]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Merge branch 'master' into GenericTracing
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void ToSendReset(void)
46 {
47 ToSendMax = -1;
48 ToSendBit = 8;
49 }
50
51 void ToSendStuffBit(int b)
52 {
53 if(ToSendBit >= 8) {
54 ToSendMax++;
55 ToSend[ToSendMax] = 0;
56 ToSendBit = 0;
57 }
58
59 if(b) {
60 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
61 }
62
63 ToSendBit++;
64
65 if(ToSendMax >= sizeof(ToSend)) {
66 ToSendBit = 0;
67 DbpString("ToSendStuffBit overflowed!");
68 }
69 }
70
71 //=============================================================================
72 // Debug print functions, to go out over USB, to the usual PC-side client.
73 //=============================================================================
74
75 void DbpString(char *str)
76 {
77 byte_t len = strlen(str);
78 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
79 }
80
81 #if 0
82 void DbpIntegers(int x1, int x2, int x3)
83 {
84 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
85 }
86 #endif
87
88 void Dbprintf(const char *fmt, ...) {
89 // should probably limit size here; oh well, let's just use a big buffer
90 char output_string[128];
91 va_list ap;
92
93 va_start(ap, fmt);
94 kvsprintf(fmt, output_string, 10, ap);
95 va_end(ap);
96
97 DbpString(output_string);
98 }
99
100 // prints HEX & ASCII
101 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
102 int l=0,i;
103 char ascii[9];
104
105 while (len>0) {
106 if (len>8) l=8;
107 else l=len;
108
109 memcpy(ascii,d,l);
110 ascii[l]=0;
111
112 // filter safe ascii
113 for (i=0;i<l;i++)
114 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
115
116 if (bAsci) {
117 Dbprintf("%-8s %*D",ascii,l,d," ");
118 } else {
119 Dbprintf("%*D",l,d," ");
120 }
121
122 len-=8;
123 d+=8;
124 }
125 }
126
127 //-----------------------------------------------------------------------------
128 // Read an ADC channel and block till it completes, then return the result
129 // in ADC units (0 to 1023). Also a routine to average 32 samples and
130 // return that.
131 //-----------------------------------------------------------------------------
132 static int ReadAdc(int ch)
133 {
134 uint32_t d;
135
136 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
137 AT91C_BASE_ADC->ADC_MR =
138 ADC_MODE_PRESCALE(32) |
139 ADC_MODE_STARTUP_TIME(16) |
140 ADC_MODE_SAMPLE_HOLD_TIME(8);
141 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
144 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
145 ;
146 d = AT91C_BASE_ADC->ADC_CDR[ch];
147
148 return d;
149 }
150
151 int AvgAdc(int ch) // was static - merlok
152 {
153 int i;
154 int a = 0;
155
156 for(i = 0; i < 32; i++) {
157 a += ReadAdc(ch);
158 }
159
160 return (a + 15) >> 5;
161 }
162
163 void MeasureAntennaTuning(void)
164 {
165 uint8_t LF_Results[256];
166 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
167 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
168
169 LED_B_ON();
170
171 /*
172 * Sweeps the useful LF range of the proxmark from
173 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
174 * read the voltage in the antenna, the result left
175 * in the buffer is a graph which should clearly show
176 * the resonating frequency of your LF antenna
177 * ( hopefully around 95 if it is tuned to 125kHz!)
178 */
179
180 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
181 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
182 for (i=255; i>=19; i--) {
183 WDT_HIT();
184 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
185 SpinDelay(20);
186 // Vref = 3.3V, and a 10000:240 voltage divider on the input
187 // can measure voltages up to 137500 mV
188 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
189 if (i==95) vLf125 = adcval; // voltage at 125Khz
190 if (i==89) vLf134 = adcval; // voltage at 134Khz
191
192 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
193 if(LF_Results[i] > peak) {
194 peakv = adcval;
195 peak = LF_Results[i];
196 peakf = i;
197 //ptr = i;
198 }
199 }
200
201 for (i=18; i >= 0; i--) LF_Results[i] = 0;
202
203 LED_A_ON();
204 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
207 SpinDelay(20);
208 // Vref = 3300mV, and an 10:1 voltage divider on the input
209 // can measure voltages up to 33000 mV
210 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
211
212 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
214 LED_A_OFF();
215 LED_B_OFF();
216 return;
217 }
218
219 void MeasureAntennaTuningHf(void)
220 {
221 int vHf = 0; // in mV
222
223 DbpString("Measuring HF antenna, press button to exit");
224
225 for (;;) {
226 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
227 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
229 SpinDelay(20);
230 // Vref = 3300mV, and an 10:1 voltage divider on the input
231 // can measure voltages up to 33000 mV
232 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
233
234 Dbprintf("%d mV",vHf);
235 if (BUTTON_PRESS()) break;
236 }
237 DbpString("cancelled");
238 }
239
240
241 void SimulateTagHfListen(void)
242 {
243 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
244 // There might be a better size to be defined:
245 #define HF_14B_SNOOP_BUFFER_SIZE 2744
246 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
247 uint8_t v = 0;
248 int i;
249 int p = 0;
250
251 // We're using this mode just so that I can test it out; the simulated
252 // tag mode would work just as well and be simpler.
