]> git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
refactor gProxII demod... add 0 spacer to ...
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans == pType);
67 }
68
69 // by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen){
77 for (int bit=0; bit < pLen; bit++){
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 j--; // overwrite parity with next data
82 // if parity fails then return 0
83 switch (pType) {
84 case 3: if (BitStream[j]==1) return 0; break; //should be 0 spacer bit
85 case 2: if (BitStream[j]==0) return 0; break; //should be 1 spacer bit
86 default: //test parity
87 if (parityTest(parityWd, pLen, pType) == 0) return 0; break;
88 }
89 bitCnt+=(pLen-1);
90 parityWd = 0;
91 }
92 // if we got here then all the parities passed
93 //return ID start index and size
94 return bitCnt;
95 }
96
97 // by marshmellow
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
100 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
101 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
102 {
103 uint32_t parityWd = 0;
104 size_t j = 0, bitCnt = 0;
105 for (int word = 0; word < sourceLen; word+=pLen-1) {
106 for (int bit=0; bit < pLen-1; bit++){
107 parityWd = (parityWd << 1) | BitSource[word+bit];
108 dest[j++] = (BitSource[word+bit]);
109 }
110 // if parity fails then return 0
111 switch (pType) {
112 case 3: dest[j++]=0; break; // marker bit which should be a 0
113 case 2: dest[j++]=1; break; // marker bit which should be a 1
114 default:
115 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
116 break;
117 }
118 bitCnt += pLen;
119 parityWd = 0;
120 }
121 // if we got here then all the parities passed
122 //return ID start index and size
123 return bitCnt;
124 }
125
126 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
127 {
128 uint32_t num = 0;
129 for(int i = 0 ; i < numbits ; i++)
130 {
131 num = (num << 1) | (*src);
132 src++;
133 }
134 return num;
135 }
136
137 //least significant bit first
138 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
139 {
140 uint32_t num = 0;
141 for(int i = 0 ; i < numbits ; i++)
142 {
143 num = (num << 1) | *(src + (numbits-(i+1)));
144 }
145 return num;
146 }
147
148 //by marshmellow
149 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
150 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
151 {
152 uint8_t foundCnt=0;
153 for (int idx=0; idx < *size - pLen; idx++){
154 if (memcmp(BitStream+idx, preamble, pLen) == 0){
155 //first index found
156 foundCnt++;
157 if (foundCnt == 1){
158 *startIdx = idx;
159 }
160 if (foundCnt == 2){
161 *size = idx - *startIdx;
162 return 1;
163 }
164 }
165 }
166 return 0;
167 }
168
169 //by marshmellow
170 //takes 1s and 0s and searches for EM410x format - output EM ID
171 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
172 {
173 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
174 // otherwise could be a void with no arguments
175 //set defaults
176 uint32_t i = 0;
177 if (BitStream[1]>1) return 0; //allow only 1s and 0s
178
179 // 111111111 bit pattern represent start of frame
180 // include 0 in front to help get start pos
181 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
182 uint32_t idx = 0;
183 uint32_t parityBits = 0;
184 uint8_t errChk = 0;
185 uint8_t FmtLen = 10;
186 *startIdx = 0;
187 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
188 if (errChk == 0 || *size < 64) return 0;
189 if (*size > 64) FmtLen = 22;
190 *startIdx += 1; //get rid of 0 from preamble
191 idx = *startIdx + 9;
192 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
193 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
194 //check even parity - quit if failed
195 if (parityTest(parityBits, 5, 0) == 0) return 0;
196 //set uint64 with ID from BitStream
197 for (uint8_t ii=0; ii<4; ii++){
198 *hi = (*hi << 1) | (*lo >> 63);
199 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
200 }
201 }
202 if (errChk != 0) return 1;
203 //skip last 5 bit parity test for simplicity.
204 // *size = 64 | 128;
205 return 0;
206 }
207
208 //by marshmellow
209 //demodulates strong heavily clipped samples
210 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
211 {
212 size_t bitCnt=0, smplCnt=0, errCnt=0;
213 uint8_t waveHigh = 0;
214 for (size_t i=0; i < *size; i++){
215 if (BinStream[i] >= high && waveHigh){
216 smplCnt++;
217 } else if (BinStream[i] <= low && !waveHigh){
218 smplCnt++;
219 } else { //transition
220 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
221 if (smplCnt > clk-(clk/4)-1) { //full clock
222 if (smplCnt > clk + (clk/4)+1) { //too many samples
223 errCnt++;
224 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
225 BinStream[bitCnt++]=7;
226 } else if (waveHigh) {
227 BinStream[bitCnt++] = invert;
228 BinStream[bitCnt++] = invert;
229 } else if (!waveHigh) {
230 BinStream[bitCnt++] = invert ^ 1;
231 BinStream[bitCnt++] = invert ^ 1;
232 }
233 waveHigh ^= 1;
234 smplCnt = 0;
235 } else if (smplCnt > (clk/2) - (clk/4)-1) {
236 if (waveHigh) {
237 BinStream[bitCnt++] = invert;
238 } else if (!waveHigh) {
239 BinStream[bitCnt++] = invert ^ 1;
240 }
241 waveHigh ^= 1;
242 smplCnt = 0;
243 } else if (!bitCnt) {
244 //first bit
245 waveHigh = (BinStream[i] >= high);
246 smplCnt = 1;
247 } else {
248 smplCnt++;
249 //transition bit oops
250 }
251 } else { //haven't hit new high or new low yet
252 smplCnt++;
253 }
254 }
255 }
256 *size = bitCnt;
257 return errCnt;
258 }
259
260 //by marshmellow
261 void askAmp(uint8_t *BitStream, size_t size)
262 {
263 for(size_t i = 1; i<size; i++){
264 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
265 BitStream[i]=127;
266 else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
267 BitStream[i]=-127;
268 }
269 return;
270 }
271
272 //by marshmellow
