]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
speed up the em4x05 cmds by only getting 6k...
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "proxmark3.h"
15 #include "ui.h"
16 #include "util.h"
17 #include "graph.h"
18 #include "cmdparser.h"
19 #include "cmddata.h"
20 #include "cmdlf.h"
21 #include "cmdmain.h"
22 #include "cmdlfem4x.h"
23 #include "lfdemod.h"
24
25 char *global_em410xId;
26
27 static int CmdHelp(const char *Cmd);
28
29 int CmdEMdemodASK(const char *Cmd)
30 {
31 char cmdp = param_getchar(Cmd, 0);
32 int findone = (cmdp == '1') ? 1 : 0;
33 UsbCommand c={CMD_EM410X_DEMOD};
34 c.arg[0]=findone;
35 SendCommand(&c);
36 return 0;
37 }
38
39 /* Read the ID of an EM410x tag.
40 * Format:
41 * 1111 1111 1 <-- standard non-repeatable header
42 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
43 * ....
44 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
45 * 0 <-- stop bit, end of tag
46 */
47 int CmdEM410xRead(const char *Cmd)
48 {
49 uint32_t hi=0;
50 uint64_t lo=0;
51
52 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
53 PrintAndLog("EM410x pattern found: ");
54 printEM410x(hi, lo);
55 if (hi){
56 PrintAndLog ("EM410x XL pattern found");
57 return 0;
58 }
59 char id[12] = {0x00};
60 sprintf(id, "%010"PRIx64,lo);
61
62 global_em410xId = id;
63 return 1;
64 }
65
66 // emulate an EM410X tag
67 int CmdEM410xSim(const char *Cmd)
68 {
69 int i, n, j, binary[4], parity[4];
70
71 char cmdp = param_getchar(Cmd, 0);
72 uint8_t uid[5] = {0x00};
73
74 if (cmdp == 'h' || cmdp == 'H') {
75 PrintAndLog("Usage: lf em4x em410xsim <UID> <clock>");
76 PrintAndLog("");
77 PrintAndLog(" sample: lf em4x em410xsim 0F0368568B");
78 return 0;
79 }
80 /* clock is 64 in EM410x tags */
81 uint8_t clock = 64;
82
83 if (param_gethex(Cmd, 0, uid, 10)) {
84 PrintAndLog("UID must include 10 HEX symbols");
85 return 0;
86 }
87 param_getdec(Cmd,1, &clock);
88
89 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
90 PrintAndLog("Press pm3-button to about simulation");
91
92
93 /* clear our graph */
94 ClearGraph(0);
95
96 /* write 9 start bits */
97 for (i = 0; i < 9; i++)
98 AppendGraph(0, clock, 1);
99
100 /* for each hex char */
101 parity[0] = parity[1] = parity[2] = parity[3] = 0;
102 for (i = 0; i < 10; i++)
103 {
104 /* read each hex char */
105 sscanf(&Cmd[i], "%1x", &n);
106 for (j = 3; j >= 0; j--, n/= 2)
107 binary[j] = n % 2;
108
109 /* append each bit */
110 AppendGraph(0, clock, binary[0]);
111 AppendGraph(0, clock, binary[1]);
112 AppendGraph(0, clock, binary[2]);
113 AppendGraph(0, clock, binary[3]);
114
115 /* append parity bit */
116 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
117
118 /* keep track of column parity */
119 parity[0] ^= binary[0];
120 parity[1] ^= binary[1];
121 parity[2] ^= binary[2];
122 parity[3] ^= binary[3];
123 }
124
125 /* parity columns */
126 AppendGraph(0, clock, parity[0]);
127 AppendGraph(0, clock, parity[1]);
128 AppendGraph(0, clock, parity[2]);
129 AppendGraph(0, clock, parity[3]);
130
131 /* stop bit */
132 AppendGraph(1, clock, 0);
133
134 CmdLFSim("0"); //240 start_gap.
135 return 0;
136 }
137
138 /* Function is equivalent of lf read + data samples + em410xread
139 * looped until an EM410x tag is detected
140 *
141 * Why is CmdSamples("16000")?