253 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
255
256 // We need to listen to the high-frequency, peak-detected path.
257 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
258
259 FpgaSetupSsc();
260
261 i = 0;
262 for(;;) {
263 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
264 AT91C_BASE_SSC->SSC_THR = 0xff;
265 }
266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
267 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
268
269 v <<= 1;
270 if(r & 1) {
271 v |= 1;
272 }
273 p++;
274
275 if(p >= 8) {
276 dest[i] = v;
277 v = 0;
278 p = 0;
279 i++;
280
281 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
282 break;
283 }
284 }
285 }
286 }
287 DbpString("simulate tag (now type bitsamples)");
288 }
289
290 void ReadMem(int addr)
291 {
292 const uint8_t *data = ((uint8_t *)addr);
293
294 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
295 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
296 }
297
298 /* osimage version information is linked in */
299 extern struct version_information version_information;
300 /* bootrom version information is pointed to from _bootphase1_version_pointer */
301 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
302 void SendVersion(void)
303 {
304 char temp[512]; /* Limited data payload in USB packets */
305 DbpString("Prox/RFID mark3 RFID instrument");
306
307 /* Try to find the bootrom version information. Expect to find a pointer at
308 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
309 * pointer, then use it.
310 */
311 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
312 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
313 DbpString("bootrom version information appears invalid");
314 } else {
315 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
316 DbpString(temp);
317 }
318
319 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
320 DbpString(temp);
321
322 FpgaGatherVersion(temp, sizeof(temp));
323 DbpString(temp);
324 // Send Chip ID
325 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
326 }
327
328 #ifdef WITH_LF
329 // samy's sniff and repeat routine
330 void SamyRun()
331 {
332 DbpString("Stand-alone mode! No PC necessary.");
333 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
334
335 // 3 possible options? no just 2 for now
336 #define OPTS 2
337
338 int high[OPTS], low[OPTS];
339
340 // Oooh pretty -- notify user we're in elite samy mode now
341 LED(LED_RED, 200);
342 LED(LED_ORANGE, 200);
343 LED(LED_GREEN, 200);
344 LED(LED_ORANGE, 200);
345 LED(LED_RED, 200);
346 LED(LED_ORANGE, 200);
347 LED(LED_GREEN, 200);
348 LED(LED_ORANGE, 200);
349 LED(LED_RED, 200);
350
351 int selected = 0;
352 int playing = 0;
353 int cardRead = 0;
354
355 // Turn on selected LED
356 LED(selected + 1, 0);
357
358 for (;;)
359 {
360 usb_poll();
361 WDT_HIT();
362
363 // Was our button held down or pressed?