273 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
274 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
275 {
276 if (*size==0) return -1;
277 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
278 if (*clk==0 || start < 0) return -3;
279 if (*invert != 1) *invert = 0;
280 if (amp==1) askAmp(BinStream, *size);
281 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
282
283 uint8_t initLoopMax = 255;
284 if (initLoopMax > *size) initLoopMax = *size;
285 // Detect high and lows
286 //25% clip in case highs and lows aren't clipped [marshmellow]
287 int high, low;
288 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
289 return -2; //just noise
290
291 size_t errCnt = 0;
292 // if clean clipped waves detected run alternate demod
293 if (DetectCleanAskWave(BinStream, *size, high, low)) {
294 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
295 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
296 if (askType) //askman
297 return manrawdecode(BinStream, size, 0);
298 else //askraw
299 return errCnt;
300 }
301 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
302
303 int lastBit; //set first clock check - can go negative
304 size_t i, bitnum = 0; //output counter
305 uint8_t midBit = 0;
306 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
307 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
308 size_t MaxBits = 3072; //max bits to collect
309 lastBit = start - *clk;
310
311 for (i = start; i < *size; ++i) {
312 if (i-lastBit >= *clk-tol){
313 if (BinStream[i] >= high) {
314 BinStream[bitnum++] = *invert;
315 } else if (BinStream[i] <= low) {
316 BinStream[bitnum++] = *invert ^ 1;
317 } else if (i-lastBit >= *clk+tol) {
318 if (bitnum > 0) {
319 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
320 BinStream[bitnum++]=7;
321 errCnt++;
322 }
323 } else { //in tolerance - looking for peak
324 continue;
325 }
326 midBit = 0;
327 lastBit += *clk;
328 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
329 if (BinStream[i] >= high) {
330 BinStream[bitnum++] = *invert;
331 } else if (BinStream[i] <= low) {
332 BinStream[bitnum++] = *invert ^ 1;
333 } else if (i-lastBit >= *clk/2+tol) {
334 BinStream[bitnum] = BinStream[bitnum-1];
335 bitnum++;
336 } else { //in tolerance - looking for peak
337 continue;
338 }
339 midBit = 1;
340 }
341 if (bitnum >= MaxBits) break;
342 }
343 *size = bitnum;
344 return errCnt;
345 }
346
347 //by marshmellow
348 //take 10 and 01 and manchester decode
349 //run through 2 times and take least errCnt
350 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
351 {
352 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
353 size_t i, ii;
354 uint16_t bestErr = 1000, bestRun = 0;
355 if (*size < 16) return -1;
356 //find correct start position [alignment]
357 for (ii=0;ii<2;++ii){
358 for (i=ii; i<*size-3; i+=2)
359 if (BitStream[i]==BitStream[i+1])
360 errCnt++;
361
362 if (bestErr>errCnt){
363 bestErr=errCnt;
364 bestRun=ii;
365 }
366 errCnt=0;
367 }
368 //decode
369 for (i=bestRun; i < *size-3; i+=2){
370 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
371 BitStream[bitnum++]=invert;
372 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
373 BitStream[bitnum++]=invert^1;
374 } else {
375 BitStream[bitnum++]=7;
376 }
377 if(bitnum>MaxBits) break;
378 }
379 *size=bitnum;
380 return bestErr;
381 }
382
383 uint32_t manchesterEncode2Bytes(uint16_t datain) {
384 uint32_t output = 0;
385 uint8_t curBit = 0;
386 for (uint8_t i=0; i<16; i++) {
387 curBit = (datain >> (15-i) & 1);
388 output |= (1<<(((15-i)*2)+curBit));
389 }
390 return output;
391 }
392
393 //by marshmellow
394 //encode binary data into binary manchester
395 int ManchesterEncode(uint8_t *BitStream, size_t size)
396 {
397 size_t modIdx=20000, i=0;
398 if (size>modIdx) return -1;
399 for (size_t idx=0; idx < size; idx++){
400 BitStream[idx+modIdx++] = BitStream[idx];
401 BitStream[idx+modIdx++] = BitStream[idx]^1;
402 }
403 for (; i<(size*2); i++){
404 BitStream[i] = BitStream[i+20000];
405 }
406 return i;
407 }
408
409 //by marshmellow
410 //take 01 or 10 = 1 and 11 or 00 = 0
411 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
412 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
413 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
414 {
415 uint16_t bitnum = 0;
416 uint16_t errCnt = 0;
417 size_t i = offset;
418 uint16_t MaxBits=512;
419 //if not enough samples - error
420 if (*size < 51) return -1;
421 //check for phase change faults - skip one sample if faulty
422 uint8_t offsetA = 1, offsetB = 1;
423 for (; i<48; i+=2){
424 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
425 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
426 }
427 if (!offsetA && offsetB) offset++;
428 for (i=offset; i<*size-3; i+=2){
429 //check for phase error
430 if (BitStream[i+1]==BitStream[i+2]) {
431 BitStream[bitnum++]=7;
432 errCnt++;
433 }
434 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
435 BitStream[bitnum++]=1^invert;
436 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
437 BitStream[bitnum++]=invert;
438 } else {
439 BitStream[bitnum++]=7;
440 errCnt++;
441 }
442 if(bitnum>MaxBits) break;
443 }
444 *size=bitnum;
445 return errCnt;
446 }
447
448 // by marshmellow
449 // demod gProxIIDemod
450 // error returns as -x
451 // success returns start position in BitStream
452 // BitStream must contain previously askrawdemod and biphasedemoded data
453 int gProxII_Demod(uint8_t BitStream[], size_t *size)
454 {
455 size_t startIdx=0;
456 uint8_t preamble[] = {1,1,1,1,1,0};
457
458 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
459 if (errChk == 0) return -3; //preamble not found
460 if (*size != 96) return -2; //should have found 96 bits
461 //check first 6 spacer bits to verify format
462 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
