD_MIFARE_SET_DBGMODE:
826 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
827 break;
828 case CMD_MIFARE_EML_MEMCLR:
829 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
830 break;
831 case CMD_MIFARE_EML_MEMSET:
832 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
833 break;
834 case CMD_MIFARE_EML_MEMGET:
835 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
836 break;
837 case CMD_MIFARE_EML_CARDLOAD:
838 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840
841 // Work with "magic Chinese" card
842 case CMD_MIFARE_EML_CSETBLOCK:
843 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
844 break;
845 case CMD_MIFARE_EML_CGETBLOCK:
846 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
847 break;
848
849 // mifare sniffer
850 case CMD_MIFARE_SNIFFER:
851 SniffMifare(c->arg[0]);
852 break;
853 #endif
854
855 #ifdef WITH_ICLASS
856 // Makes use of ISO14443a FPGA Firmware
857 case CMD_SNOOP_ICLASS:
858 SnoopIClass();
859 break;
860 case CMD_SIMULATE_TAG_ICLASS:
861 SimulateIClass(c->arg[0], c->d.asBytes);
862 break;
863 case CMD_READER_ICLASS:
864 ReaderIClass(c->arg[0]);
865 break;
866 #endif
867
868 case CMD_SIMULATE_TAG_HF_LISTEN:
869 SimulateTagHfListen();
870 break;
871
872 case CMD_BUFF_CLEAR:
873 BufferClear();
874 break;
875
876 case CMD_MEASURE_ANTENNA_TUNING:
877 MeasureAntennaTuning();
878 break;
879
880 case CMD_MEASURE_ANTENNA_TUNING_HF:
881 MeasureAntennaTuningHf();
882 break;
883
884 case CMD_LISTEN_READER_FIELD:
885 ListenReaderField(c->arg[0]);
886 break;
887
888 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
889 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
890 SpinDelay(200);
891 LED_D_OFF(); // LED D indicates field ON or OFF
892 break;
893
894 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
895 // UsbCommand n;
896 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
897 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
898 // } else {
899 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
900 // }
901 // n.arg[0] = c->arg[0];
902 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
903 // LED_B_ON();
904 // usb_write((uint8_t *)&n, sizeof(n));
905 // UsbSendPacket((uint8_t *)&n, sizeof(n));
906 // LED_B_OFF();
907
908 LED_B_ON();
909 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
910 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
911 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
912 }
913 // Trigger a finish downloading signal with an ACK frame
914 cmd_send(CMD_ACK,0,0,0,0,0);
915 LED_B_OFF();
916 break;
917
918 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
919 uint8_t *b = (uint8_t *)BigBuf;
920 memcpy(b+c->arg[0], c->d.asBytes, 48);
921 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
922 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
923 cmd_send(CMD_ACK,0,0,0,0,0);
924 break;
925 }
926 case CMD_READ_MEM:
927 ReadMem(c->arg[0]);
928 break;
929
930 case CMD_SET_LF_DIVISOR:
931 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
932 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
933 break;
934
935 case CMD_SET_ADC_MUX:
936 switch(c->arg[0]) {
937 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
938 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
939 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
940 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
941 }
942 break;
943
944 case CMD_VERSION:
945 SendVersion();
946 break;
947
948 #ifdef WITH_LCD
949 case CMD_LCD_RESET:
950 LCDReset();
951 break;
952 case CMD_LCD:
953 LCDSend(c->arg[0]);
954 break;
955 #endif
956 case CMD_SETUP_WRITE:
957 case CMD_FINISH_WRITE:
958 case CMD_HARDWARE_RESET:
959 usb_disable();
960 SpinDelay(1000);
961 SpinDelay(1000);
962 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
963 for(;;) {
964 // We're going to reset, and the bootrom will take control.
965 }
966 break;
967
968 case CMD_START_FLASH:
969 if(common_area.flags.bootrom_present) {
970 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
971 }
972 usb_disable();
973 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
974 for(;;);
975 break;
976
977 case CMD_DEVICE_INFO: {
978 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
979 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
980 // UsbSendPacket((uint8_t*)&c, sizeof(c));
981 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
982 break;
983 }
984 default:
985 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
986 break;
987 }
988 }
989
990 void __attribute__((noreturn)) AppMain(void)
991 {
992 SpinDelay(100);
993
994 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
995 /* Initialize common area */
996 memset(&common_area, 0, sizeof(common_area));
997 common_area.magic = COMMON_AREA_MAGIC;
998 common_area.version = 1;
999 }
1000 common_area.flags.osimage_present = 1;
1001
1002 LED_D_OFF();
1003 LED_C_OFF();
1004 LED_B_OFF();
1005 LED_A_OFF();
1006
1007 // Init USB device`
1008 usb_enable();
1009 // UsbStart();
1010
1011 // The FPGA gets its clock from us from PCK0 output, so set that up.
1012 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1013 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1014 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1015 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1016 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1017 AT91C_PMC_PRES_CLK_4;
1018 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1019
1020 // Reset SPI
1021 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1022 // Reset SSC
1023 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1024
1025 // Load the FPGA image, which we have stored in our flash.
1026 // (the HF version by default)
1027 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1028
1029 StartTickCount();
1030
1031 #ifdef WITH_LCD
1032 LCDInit();
1033 #endif
1034
1035 byte_t rx[sizeof(UsbCommand)];
1036 size_t rx_len;
1037
1038 for(;;) {
1039 if (usb_poll()) {
1040 rx_len = usb_read(rx,sizeof(UsbCommand));
1041 if (rx_len) {
1042 UsbPacketReceived(rx,rx_len);
1043 }
1044 }
1045 // UsbPoll(FALSE);
1046
1047 WDT_HIT();
1048
1049 #ifdef WITH_LF
1050 if (BUTTON_HELD(1000) > 0)
1051 SamyRun();
1052 #endif
1053 }
1054 }
Impressum, Datenschutz