142 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
143 * rate gets lower, then grow the number of samples
144 * Changed by martin, 4000 x 4 = 16000,
145 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
146 */
147 int CmdEM410xWatch(const char *Cmd)
148 {
149 do {
150 if (ukbhit()) {
151 printf("\naborted via keyboard!\n");
152 break;
153 }
154
155 CmdLFRead("s");
156 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
157 } while (!CmdEM410xRead(""));
158
159 return 0;
160 }
161
162 //currently only supports manchester modulations
163 int CmdEM410xWatchnSpoof(const char *Cmd)
164 {
165 CmdEM410xWatch(Cmd);
166 PrintAndLog("# Replaying captured ID: %s",global_em410xId);
167 CmdLFaskSim("");
168 return 0;
169 }
170
171 int CmdEM410xWrite(const char *Cmd)
172 {
173 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
174 int card = 0xFF; // invalid card value
175 unsigned int clock = 0; // invalid clock value
176
177 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
178
179 // Check ID
180 if (id == 0xFFFFFFFFFFFFFFFF) {
181 PrintAndLog("Error! ID is required.\n");
182 return 0;
183 }
184 if (id >= 0x10000000000) {
185 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
186 return 0;
187 }
188
189 // Check Card
190 if (card == 0xFF) {
191 PrintAndLog("Error! Card type required.\n");
192 return 0;
193 }
194 if (card < 0) {
195 PrintAndLog("Error! Bad card type selected.\n");
196 return 0;
197 }
198
199 // Check Clock
200 // Default: 64
201 if (clock == 0)
202 clock = 64;
203
204 // Allowed clock rates: 16, 32, 40 and 64
205 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
206 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
207 return 0;
208 }
209
210 if (card == 1) {
211 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
212 // NOTE: We really should pass the clock in as a separate argument, but to
213 // provide for backwards-compatibility for older firmware, and to avoid
214 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
215 // the clock rate in bits 8-15 of the card value
216 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
217 } else if (card == 0) {
218 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
219 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
220 } else {
221 PrintAndLog("Error! Bad card type selected.\n");
222 return 0;
223 }
224
225 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
226 SendCommand(&c);
227
228 return 0;
229 }
230
231 //**************** Start of EM4x50 Code ************************
232 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
233 {
234 if (rows*cols>size) return false;
235 uint8_t colP=0;
236 //assume last col is a parity and do not test
237 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
238 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
239 colP ^= BitStream[(rowNum*cols)+colNum];
240 }
241 if (colP != pType) return false;
242 }
243 return true;
244 }
245
246 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
247 {
248 if (rows*cols>size) return false;
249 uint8_t rowP=0;
250 //assume last row is a parity row and do not test
251 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
252 for (uint8_t colNum = 0; colNum < cols; colNum++) {
253 rowP ^= BitStream[(rowNum*cols)+colNum];
254 }
255 if (rowP != pType) return false;
256 }
257 return true;
258 }
259
260 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
261 {
262 if (size<45) return 0;
263 uint32_t code = bytebits_to_byte(BitStream,8);
264 code = code<<8 | bytebits_to_byte(BitStream+9,8);
265 code = code<<8 | bytebits_to_byte(BitStream+18,8);
266 code = code<<8 | bytebits_to_byte(BitStream+27,8);
267 if (verbose || g_debugMode){
268 for (uint8_t i = 0; i<5; i++){
269 if (i == 4) PrintAndLog(""); //parity byte spacer
270 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
271 BitStream[i*9],
272 BitStream[i*9+1],
273 BitStream[i*9+2],
274 BitStream[i*9+3],
275 BitStream[i*9+4],
276 BitStream[i*9+5],
277 BitStream[i*9+6],
278 BitStream[i*9+7],
279 BitStream[i*9+8],
280 bytebits_to_byte(BitStream+i*9,8)
281 );
282 }
283 if (pTest)
284 PrintAndLog("Parity Passed");
285 else
286 PrintAndLog("Parity Failed");
287 }
288 return code;
289 }
290 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
291 * Format:
292 *
293 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
294 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
295 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
296 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
297 * CCCCCCCC <- column parity bits
298 * 0 <- stop bit
299 * LW <- Listen Window
300 *
301 * This pattern repeats for every block of data being transmitted.