463 //confirmed proper separator bits found
464 //return start position
465 return (int) startIdx;
466 }
467 return -5;
468 }
469
470 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
471 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
472 {
473 size_t last_transition = 0;
474 size_t idx = 1;
475 //uint32_t maxVal=0;
476 if (fchigh==0) fchigh=10;
477 if (fclow==0) fclow=8;
478 //set the threshold close to 0 (graph) or 128 std to avoid static
479 uint8_t threshold_value = 123;
480 size_t preLastSample = 0;
481 size_t LastSample = 0;
482 size_t currSample = 0;
483 // sync to first lo-hi transition, and threshold
484
485 // Need to threshold first sample
486 // skip 160 samples to allow antenna/samples to settle
487 if(dest[160] < threshold_value) dest[0] = 0;
488 else dest[0] = 1;
489
490 size_t numBits = 0;
491 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
492 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
493 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
494 for(idx = 161; idx < size-20; idx++) {
495 // threshold current value
496
497 if (dest[idx] < threshold_value) dest[idx] = 0;
498 else dest[idx] = 1;
499
500 // Check for 0->1 transition
501 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
502 preLastSample = LastSample;
503 LastSample = currSample;
504 currSample = idx-last_transition;
505 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
506 //do nothing with extra garbage
507 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
508 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
509 dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
510 }
511 dest[numBits++]=1;
512
513 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
514 //do nothing with beginning garbage
515 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
516 dest[numBits++]=1;
517 } else { //9+ = 10 sample waves
518 dest[numBits++]=0;
519 }
520 last_transition = idx;
521 }
522 }
523 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
524 }
525
526 //translate 11111100000 to 10
527 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
528 uint8_t invert, uint8_t fchigh, uint8_t fclow)
529 {
530 uint8_t lastval=dest[0];
531 size_t idx=0;
532 size_t numBits=0;
533 uint32_t n=1;
534 for( idx=1; idx < size; idx++) {
535 n++;
536 if (dest[idx]==lastval) continue;
537
538 //if lastval was 1, we have a 1->0 crossing
539 if (dest[idx-1]==1) {
540 n = (n * fclow + rfLen/2) / rfLen;
541 } else {// 0->1 crossing
542 n = (n * fchigh + rfLen/2) / rfLen;
543 }
544 if (n == 0) n = 1;
545
546 memset(dest+numBits, dest[idx-1]^invert , n);
547 numBits += n;
548 n=0;
549 lastval=dest[idx];
550 }//end for
551 // if valid extra bits at the end were all the same frequency - add them in
552 if (n > rfLen/fchigh) {
553 if (dest[idx-2]==1) {
554 n = (n * fclow + rfLen/2) / rfLen;
555 } else {
556 n = (n * fchigh + rfLen/2) / rfLen;
557 }
558 memset(dest+numBits, dest[idx-1]^invert , n);
559 numBits += n;
560 }
561 return numBits;
562 }
563
564 //by marshmellow (from holiman's base)
565 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
566 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
567 {
568 // FSK demodulator
569 size = fsk_wave_demod(dest, size, fchigh, fclow);
570 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
571 return size;
572 }
573
574 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
575 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
576 {
577 if (justNoise(dest, *size)) return -1;
578
579 size_t numStart=0, size2=*size, startIdx=0;
580 // FSK demodulator
581 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
582 if (*size < 96*2) return -2;
583 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
584 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
585 // find bitstring in array
586 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
587 if (errChk == 0) return -3; //preamble not found
588
589 numStart = startIdx + sizeof(preamble);
590 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
591 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
592 if (dest[idx] == dest[idx+1]){
593 return -4; //not manchester data
594 }
595 *hi2 = (*hi2<<1)|(*hi>>31);
596 *hi = (*hi<<1)|(*lo>>31);
597 //Then, shift in a 0 or one into low
598 if (dest[idx] && !dest[idx+1]) // 1 0
599 *lo=(*lo<<1)|1;
600 else // 0 1
601 *lo=(*lo<<1)|0;
602 }
603 return (int)startIdx;
604 }
605
606 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
607 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
608 {
609 if (justNoise(dest, *size)) return -1;
610
611 size_t numStart=0, size2=*size, startIdx=0;
612 // FSK demodulator
613 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
614 if (*size < 96) return -2;
615
616 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
617 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
618
619 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
620 if (errChk == 0) return -3; //preamble not found
621
622 numStart = startIdx + sizeof(preamble);
623 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
624 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
625 if (dest[idx] == dest[idx+1])
626 return -4; //not manchester data
627 *hi2 = (*hi2<<1)|(*hi>>31);
628 *hi = (*hi<<1)|(*lo>>31);
629 //Then, shift in a 0 or one into low
630 if (dest[idx] && !dest[idx+1]) // 1 0
631 *lo=(*lo<<1)|1;
632 else // 0 1
633 *lo=(*lo<<1)|0;
634 }
635 return (int)startIdx;
636 }
637
638 int IOdemodFSK(uint8_t *dest, size_t size)
639 {
640 if (justNoise(dest, size)) return -1;
641 //make sure buffer has data
642 if (size < 66*64) return -2;
643 // FSK demodulator
644 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
645 if (size < 65) return -3; //did we get a good demod?