364 int button_pressed = BUTTON_HELD(1000);
365 SpinDelay(300);
366
367 // Button was held for a second, begin recording
368 if (button_pressed > 0 && cardRead == 0)
369 {
370 LEDsoff();
371 LED(selected + 1, 0);
372 LED(LED_RED2, 0);
373
374 // record
375 DbpString("Starting recording");
376
377 // wait for button to be released
378 while(BUTTON_PRESS())
379 WDT_HIT();
380
381 /* need this delay to prevent catching some weird data */
382 SpinDelay(500);
383
384 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
385 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
386
387 LEDsoff();
388 LED(selected + 1, 0);
389 // Finished recording
390
391 // If we were previously playing, set playing off
392 // so next button push begins playing what we recorded
393 playing = 0;
394
395 cardRead = 1;
396
397 }
398
399 else if (button_pressed > 0 && cardRead == 1)
400 {
401 LEDsoff();
402 LED(selected + 1, 0);
403 LED(LED_ORANGE, 0);
404
405 // record
406 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
407
408 // wait for button to be released
409 while(BUTTON_PRESS())
410 WDT_HIT();
411
412 /* need this delay to prevent catching some weird data */
413 SpinDelay(500);
414
415 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
416 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
417
418 LEDsoff();
419 LED(selected + 1, 0);
420 // Finished recording
421
422 // If we were previously playing, set playing off
423 // so next button push begins playing what we recorded
424 playing = 0;
425
426 cardRead = 0;
427
428 }
429
430 // Change where to record (or begin playing)
431 else if (button_pressed)
432 {
433 // Next option if we were previously playing
434 if (playing)
435 selected = (selected + 1) % OPTS;
436 playing = !playing;
437
438 LEDsoff();
439 LED(selected + 1, 0);
440
441 // Begin transmitting
442 if (playing)
443 {
444 LED(LED_GREEN, 0);
445 DbpString("Playing");
446 // wait for button to be released
447 while(BUTTON_PRESS())
448 WDT_HIT();
449 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
450 CmdHIDsimTAG(high[selected], low[selected], 0);
451 DbpString("Done playing");
452 if (BUTTON_HELD(1000) > 0)
453 {
454 DbpString("Exiting");
455 LEDsoff();
456 return;
457 }
458
459 /* We pressed a button so ignore it here with a delay */
460 SpinDelay(300);
461
462 // when done, we're done playing, move to next option
463 selected = (selected + 1) % OPTS;
464 playing = !playing;
465 LEDsoff();
466 LED(selected + 1, 0);
467 }
468 else
469 while(BUTTON_PRESS())
470 WDT_HIT();
471 }
472 }
473 }
474 #endif
475
476 /*
477 OBJECTIVE
478 Listen and detect an external reader. Determine the best location
479 for the antenna.
480
481 INSTRUCTIONS:
482 Inside the ListenReaderField() function, there is two mode.
483 By default, when you call the function, you will enter mode 1.
484 If you press the PM3 button one time, you will enter mode 2.
485 If you press the PM3 button a second time, you will exit the function.
486
487 DESCRIPTION OF MODE 1:
488 This mode just listens for an external reader field and lights up green
489 for HF and/or red for LF. This is the original mode of the detectreader
490 function.
491
492 DESCRIPTION OF MODE 2:
493 This mode will visually represent, using the LEDs, the actual strength of the
494 current compared to the maximum current detected. Basically, once you know
495 what kind of external reader is present, it will help you spot the best location to place
496 your antenna. You will probably not get some good results if there is a LF and a HF reader
497 at the same place! :-)
498
499 LIGHT SCHEME USED:
500 */
501 static const char LIGHT_SCHEME[] = {
502 0x0, /* ---- | No field detected */
503 0x1, /* X--- | 14% of maximum current detected */
504 0x2, /* -X-- | 29% of maximum current detected */
505 0x4, /* --X- | 43% of maximum current detected */
506 0x8, /* ---X | 57% of maximum current detected */
507 0xC, /* --XX | 71% of maximum current detected */
508 0xE, /* -XXX | 86% of maximum current detected */
509 0xF, /* XXXX | 100% of maximum current detected */
510 };
511 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
512
513 void ListenReaderField(int limit)
514 {
515 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
516 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
517 int mode=1, display_val, display_max, i;
518
519 #define LF_ONLY 1
520 #define HF_ONLY 2
521
522 LEDsoff();
523
524 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
525
526 if(limit != HF_ONLY) {
527 Dbprintf("LF 125/134 Baseline: %d", lf_av);
528 lf_baseline = lf_av;
529 }
530
531 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
532
533 if (limit != LF_ONLY) {