302 * Transmission starts with two Listen Windows (LW - a modulated
303 * pattern of 320 cycles each (32/32/128/64/64)).
304 *
305 * Note that this data may or may not be the UID. It is whatever data
306 * is stored in the blocks defined in the control word First and Last
307 * Word Read values. UID is stored in block 32.
308 */
309 //completed by Marshmellow
310 int EM4x50Read(const char *Cmd, bool verbose)
311 {
312 uint8_t fndClk[] = {8,16,32,40,50,64,128};
313 int clk = 0;
314 int invert = 0;
315 int tol = 0;
316 int i, j, startblock, skip, block, start, end, low, high, minClk;
317 bool complete = false;
318 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
319 uint32_t Code[6];
320 char tmp[6];
321 char tmp2[20];
322 int phaseoff;
323 high = low = 0;
324 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
325
326 // get user entry if any
327 sscanf(Cmd, "%i %i", &clk, &invert);
328
329 // save GraphBuffer - to restore it later
330 save_restoreGB(1);
331
332 // first get high and low values
333 for (i = 0; i < GraphTraceLen; i++) {
334 if (GraphBuffer[i] > high)
335 high = GraphBuffer[i];
336 else if (GraphBuffer[i] < low)
337 low = GraphBuffer[i];
338 }
339
340 i = 0;
341 j = 0;
342 minClk = 255;
343 // get to first full low to prime loop and skip incomplete first pulse
344 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
345 ++i;
346 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
347 ++i;
348 skip = i;
349
350 // populate tmpbuff buffer with pulse lengths
351 while (i < GraphTraceLen) {
352 // measure from low to low
353 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
354 ++i;
355 start= i;
356 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
357 ++i;
358 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
359 ++i;
360 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
361 break;
362 }
363 tmpbuff[j++]= i - start;
364 if (i-start < minClk && i < GraphTraceLen) {
365 minClk = i - start;
366 }
367 }
368 // set clock
369 if (!clk) {
370 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
371 tol = fndClk[clkCnt]/8;
372 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
373 clk=fndClk[clkCnt];
374 break;
375 }
376 }
377 if (!clk) return 0;
378 } else tol = clk/8;
379
380 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
381 start = -1;
382 for (i= 0; i < j - 4 ; ++i) {
383 skip += tmpbuff[i];
384 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
385 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
386 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
387 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
388 {
389 start= i + 4;
390 break;
391 }
392 }
393 startblock = i + 4;
394
395 // skip over the remainder of LW
396 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
397 if (tmpbuff[i+3]>clk)
398 phaseoff = tmpbuff[i+3]-clk;
399 else
400 phaseoff = 0;
401 // now do it again to find the end
402 end = skip;
403 for (i += 3; i < j - 4 ; ++i) {
404 end += tmpbuff[i];
405 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
406 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
407 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
408 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
409 {
410 complete= true;
411 break;
412 }
413 }
414 end = i;
415 // report back
416 if (verbose || g_debugMode) {
417 if (start >= 0) {
418 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
419 } else {
420 PrintAndLog("No data found!, clock tried:%d",clk);
421 PrintAndLog("Try again with more samples.");
422 PrintAndLog(" or after a 'data askedge' command to clean up the read");
423 return 0;
424 }
425 } else if (start < 0) return 0;
426 start = skip;
427 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
428 // get rid of leading crap
429 snprintf(tmp, sizeof(tmp), "%i", skip);
430 CmdLtrim(tmp);
431 bool pTest;
432 bool AllPTest = true;
433 // now work through remaining buffer printing out data blocks
434 block = 0;
435 i = startblock;
436 while (block < 6) {
437 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
438 skip = phaseoff;
439