646 //Index map
647 //0 10 20 30 40 50 60
648 //| | | | | | |
649 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
650 //-----------------------------------------------------------------------------
651 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
652 //
653 //XSF(version)facility:codeone+codetwo
654 //Handle the data
655 size_t startIdx = 0;
656 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
657 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
658 if (errChk == 0) return -4; //preamble not found
659
660 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
661 //confirmed proper separator bits found
662 //return start position
663 return (int) startIdx;
664 }
665 return -5;
666 }
667
668 // by marshmellow
669 // find viking preamble 0xF200 in already demoded data
670 int VikingDemod_AM(uint8_t *dest, size_t *size) {
671 //make sure buffer has data
672 if (*size < 64*2) return -2;
673
674 size_t startIdx = 0;
675 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
676 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
677 if (errChk == 0) return -4; //preamble not found
678 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
679 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
680 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
681 if ( checkCalc != 0xA8 ) return -5;
682 if (*size != 64) return -6;
683 //return start position
684 return (int) startIdx;
685 }
686
687 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
688 // BitStream must contain previously askrawdemod and biphasedemoded data
689 int FDXBdemodBI(uint8_t *dest, size_t *size)
690 {
691 //make sure buffer has enough data
692 if (*size < 128) return -1;
693
694 size_t startIdx = 0;
695 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
696
697 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
698 if (errChk == 0) return -2; //preamble not found
699 return (int)startIdx;
700 }
701
702 // by marshmellow
703 // FSK Demod then try to locate an AWID ID
704 int AWIDdemodFSK(uint8_t *dest, size_t *size)
705 {
706 //make sure buffer has enough data
707 if (*size < 96*50) return -1;
708
709 if (justNoise(dest, *size)) return -2;
710
711 // FSK demodulator
712 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
713 if (*size < 96) return -3; //did we get a good demod?
714
715 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
716 size_t startIdx = 0;
717 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
718 if (errChk == 0) return -4; //preamble not found
719 if (*size != 96) return -5;
720 return (int)startIdx;
721 }
722
723 // by marshmellow
724 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
725 int PyramiddemodFSK(uint8_t *dest, size_t *size)
726 {
727 //make sure buffer has data
728 if (*size < 128*50) return -5;
729
730 //test samples are not just noise
731 if (justNoise(dest, *size)) return -1;
732
733 // FSK demodulator
734 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
735 if (*size < 128) return -2; //did we get a good demod?
736
737 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
738 size_t startIdx = 0;
739 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
740 if (errChk == 0) return -4; //preamble not found
741 if (*size != 128) return -3;
742 return (int)startIdx;
743 }
744
745 // by marshmellow
746 // to detect a wave that has heavily clipped (clean) samples
747 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
748 {
749 bool allArePeaks = true;
750 uint16_t cntPeaks=0;
751 size_t loopEnd = 512+160;
752 if (loopEnd > size) loopEnd = size;
753 for (size_t i=160; i<loopEnd; i++){
754 if (dest[i]>low && dest[i]<high)
755 allArePeaks = false;
756 else
757 cntPeaks++;
758 }
759 if (!allArePeaks){
760 if (cntPeaks > 300) return true;
761 }
762 return allArePeaks;
763 }
764 // by marshmellow
765 // to help detect clocks on heavily clipped samples
766 // based on count of low to low
767 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
768 {
769 uint8_t fndClk[] = {8,16,32,40,50,64,128};
770 size_t startwave;
771 size_t i = 100;
772 size_t minClk = 255;
773 // get to first full low to prime loop and skip incomplete first pulse
774 while ((dest[i] < high) && (i < size))
775 ++i;
776 while ((dest[i] > low) && (i < size))
777 ++i;
778
779 // loop through all samples
780 while (i < size) {
781 // measure from low to low
782 while ((dest[i] > low) && (i < size))
783 ++i;
784 startwave= i;
785 while ((dest[i] < high) && (i < size))
786 ++i;
787 while ((dest[i] > low) && (i < size))
788 ++i;
789 //get minimum measured distance
790 if (i-startwave < minClk && i < size)
791 minClk = i - startwave;
792 }
793 // set clock
794 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
795 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
796 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
797 return fndClk[clkCnt];
798 }
799 return 0;
800 }
801
802 // by marshmellow
803 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
804 // maybe somehow adjust peak trimming value based on samples to fix?
805 // return start index of best starting position for that clock and return clock (by reference)
806 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
807 {
808 size_t i=1;
809 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
810 uint8_t clkEnd = 9;
811 uint8_t loopCnt = 255; //don't need to loop through entire array...
812 if (size <= loopCnt+60) return -1; //not enough samples
813 size -= 60; //sometimes there is a strange end wave - filter out this....
814 //if we already have a valid clock
815 uint8_t clockFnd=0;
816 for (;i<clkEnd;++i)
817 if (clk[i] == *clock) clockFnd = i;
818 //clock found but continue to find best startpos
819
820 //get high and low peak
821 int peak, low;
822 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
823
824 //test for large clean peaks
825 if (!clockFnd){
826 if (DetectCleanAskWave(dest, size, peak, low)==1){
827 int ans = DetectStrongAskClock(dest, size, peak, low);
828 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
829 for (i=clkEnd-1; i>0; i--){
830 if (clk[i] == ans) {
831 *clock = ans;
832 //clockFnd = i;
833 return 0; // for strong waves i don't use the 'best start position' yet...
834 //break; //clock found but continue to find best startpos [not yet]
835 }
836 }
837 }
838 }
839 uint8_t ii;
840 uint8_t clkCnt, tol = 0;
841 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
842 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
843 size_t errCnt = 0;
844 size_t arrLoc, loopEnd;
845
846 if (clockFnd>0) {
847 clkCnt = clockFnd;
848 clkEnd = clockFnd+1;
849 }
850 else clkCnt=1;
851
852 //test each valid clock from smallest to greatest to see which lines up
853 for(; clkCnt < clkEnd; clkCnt++){
854 if (clk[clkCnt] <= 32){
855 tol=1;
856 }else{
857 tol=0;
858 }
859 //if no errors allowed - keep start within the first clock
860 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
861 bestErr[clkCnt]=1000;
862 //try lining up the peaks by moving starting point (try first few clocks)
863 for (ii=0; ii < loopCnt; ii++){
864 if (dest[ii] < peak && dest[ii] > low) continue;
865
866 errCnt=0;
867 // now that we have the first one lined up test rest of wave array
868 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
869 for (i=0; i < loopEnd; ++i){
870 arrLoc = ii + (i * clk[clkCnt]);
871 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
872 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
873 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
874 }else{ //error no peak detected
875 errCnt++;
876 }
877 }
878 //if we found no errors then we can stop here and a low clock (common clocks)
879 // this is correct one - return this clock
880 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
881 if(errCnt==0 && clkCnt<7) {
882 if (!clockFnd) *clock = clk[clkCnt];
883 return ii;
884 }
885 //if we found errors see if it is lowest so far and save it as best run
886 if(errCnt<bestErr[clkCnt]){
887 bestErr[clkCnt]=errCnt;
888 bestStart[clkCnt]=ii;
889 }
890 }
891 }
892 uint8_t iii;
893 uint8_t best=0;
894 for (iii=1; iii<clkEnd; ++iii){
895 if (bestErr[iii] < bestErr[best]){
896 if (bestErr[iii] == 0) bestErr[iii]=1;
897 // current best bit to error ratio vs new bit to error ratio
898 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
899 best = iii;
900 }
901 }
902 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
903 }
904 if (!clockFnd) *clock = clk[best];
905 return bestStart[best];
906 }
907
908 //by marshmellow
909 //detect psk clock by reading each phase shift
910 // a phase shift is determined by measuring the sample length of each wave
911 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
912 {
913 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
914 uint16_t loopCnt = 4096; //don't need to loop through entire array...