534 Dbprintf("HF 13.56 Baseline: %d", hf_av);
535 hf_baseline = hf_av;
536 }
537
538 for(;;) {
539 if (BUTTON_PRESS()) {
540 SpinDelay(500);
541 switch (mode) {
542 case 1:
543 mode=2;
544 DbpString("Signal Strength Mode");
545 break;
546 case 2:
547 default:
548 DbpString("Stopped");
549 LEDsoff();
550 return;
551 break;
552 }
553 }
554 WDT_HIT();
555
556 if (limit != HF_ONLY) {
557 if(mode==1) {
558 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
559 else LED_D_OFF();
560 }
561
562 ++lf_count;
563 lf_av_new= ReadAdc(ADC_CHAN_LF);
564 // see if there's a significant change
565 if(abs(lf_av - lf_av_new) > 10) {
566 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
567 lf_av = lf_av_new;
568 if (lf_av > lf_max)
569 lf_max = lf_av;
570 lf_count= 0;
571 }
572 }
573
574 if (limit != LF_ONLY) {
575 if (mode == 1){
576 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
577 else LED_B_OFF();
578 }
579
580 ++hf_count;
581 hf_av_new= ReadAdc(ADC_CHAN_HF);
582 // see if there's a significant change
583 if(abs(hf_av - hf_av_new) > 10) {
584 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
585 hf_av = hf_av_new;
586 if (hf_av > hf_max)
587 hf_max = hf_av;
588 hf_count= 0;
589 }
590 }
591
592 if(mode == 2) {
593 if (limit == LF_ONLY) {
594 display_val = lf_av;
595 display_max = lf_max;
596 } else if (limit == HF_ONLY) {
597 display_val = hf_av;
598 display_max = hf_max;
599 } else { /* Pick one at random */
600 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
601 display_val = hf_av;
602 display_max = hf_max;
603 } else {
604 display_val = lf_av;
605 display_max = lf_max;
606 }
607 }
608 for (i=0; i<LIGHT_LEN; i++) {
609 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
610 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
611 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
612 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
613 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
614 break;
615 }
616 }
617 }
618 }
619 }
620
621 void UsbPacketReceived(uint8_t *packet, int len)
622 {
623 UsbCommand *c = (UsbCommand *)packet;
624
625 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
626
627 switch(c->cmd) {
628 #ifdef WITH_LF
629 case CMD_SET_LF_SAMPLING_CONFIG:
630 setSamplingConfig((sample_config *) c->d.asBytes);
631 break;
632 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
633 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
634 break;
635 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
636 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
637 break;
638 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
639 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
640 break;
641 case CMD_HID_DEMOD_FSK:
642 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
643 break;
644 case CMD_HID_SIM_TAG:
645 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
646 break;
647 case CMD_HID_CLONE_TAG:
648 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
649 break;
650 case CMD_IO_DEMOD_FSK:
651 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
652 break;
653 case CMD_IO_CLONE_TAG:
654 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
655 break;
656 case CMD_EM410X_DEMOD:
657 CmdEM410xdemod(c->arg[0], 0, 0, 1);
658 break;
659 case CMD_EM410X_WRITE_TAG:
660 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
661 break;
662 case CMD_READ_TI_TYPE:
663 ReadTItag();
664 break;
665 case CMD_WRITE_TI_TYPE:
666 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
667 break;
668 case CMD_SIMULATE_TAG_125K:
669 LED_A_ON();
670 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
671 LED_A_OFF();
672 break;
673 case CMD_LF_SIMULATE_BIDIR:
674 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
675 break;
676 case CMD_INDALA_CLONE_TAG:
677 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
678 break;
679 case CMD_INDALA_CLONE_TAG_L:
680 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
681 break;
682 case CMD_T55XX_READ_BLOCK:
683 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
684 break;
685 case CMD_T55XX_WRITE_BLOCK:
686 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
687 break;
688 case CMD_T55XX_READ_TRACE:
689 T55xxReadTrace();
690 break;
691 case CMD_PCF7931_READ:
692 ReadPCF7931();
693 cmd_send(CMD_ACK,0,0,0,0,0);
694 break;
695 case CMD_EM4X_READ_WORD:
696 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
697 break;
698 case CMD_EM4X_WRITE_WORD:
699 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
700 break;
701 #endif
702
703 #ifdef WITH_HITAG
704 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
705 SnoopHitag(c->arg[0]);
706 break;
707 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