440 // look for LW before start of next block
441 for ( ; i < j - 4 ; ++i) {
442 skip += tmpbuff[i];
443 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
444 if (tmpbuff[i+1] >= clk-tol)
445 break;
446 }
447 if (i >= j-4) break; //next LW not found
448 skip += clk;
449 if (tmpbuff[i+1]>clk)
450 phaseoff = tmpbuff[i+1]-clk;
451 else
452 phaseoff = 0;
453 i += 2;
454 if (ASKDemod(tmp2, false, false, 1) < 1) {
455 save_restoreGB(0);
456 return 0;
457 }
458 //set DemodBufferLen to just one block
459 DemodBufferLen = skip/clk;
460 //test parities
461 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
462 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
463 AllPTest &= pTest;
464 //get output
465 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
466 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
467 //skip to start of next block
468 snprintf(tmp,sizeof(tmp),"%i",skip);
469 CmdLtrim(tmp);
470 block++;
471 if (i >= end) break; //in case chip doesn't output 6 blocks
472 }
473 //print full code:
474 if (verbose || g_debugMode || AllPTest){
475 if (!complete) {
476 PrintAndLog("*** Warning!");
477 PrintAndLog("Partial data - no end found!");
478 PrintAndLog("Try again with more samples.");
479 }
480 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
481 end = block;
482 for (block=0; block < end; block++){
483 PrintAndLog("Block %d: %08x",block,Code[block]);
484 }
485 if (AllPTest) {
486 PrintAndLog("Parities Passed");
487 } else {
488 PrintAndLog("Parities Failed");
489 PrintAndLog("Try cleaning the read samples with 'data askedge'");
490 }
491 }
492
493 //restore GraphBuffer
494 save_restoreGB(0);
495 return (int)AllPTest;
496 }
497
498 int CmdEM4x50Read(const char *Cmd)
499 {
500 return EM4x50Read(Cmd, true);
501 }
502
503 //**************** Start of EM4x05/EM4x69 Code ************************
504 int usage_lf_em_read(void) {
505 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
506 PrintAndLog("");
507 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
508 PrintAndLog("Options:");
509 PrintAndLog(" h - this help");
510 PrintAndLog(" address - memory address to read. (0-15)");
511 PrintAndLog(" pwd - password (hex) (optional)");
512 PrintAndLog("samples:");
513 PrintAndLog(" lf em 4x05readword 1");
514 PrintAndLog(" lf em 4x05readword 1 11223344");
515 return 0;
516 }
517
518 // for command responses from em4x05 or em4x69
519 // download samples from device and copy them to the Graphbuffer
520 bool downloadSamplesEM() {
521 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
522 uint8_t got[6000];
523 GetFromBigBuf(got, sizeof(got), 0);
524 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
525 PrintAndLog("command execution time out");
526 return false;
527 }
528 setGraphBuf(got, sizeof(got));
529 return true;
530 }
531
532 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
533 // em4x05/em4x69 preamble is 00001010
534 // skip first two 0 bits as they might have been missed in the demod
535 uint8_t preamble[] = {0,0,1,0,1,0};
536 size_t startIdx = 0;
537 // set size to 20 to only test first 14 positions for the preamble
538 size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
539
540 //test preamble
541 if ( !onePreambleSearch(DemodBuffer, preamble, sizeof(preamble), size, &startIdx) ) {
542 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
543 return false;
544 }
545 // if this is a readword command, get the read bytes and test the parities
546 if (readCmd) {
547 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
548 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
549 return false;
550 }
551 //test for even parity bits.
552 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,44) == 0 ) {
553 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
554 return false;
555 }
556
557 setDemodBuf(DemodBuffer, 40, 0);
558 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
559 }
560 return true;
561 }
562
563 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
564 // should cover 90% of known used configs
565 // the rest will need to be manually demoded for now...