915 if (size == 0) return 0;
916 if (size<loopCnt) loopCnt = size-20;
917
918 //if we already have a valid clock quit
919 size_t i=1;
920 for (; i < 8; ++i)
921 if (clk[i] == clock) return clock;
922
923 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
924 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
925 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
926 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
927 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
928 fc = countFC(dest, size, 0);
929 if (fc!=2 && fc!=4 && fc!=8) return -1;
930 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
931
932 //find first full wave
933 for (i=160; i<loopCnt; i++){
934 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
935 if (waveStart == 0) {
936 waveStart = i+1;
937 //prnt("DEBUG: waveStart: %d",waveStart);
938 } else {
939 waveEnd = i+1;
940 //prnt("DEBUG: waveEnd: %d",waveEnd);
941 waveLenCnt = waveEnd-waveStart;
942 if (waveLenCnt > fc){
943 firstFullWave = waveStart;
944 fullWaveLen=waveLenCnt;
945 break;
946 }
947 waveStart=0;
948 }
949 }
950 }
951 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
952
953 //test each valid clock from greatest to smallest to see which lines up
954 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
955 lastClkBit = firstFullWave; //set end of wave as clock align
956 waveStart = 0;
957 errCnt=0;
958 peakcnt=0;
959 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
960
961 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
962 //top edge of wave = start of new wave
963 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
964 if (waveStart == 0) {
965 waveStart = i+1;
966 waveLenCnt=0;
967 } else { //waveEnd
968 waveEnd = i+1;
969 waveLenCnt = waveEnd-waveStart;
970 if (waveLenCnt > fc){
971 //if this wave is a phase shift
972 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
973 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
974 peakcnt++;
975 lastClkBit+=clk[clkCnt];
976 } else if (i<lastClkBit+8){
977 //noise after a phase shift - ignore
978 } else { //phase shift before supposed to based on clock
979 errCnt++;
980 }
981 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
982 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
983 }
984 waveStart=i+1;
985 }
986 }
987 }
988 if (errCnt == 0){
989 return clk[clkCnt];
990 }
991 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
992 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
993 }
994 //all tested with errors
995 //return the highest clk with the most peaks found
996 uint8_t best=7;
997 for (i=7; i>=1; i--){
998 if (peaksdet[i] > peaksdet[best]) {
999 best = i;
1000 }
1001 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
1002 }
1003 return clk[best];
1004 }
1005
1006 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1007 //find shortest transition from high to low
1008 size_t i = 0;
1009 size_t transition1 = 0;
1010 int lowestTransition = 255;
1011 bool lastWasHigh = false;
1012
1013 //find first valid beginning of a high or low wave
1014 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1015 ++i;
1016 while ((dest[i] < peak && dest[i] > low) && (i < size))
1017 ++i;
1018 lastWasHigh = (dest[i] >= peak);
1019
1020 if (i==size) return 0;
1021 transition1 = i;
1022
1023 for (;i < size; i++) {
1024 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1025 lastWasHigh = (dest[i] >= peak);
1026 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1027 transition1 = i;
1028 }
1029 }
1030 if (lowestTransition == 255) lowestTransition = 0;
1031 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1032 return lowestTransition;
1033 }
1034
1035 //by marshmellow
1036 //detect nrz clock by reading #peaks vs no peaks(or errors)
1037 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1038 {
1039 size_t i=0;
1040 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1041 size_t loopCnt = 4096; //don't need to loop through entire array...