708 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
709 break;
710 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
711 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
712 break;
713 #endif
714
715 #ifdef WITH_ISO15693
716 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
717 AcquireRawAdcSamplesIso15693();
718 break;
719 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
720 RecordRawAdcSamplesIso15693();
721 break;
722
723 case CMD_ISO_15693_COMMAND:
724 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
725 break;
726
727 case CMD_ISO_15693_FIND_AFI:
728 BruteforceIso15693Afi(c->arg[0]);
729 break;
730
731 case CMD_ISO_15693_DEBUG:
732 SetDebugIso15693(c->arg[0]);
733 break;
734
735 case CMD_READER_ISO_15693:
736 ReaderIso15693(c->arg[0]);
737 break;
738 case CMD_SIMTAG_ISO_15693:
739 SimTagIso15693(c->arg[0], c->d.asBytes);
740 break;
741 #endif
742
743 #ifdef WITH_LEGICRF
744 case CMD_SIMULATE_TAG_LEGIC_RF:
745 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
746 break;
747
748 case CMD_WRITER_LEGIC_RF:
749 LegicRfWriter(c->arg[1], c->arg[0]);
750 break;
751
752 case CMD_READER_LEGIC_RF:
753 LegicRfReader(c->arg[0], c->arg[1]);
754 break;
755 #endif
756
757 #ifdef WITH_ISO14443b
758 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
759 AcquireRawAdcSamplesIso14443(c->arg[0]);
760 break;
761 case CMD_READ_SRI512_TAG:
762 ReadSTMemoryIso14443(0x0F);
763 break;
764 case CMD_READ_SRIX4K_TAG:
765 ReadSTMemoryIso14443(0x7F);
766 break;
767 case CMD_SNOOP_ISO_14443:
768 SnoopIso14443();
769 break;
770 case CMD_SIMULATE_TAG_ISO_14443:
771 SimulateIso14443Tag();
772 break;
773 case CMD_ISO_14443B_COMMAND:
774 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
775 break;
776 #endif
777
778 #ifdef WITH_ISO14443a
779 case CMD_SNOOP_ISO_14443a:
780 SnoopIso14443a(c->arg[0]);
781 break;
782 case CMD_READER_ISO_14443a:
783 ReaderIso14443a(c);
784 break;
785 case CMD_SIMULATE_TAG_ISO_14443a:
786 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
787 break;
788
789 case CMD_EPA_PACE_COLLECT_NONCE:
790 EPA_PACE_Collect_Nonce(c);
791 break;
792
793 case CMD_READER_MIFARE:
794 ReaderMifare(c->arg[0]);
795 break;
796 case CMD_MIFARE_READBL:
797 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
798 break;
799 case CMD_MIFAREU_READBL:
800 MifareUReadBlock(c->arg[0],c->d.asBytes);
801 break;
802 case CMD_MIFAREUC_AUTH1:
803 MifareUC_Auth1(c->arg[0],c->d.asBytes);
804 break;
805 case CMD_MIFAREUC_AUTH2:
806 MifareUC_Auth2(c->arg[0],c->d.asBytes);
807 break;
808 case CMD_MIFAREU_READCARD:
809 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
810 break;
811 case CMD_MIFAREUC_READCARD:
812 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
813 break;
814 case CMD_MIFARE_READSC:
815 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
816 break;
817 case CMD_MIFARE_WRITEBL:
818 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
819 break;
820 case CMD_MIFAREU_WRITEBL_COMPAT:
821 MifareUWriteBlock(c->arg[0], c->d.asBytes);
822 break;
823 case CMD_MIFAREU_WRITEBL:
824 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
825 break;
826 case CMD_MIFARE_NESTED:
827 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
828 break;
829 case CMD_MIFARE_CHKKEYS:
830 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
831 break;
832 case CMD_SIMULATE_MIFARE_CARD:
833 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
834 break;
835
836 // emulator
837 case CMD_MIFARE_SET_DBGMODE:
838 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840 case CMD_MIFARE_EML_MEMCLR:
841 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
842 break;
843 case CMD_MIFARE_EML_MEMSET:
844 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846 case CMD_MIFARE_EML_MEMGET:
847 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
849 case CMD_MIFARE_EML_CARDLOAD:
850 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
851 break;
852
853 // Work with "magic Chinese" card
854 case CMD_MIFARE_CSETBLOCK:
855 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
856 break;
857 case CMD_MIFARE_CGETBLOCK:
858 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
859 break;
860 case CMD_MIFARE_CIDENT:
861 MifareCIdent();
862 break;
863
864 // mifare sniffer
865 case CMD_MIFARE_SNIFFER:
866 SniffMifare(c->arg[0]);
867 break;
868
869 #endif
870
871 #ifdef WITH_ICLASS
872 // Makes use of ISO14443a FPGA Firmware
873 case CMD_SNOOP_ICLASS:
874 SnoopIClass();
875 break;
876 case CMD_SIMULATE_TAG_ICLASS:
877 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
878 break;
879 case CMD_READER_ICLASS:
880 ReaderIClass(c->arg[0]);
881 break;
882 case CMD_READER_ICLASS_REPLAY:
883 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
884 break;
885 #endif
886
887 case CMD_SIMULATE_TAG_HF_LISTEN:
888 SimulateTagHfListen();
889 break;
890
891 case CMD_BUFF_CLEAR:
892 BigBuf_Clear();
893 break;
894
895 case CMD_MEASURE_ANTENNA_TUNING:
896 MeasureAntennaTuning();
897 break;
898
899 case CMD_MEASURE_ANTENNA_TUNING_HF:
900 MeasureAntennaTuningHf();
901 break;
902
903 case CMD_LISTEN_READER_FIELD:
904 ListenReaderField(c->arg[0]);
905 break;
906
907 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
908 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
909 SpinDelay(200);
910 LED_D_OFF(); // LED D indicates field ON or OFF
911 break;
912
913 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
914
915 LED_B_ON();
916 uint8_t *BigBuf = BigBuf_get_addr();
917 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
918 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
919 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,traceLen,BigBuf+c->arg[0]+i,len);
920 }
921 // Trigger a finish downloading signal with an ACK frame
922 cmd_send(CMD_ACK,1,0,traceLen,getSamplingConfig(),sizeof(sample_config));
923 LED_B_OFF();
924 break;
925
926 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
927 uint8_t *b = BigBuf_get_addr();
928 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
929 cmd_send(CMD_ACK,0,0,0,0,0);
930 break;
931 }
932 case CMD_READ_MEM:
933 ReadMem(c->arg[0]);
934 break;
935
936 case CMD_SET_LF_DIVISOR:
937 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
938 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
939 break;
940
941 case CMD_SET_ADC_MUX:
942 switch(c->arg[0]) {
943 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
944 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
945 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
946 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
947 }
948 break;
949
950 case CMD_VERSION:
951 SendVersion();
952 break;
953
954 #ifdef WITH_LCD
955 case CMD_LCD_RESET:
956 LCDReset();
957 break;
958 case CMD_LCD:
959 LCDSend(c->arg[0]);
960 break;
961 #endif
962 case CMD_SETUP_WRITE:
963 case CMD_FINISH_WRITE:
964 case CMD_HARDWARE_RESET:
965 usb_disable();
966 SpinDelay(1000);
967 SpinDelay(1000);
968 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
969 for(;;) {
970 // We're going to reset, and the bootrom will take control.
971 }
972 break;
973
974 case CMD_START_FLASH:
975 if(common_area.flags.bootrom_present) {
976 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
977 }
978 usb_disable();
979 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
980 for(;;);
981 break;
982
983 case CMD_DEVICE_INFO: {
984 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
985 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
986 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
987 break;
988 }
989 default:
990 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
991 break;
992 }
993 }
994
995 void __attribute__((noreturn)) AppMain(void)
996 {
997 SpinDelay(100);
998 clear_trace();
999 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1000 /* Initialize common area */
1001 memset(&common_area, 0, sizeof(common_area));
1002 common_area.magic = COMMON_AREA_MAGIC;
1003 common_area.version = 1;
1004 }
1005 common_area.flags.osimage_present = 1;
1006
1007 LED_D_OFF();
1008 LED_C_OFF();
1009 LED_B_OFF();
1010 LED_A_OFF();
1011
1012 // Init USB device
1013 usb_enable();
1014
1015 // The FPGA gets its clock from us from PCK0 output, so set that up.
1016 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1017 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1018 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1019 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1020 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1021 AT91C_PMC_PRES_CLK_4;
1022 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1023
1024 // Reset SPI
1025 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1026 // Reset SSC
1027 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1028
1029 // Load the FPGA image, which we have stored in our flash.
1030 // (the HF version by default)
1031 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1032
1033 StartTickCount();
1034
1035 #ifdef WITH_LCD
1036 LCDInit();
1037 #endif
1038
1039 byte_t rx[sizeof(UsbCommand)];
1040 size_t rx_len;
1041
1042 for(;;) {
1043 if (usb_poll()) {
1044 rx_len = usb_read(rx,sizeof(UsbCommand));
1045 if (rx_len) {
1046 UsbPacketReceived(rx,rx_len);
1047 }
1048 }
1049 WDT_HIT();
1050
1051 #ifdef WITH_LF
1052 if (BUTTON_HELD(1000) > 0)
1053 SamyRun();
1054 #endif
1055 }
1056 }
Impressum, Datenschutz