566 int demodEM4x05resp(uint32_t *word, bool readCmd) {
567 int ans = 0;
568
569 // test for FSK wave (easiest to 99% ID)
570 if (GetFskClock("", false, false)) {
571 //valid fsk clocks found
572 ans = FSKrawDemod("0 0", false);
573 if (!ans) {
574 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
575 } else {
576 if (EM4x05testDemodReadData(word, readCmd)) {
577 return 1;
578 }
579 }
580 }
581 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
582 ans = GetPskClock("", false, false);
583 if (ans>0) {
584 //try psk1
585 ans = PSKDemod("0 0 6", false);
586 if (!ans) {
587 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
588 } else {
589 if (EM4x05testDemodReadData(word, readCmd)) {
590 return 1;
591 } else {
592 //try psk2
593 psk1TOpsk2(DemodBuffer, DemodBufferLen);
594 if (EM4x05testDemodReadData(word, readCmd)) {
595 return 1;
596 }
597 }
598 //try psk1 inverted
599 ans = PSKDemod("0 1 6", false);
600 if (!ans) {
601 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
602 } else {
603 if (EM4x05testDemodReadData(word, readCmd)) {
604 return 1;
605 } else {
606 //try psk2
607 psk1TOpsk2(DemodBuffer, DemodBufferLen);
608 if (EM4x05testDemodReadData(word, readCmd)) {
609 return 1;
610 }
611 }
612 }
613 }
614 }
615
616 // manchester is more common than biphase... try first
617 bool stcheck = false;
618 // try manchester - NOTE: ST only applies to T55x7 tags.
619 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
620 if (!ans) {
621 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
622 } else {
623 if (EM4x05testDemodReadData(word, readCmd)) {
624 return 1;
625 }
626 }
627
628 //try biphase
629 ans = ASKbiphaseDemod("0 0 1", false);
630 if (!ans) {
631 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
632 } else {
633 if (EM4x05testDemodReadData(word, readCmd)) {
634 return 1;
635 }
636 }
637
638 //try diphase (differential biphase or inverted)
639 ans = ASKbiphaseDemod("0 1 1", false);
640 if (!ans) {
641 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
642 } else {
643 if (EM4x05testDemodReadData(word, readCmd)) {
644 return 1;
645 }
646 }
647
648 return -1;
649 }
650
651 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
652 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
653 clearCommandBuffer();
654 SendCommand(&c);
655 UsbCommand resp;
656 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
657 PrintAndLog("Command timed out");
658 return -1;
659 }
660 if ( !downloadSamplesEM() ) {
661 return -1;
662 }
663 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
664 if (graphJustNoise(GraphBuffer, testLen)) {
665 PrintAndLog("no tag not found");
666 return -1;
667 }
668 //attempt demod:
669 return demodEM4x05resp(wordData, true);
670 }
671
672 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
673 uint32_t wordData = 0;
674 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
675 if (success == 1)
676 PrintAndLog(" Got Address %02d | %08X",addr,wordData);
677 else
678 PrintAndLog("Read Address %02d | failed",addr);
679
680 return success;
681 }
682
683 int CmdEM4x05ReadWord(const char *Cmd) {
684 uint8_t addr;
685 uint32_t pwd;
686 bool usePwd = false;
687 uint8_t ctmp = param_getchar(Cmd, 0);
688 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
689
690 addr = param_get8ex(Cmd, 0, 50, 10);
691 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
692 pwd = param_get32ex(Cmd, 1, 1, 16);
693
694 if ( (addr > 15) ) {
695 PrintAndLog("Address must be between 0 and 15");
696 return 1;
697 }
698 if ( pwd == 1 ) {
699 PrintAndLog("Reading address %02u", addr);
700 } else {
701 usePwd = true;
702 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
703 }
704
705 return EM4x05ReadWord(addr, pwd, usePwd);
706 }
707
708 int usage_lf_em_dump(void) {
709 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