1042 if (size == 0) return 0;
1043 if (size<loopCnt) loopCnt = size-20;
1044 //if we already have a valid clock quit
1045 for (; i < 8; ++i)
1046 if (clk[i] == clock) return clock;
1047
1048 //get high and low peak
1049 int peak, low;
1050 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1051
1052 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1053 size_t ii;
1054 uint8_t clkCnt;
1055 uint8_t tol = 0;
1056 uint16_t smplCnt = 0;
1057 int16_t peakcnt = 0;
1058 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1059 uint16_t maxPeak = 255;
1060 bool firstpeak = false;
1061 //test for large clipped waves
1062 for (i=0; i<loopCnt; i++){
1063 if (dest[i] >= peak || dest[i] <= low){
1064 if (!firstpeak) continue;
1065 smplCnt++;
1066 } else {
1067 firstpeak=true;
1068 if (smplCnt > 6 ){
1069 if (maxPeak > smplCnt){
1070 maxPeak = smplCnt;
1071 //prnt("maxPk: %d",maxPeak);
1072 }
1073 peakcnt++;
1074 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1075 smplCnt=0;
1076 }
1077 }
1078 }
1079 bool errBitHigh = 0;
1080 bool bitHigh = 0;
1081 uint8_t ignoreCnt = 0;
1082 uint8_t ignoreWindow = 4;
1083 bool lastPeakHigh = 0;
1084 int lastBit = 0;
1085 peakcnt=0;
1086 //test each valid clock from smallest to greatest to see which lines up
1087 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1088 //ignore clocks smaller than smallest peak
1089 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1090 //try lining up the peaks by moving starting point (try first 256)
1091 for (ii=20; ii < loopCnt; ++ii){
1092 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1093 peakcnt = 0;
1094 bitHigh = false;
1095 ignoreCnt = 0;
1096 lastBit = ii-clk[clkCnt];
1097 //loop through to see if this start location works
1098 for (i = ii; i < size-20; ++i) {
1099 //if we are at a clock bit
1100 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1101 //test high/low
1102 if (dest[i] >= peak || dest[i] <= low) {
1103 //if same peak don't count it
1104 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1105 peakcnt++;
1106 }
1107 lastPeakHigh = (dest[i] >= peak);
1108 bitHigh = true;
1109 errBitHigh = false;
1110 ignoreCnt = ignoreWindow;
1111 lastBit += clk[clkCnt];
1112 } else if (i == lastBit + clk[clkCnt] + tol) {
1113 lastBit += clk[clkCnt];
1114 }
1115 //else if not a clock bit and no peaks
1116 } else if (dest[i] < peak && dest[i] > low){
1117 if (ignoreCnt==0){
1118 bitHigh=false;
1119 if (errBitHigh==true) peakcnt--;
1120 errBitHigh=false;
1121 } else {
1122 ignoreCnt--;
1123 }
1124 // else if not a clock bit but we have a peak
1125 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1126 //error bar found no clock...
1127 errBitHigh=true;
1128 }
1129 }
1130 if(peakcnt>peaksdet[clkCnt]) {
1131 peaksdet[clkCnt]=peakcnt;
1132 }
1133 }
1134 }
1135 }
1136 int iii=7;
1137 uint8_t best=0;
1138 for (iii=7; iii > 0; iii--){
1139 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1140 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1141 best = iii;
1142 }
1143 } else if (peaksdet[iii] > peaksdet[best]){
1144 best = iii;
1145 }
1146 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1147 }
1148
1149 return clk[best];
1150 }
1151
1152 // by marshmellow
1153 // convert psk1 demod to psk2 demod
1154 // only transition waves are 1s
1155 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1156 {
1157 size_t i=1;
1158 uint8_t lastBit=BitStream[0];
1159 for (; i<size; i++){
1160 if (BitStream[i]==7){
1161 //ignore errors
1162 } else if (lastBit!=BitStream[i]){
1163 lastBit=BitStream[i];
1164 BitStream[i]=1;
1165 } else {
1166 BitStream[i]=0;
1167 }
1168 }
1169 return;
1170 }
1171
1172 // by marshmellow
1173 // convert psk2 demod to psk1 demod
1174 // from only transition waves are 1s to phase shifts change bit
1175 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1176 {
1177 uint8_t phase=0;
1178 for (size_t i=0; i<size; i++){
1179 if (BitStream[i]==1){
1180 phase ^=1;
1181 }
1182 BitStream[i]=phase;
1183 }
1184 return;
1185 }
1186
1187 // redesigned by marshmellow adjusted from existing decode functions
1188 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1189 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1190 {
1191 //26 bit 40134 format (don't know other formats)
1192 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1193 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1194 size_t startidx = 0;
1195 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1196 // if didn't find preamble try again inverting
1197 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1198 *invert ^= 1;
1199 }
1200 if (*size != 64 && *size != 224) return -2;
1201 if (*invert==1)
1202 for (size_t i = startidx; i < *size; i++)
1203 bitStream[i] ^= 1;
1204
1205 return (int) startidx;
1206 }
1207
1208 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1209 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1210 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1211 if (justNoise(dest, *size)) return -1;
1212 *clk = DetectNRZClock(dest, *size, *clk);
1213 if (*clk==0) return -2;
1214 size_t i, gLen = 4096;
1215 if (gLen>*size) gLen = *size-20;
1216 int high, low;
1217 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1218
1219 uint8_t bit=0;
1220 //convert wave samples to 1's and 0's
1221 for(i=20; i < *size-20; i++){
1222 if (dest[i] >= high) bit = 1;
1223 if (dest[i] <= low) bit = 0;
1224 dest[i] = bit;
1225 }
1226 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1227 size_t lastBit = 0;
1228 size_t numBits = 0;
1229 for(i=21; i < *size-20; i++) {
1230 //if transition detected or large number of same bits - store the passed bits
1231 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1232 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1233 numBits += (i - lastBit + (*clk/4)) / *clk;
1234 lastBit = i-1;
1235 }
1236 }
1237 *size = numBits;
1238 return 0;
1239 }
1240
1241 //by marshmellow
1242 //detects the bit clock for FSK given the high and low Field Clocks
1243 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1244 {
1245 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1246 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1247 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1248 uint8_t rfLensFnd = 0;
1249 uint8_t lastFCcnt = 0;
1250 uint16_t fcCounter = 0;
1251 uint16_t rfCounter = 0;
1252 uint8_t firstBitFnd = 0;
1253 size_t i;
1254 if (size == 0) return 0;
1255
1256 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1257 rfLensFnd=0;
1258 fcCounter=0;
1259 rfCounter=0;
1260 firstBitFnd=0;
1261 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1262 // prime i to first peak / up transition
1263 for (i = 160; i < size-20; i++)
1264 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1265 break;
1266
1267 for (; i < size-20; i++){
1268 fcCounter++;
1269 rfCounter++;
1270
1271 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1272 continue;
1273 // else new peak
1274 // if we got less than the small fc + tolerance then set it to the small fc
1275 if (fcCounter < fcLow+fcTol)
1276 fcCounter = fcLow;
1277 else //set it to the large fc
1278 fcCounter = fcHigh;
1279
1280 //look for bit clock (rf/xx)
1281 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1282 //not the same size as the last wave - start of new bit sequence
1283 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1284 for (int ii=0; ii<15; ii++){
1285 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1286 rfCnts[ii]++;
1287 rfCounter = 0;
1288 break;
1289 }
1290 }
1291 if (rfCounter > 0 && rfLensFnd < 15){
1292 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1293 rfCnts[rfLensFnd]++;
1294 rfLens[rfLensFnd++] = rfCounter;
1295 }
1296 } else {
1297 firstBitFnd++;
1298 }
1299 rfCounter=0;
1300 lastFCcnt=fcCounter;
1301 }
1302 fcCounter=0;
1303 }
1304 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1305
1306 for (i=0; i<15; i++){
1307 //get highest 2 RF values (might need to get more values to compare or compare all?)
1308 if (rfCnts[i]>rfCnts[rfHighest]){
1309 rfHighest3=rfHighest2;
1310 rfHighest2=rfHighest;
1311 rfHighest=i;
1312 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1313 rfHighest3=rfHighest2;
1314 rfHighest2=i;
1315 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1316 rfHighest3=i;
1317 }
1318 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1319 }
1320 // set allowed clock remainder tolerance to be 1 large field clock length+1
1321 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1322 uint8_t tol1 = fcHigh+1;
1323
1324 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1325
1326 // loop to find the highest clock that has a remainder less than the tolerance
1327 // compare samples counted divided by
1328 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1329 int ii=7;
1330 for (; ii>=2; ii--){
1331 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1332 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1333 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1334 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1335 break;
1336 }
1337 }
1338 }
1339 }
1340
1341 if (ii<0) return 0; // oops we went too far
1342
1343 return clk[ii];
1344 }
1345
1346 //by marshmellow
1347 //countFC is to detect the field clock lengths.
1348 //counts and returns the 2 most common wave lengths
1349 //mainly used for FSK field clock detection
1350 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1351 {
1352 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1353 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1354 uint8_t fcLensFnd = 0;
1355 uint8_t lastFCcnt=0;
1356 uint8_t fcCounter = 0;
1357 size_t i;
1358 if (size == 0) return 0;
1359
1360 // prime i to first up transition
1361 for (i = 160; i < size-20; i++)
1362 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1363 break;
1364
1365 for (; i < size-20; i++){
1366 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1367 // new up transition
1368 fcCounter++;
1369 if (fskAdj){
1370 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1371 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1372 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1373 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1374 // save last field clock count (fc/xx)
1375 lastFCcnt = fcCounter;
1376 }
1377 // find which fcLens to save it to:
1378 for (int ii=0; ii<15; ii++){
1379 if (fcLens[ii]==fcCounter){
1380 fcCnts[ii]++;
1381 fcCounter=0;
1382 break;
1383 }
1384 }
1385 if (fcCounter>0 && fcLensFnd<15){
1386 //add new fc length
1387 fcCnts[fcLensFnd]++;
1388 fcLens[fcLensFnd++]=fcCounter;
1389 }
1390 fcCounter=0;
1391 } else {
1392 // count sample
1393 fcCounter++;
1394 }
1395 }
1396
1397 uint8_t best1=14, best2=14, best3=14;
1398 uint16_t maxCnt1=0;
1399 // go through fclens and find which ones are bigest 2
1400 for (i=0; i<15; i++){
1401 // get the 3 best FC values
1402 if (fcCnts[i]>maxCnt1) {
1403 best3=best2;
1404 best2=best1;
1405 maxCnt1=fcCnts[i];
1406 best1=i;
1407 } else if(fcCnts[i]>fcCnts[best2]){
1408 best3=best2;
1409 best2=i;
1410 } else if(fcCnts[i]>fcCnts[best3]){
1411 best3=i;
1412 }
1413 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1414 }
1415 if (fcLens[best1]==0) return 0;
1416 uint8_t fcH=0, fcL=0;
1417 if (fcLens[best1]>fcLens[best2]){
1418 fcH=fcLens[best1];
1419 fcL=fcLens[best2];
1420 } else{
1421 fcH=fcLens[best2];
1422 fcL=fcLens[best1];
1423 }
1424 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1425 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1426 return 0; //lots of waves not psk or fsk
1427 }
1428 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1429
1430 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1431 if (fskAdj) return fcs;
1432 return fcLens[best1];
1433 }
1434
1435 //by marshmellow - demodulate PSK1 wave
1436 //uses wave lengths (# Samples)
1437 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1438 {
1439 if (size == 0) return -1;
1440 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1441 if (*size<loopCnt) loopCnt = *size;
1442
1443 size_t numBits=0;
1444 uint8_t curPhase = *invert;
1445 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1446 uint8_t fc=0, fullWaveLen=0, tol=1;
1447 uint16_t errCnt=0, waveLenCnt=0;
1448 fc = countFC(dest, *size, 0);
1449 if (fc!=2 && fc!=4 && fc!=8) return -1;
1450 //PrintAndLog("DEBUG: FC: %d",fc);
1451 *clock = DetectPSKClock(dest, *size, *clock);
1452 if (*clock == 0) return -1;
1453 int avgWaveVal=0, lastAvgWaveVal=0;
1454 //find first phase shift
1455 for (i=0; i<loopCnt; i++){
1456 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1457 waveEnd = i+1;
1458 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1459 waveLenCnt = waveEnd-waveStart;
1460 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1461 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1462 firstFullWave = waveStart;
1463 fullWaveLen=waveLenCnt;
1464 //if average wave value is > graph 0 then it is an up wave or a 1
1465 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1466 break;
1467 }
1468 waveStart = i+1;
1469 avgWaveVal = 0;
1470 }
1471 avgWaveVal += dest[i+2];
1472 }
1473 if (firstFullWave == 0) {
1474 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1475 // so skip a little to ensure we are past any Start Signal
1476 firstFullWave = 160;
1477 memset(dest, curPhase, firstFullWave / *clock);
1478 } else {
1479 memset(dest, curPhase^1, firstFullWave / *clock);
1480 }
1481 //advance bits
1482 numBits += (firstFullWave / *clock);
1483 //set start of wave as clock align
1484 lastClkBit = firstFullWave;
1485 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1486 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1487 waveStart = 0;
1488 dest[numBits++] = curPhase; //set first read bit
1489 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1490 //top edge of wave = start of new wave
1491 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1492 if (waveStart == 0) {
1493 waveStart = i+1;
1494 waveLenCnt = 0;
1495 avgWaveVal = dest[i+1];
1496 } else { //waveEnd
1497 waveEnd = i+1;
1498 waveLenCnt = waveEnd-waveStart;
1499 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1500 if (waveLenCnt > fc){
1501 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1502 //this wave is a phase shift
1503 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1504 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1505 curPhase ^= 1;
1506 dest[numBits++] = curPhase;
1507 lastClkBit += *clock;
1508 } else if (i < lastClkBit+10+fc){
1509 //noise after a phase shift - ignore
1510 } else { //phase shift before supposed to based on clock
1511 errCnt++;
1512 dest[numBits++] = 7;
1513 }
1514 } else if (i+1 > lastClkBit + *clock + tol + fc){
1515 lastClkBit += *clock; //no phase shift but clock bit
1516 dest[numBits++] = curPhase;
1517 }
1518 avgWaveVal = 0;
1519 waveStart = i+1;
1520 }
1521 }
1522 avgWaveVal += dest[i+1];
1523 }
1524 *size = numBits;
1525 return errCnt;
1526 }
1527
1528 //by marshmellow
1529 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1530 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1531 size_t bufsize = *size;
1532 //need to loop through all samples and identify our clock, look for the ST pattern
1533 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1534 int clk = 0;
1535 int tol = 0;
1536 int i, j, skip, start, end, low, high, minClk, waveStart;
1537 bool complete = false;
1538 int tmpbuff[bufsize / 64];
1539 int waveLen[bufsize / 64];
1540 size_t testsize = (bufsize < 512) ? bufsize : 512;
1541 int phaseoff = 0;
1542 high = low = 128;
1543 memset(tmpbuff, 0, sizeof(tmpbuff));
1544
1545 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1546 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1547 return false; //just noise
1548 }
1549 i = 0;
1550 j = 0;
1551 minClk = 255;
1552 // get to first full low to prime loop and skip incomplete first pulse
1553 while ((buffer[i] < high) && (i < bufsize))
1554 ++i;
1555 while ((buffer[i] > low) && (i < bufsize))
1556 ++i;
1557 skip = i;
1558
1559 // populate tmpbuff buffer with pulse lengths
1560 while (i < bufsize) {
1561 // measure from low to low
1562 while ((buffer[i] > low) && (i < bufsize))
1563 ++i;
1564 start= i;
1565 while ((buffer[i] < high) && (i < bufsize))
1566 ++i;
1567 //first high point for this wave
1568 waveStart = i;
1569 while ((buffer[i] > low) && (i < bufsize))
1570 ++i;
1571 if (j >= (bufsize/64)) {
1572 break;
1573 }
1574 waveLen[j] = i - waveStart; //first high to first low
1575 tmpbuff[j++] = i - start;
1576 if (i-start < minClk && i < bufsize) {
1577 minClk = i - start;
1578 }
1579 }
1580 // set clock - might be able to get this externally and remove this work...
1581 if (!clk) {
1582 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1583 tol = fndClk[clkCnt]/8;
1584 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1585 clk=fndClk[clkCnt];
1586 break;
1587 }
1588 }
1589 // clock not found - ERROR
1590 if (!clk) {
1591 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1592 return false;
1593 }
1594 } else tol = clk/8;
1595
1596 *foundclock = clk;
1597
1598 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1599 start = -1;
1600 for (i = 0; i < j - 4; ++i) {
1601 skip += tmpbuff[i];
1602 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1603 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1604 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1605 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1606 start = i + 3;
1607 break;
1608 }
1609 }
1610 }
1611 }
1612 }
1613 // first ST not found - ERROR
1614 if (start < 0) {
1615 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1616 return false;
1617 }
1618 if (waveLen[i+2] > clk*1+tol)
1619 phaseoff = 0;
1620 else
1621 phaseoff = clk/2;
1622
1623 // skip over the remainder of ST
1624 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1625
1626 // now do it again to find the end
1627 end = skip;
1628 for (i += 3; i < j - 4; ++i) {
1629 end += tmpbuff[i];
1630 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1631 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1632 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1633 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1634 complete = true;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 }
1641 end -= phaseoff;
1642 //didn't find second ST - ERROR
1643 if (!complete) {
1644 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1645 return false;
1646 }
1647 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1648 //now begin to trim out ST so we can use normal demod cmds
1649 start = skip;
1650 size_t datalen = end - start;
1651 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1652 if (datalen % clk > clk/8) {
1653 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1654 return false;
1655 } else {
1656 // padd the amount off - could be problematic... but shouldn't happen often
1657 datalen += datalen % clk;
1658 }
1659 // if datalen is less than one t55xx block - ERROR
1660 if (datalen/clk < 8*4) {
1661 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1662 return false;
1663 }
1664 size_t dataloc = start;
1665 size_t newloc = 0;
1666 i=0;
1667 // warning - overwriting buffer given with raw wave data with ST removed...
1668 while ( dataloc < bufsize-(clk/2) ) {
1669 //compensate for long high at end of ST not being high... (we cut out the high part)
1670 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1671 for(i=0; i < clk/2-tol; ++i) {
1672 buffer[dataloc+i] = high+5;
1673 }
1674 }
1675 for (i=0; i<datalen; ++i) {
1676 if (i+newloc < bufsize) {
1677 if (i+newloc < dataloc)
1678 buffer[i+newloc] = buffer[dataloc];
1679
1680 dataloc++;
1681 }
1682 }
1683 newloc += i;
1684 //skip next ST
1685 dataloc += clk*4;
1686 }
1687 *size = newloc;
1688 return true;
1689 }
Impressum, Datenschutz