710 PrintAndLog("");
711 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
712 PrintAndLog("Options:");
713 PrintAndLog(" h - this help");
714 PrintAndLog(" pwd - password (hex) (optional)");
715 PrintAndLog("samples:");
716 PrintAndLog(" lf em 4x05dump");
717 PrintAndLog(" lf em 4x05dump 11223344");
718 return 0;
719 }
720
721 int CmdEM4x05dump(const char *Cmd) {
722 uint8_t addr = 0;
723 uint32_t pwd;
724 bool usePwd = false;
725 uint8_t ctmp = param_getchar(Cmd, 0);
726 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
727
728 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
729 pwd = param_get32ex(Cmd, 0, 1, 16);
730
731 if ( pwd != 1 ) {
732 usePwd = true;
733 }
734 int success = 1;
735 for (; addr < 16; addr++) {
736 if (addr == 2) {
737 if (usePwd) {
738 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
739 } else {
740 PrintAndLog(" PWD Address 02 | cannot read");
741 }
742 } else {
743 success &= EM4x05ReadWord(addr, pwd, usePwd);
744 }
745 }
746
747 return success;
748 }
749
750
751 int usage_lf_em_write(void) {
752 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
753 PrintAndLog("");
754 PrintAndLog("Usage: lf em 4x05writeword [h] <address> <data> <pwd>");
755 PrintAndLog("Options:");
756 PrintAndLog(" h - this help");
757 PrintAndLog(" address - memory address to write to. (0-15)");
758 PrintAndLog(" data - data to write (hex)");
759 PrintAndLog(" pwd - password (hex) (optional)");
760 PrintAndLog("samples:");
761 PrintAndLog(" lf em 4x05writeword 1");
762 PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
763 return 0;
764 }
765
766 int CmdEM4x05WriteWord(const char *Cmd) {
767 uint8_t ctmp = param_getchar(Cmd, 0);
768 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
769
770 bool usePwd = false;
771
772 uint8_t addr = 16; // default to invalid address
773 uint32_t data = 0xFFFFFFFF; // default to blank data
774 uint32_t pwd = 0xFFFFFFFF; // default to blank password
775
776 addr = param_get8ex(Cmd, 0, 16, 10);
777 data = param_get32ex(Cmd, 1, 0, 16);
778 pwd = param_get32ex(Cmd, 2, 1, 16);
779
780
781 if ( (addr > 15) ) {
782 PrintAndLog("Address must be between 0 and 15");
783 return 1;
784 }
785 if ( pwd == 1 )
786 PrintAndLog("Writing address %d data %08X", addr, data);
787 else {
788 usePwd = true;
789 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
790 }
791
792 uint16_t flag = (addr << 8 ) | usePwd;
793
794 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
795 clearCommandBuffer();
796 SendCommand(&c);
797 UsbCommand resp;
798 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
799 PrintAndLog("Error occurred, device did not respond during write operation.");
800 return -1;
801 }
802 if ( !downloadSamplesEM() ) {
803 return -1;
804 }
805 //check response for 00001010 for write confirmation!
806 //attempt demod:
807 uint32_t dummy = 0;
808 int result = demodEM4x05resp(&dummy,false);
809 if (result == 1) {
810 PrintAndLog("Write Verified");
811 }
812 return result;
813 }
814
815 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
816 switch (chipType) {
817 case 9: PrintAndLog("\nChip Type: %u | EM4305", chipType); break;
818 case 4: PrintAndLog("Chip Type: %u | Unknown", chipType); break;
819 case 2: PrintAndLog("Chip Type: %u | EM4469", chipType); break;
820 //add more here when known
821 default: PrintAndLog("Chip Type: %u Unknown", chipType); break;
822 }
823
824 switch (cap) {
825 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
826 case 2: PrintAndLog(" Cap Type: %u | 210pF",cap); break;
827 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
828 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
829 }
830
831 PrintAndLog("Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
832 if (serial != 0) {
833 PrintAndLog("\n Serial #: %08X\n", serial);
834 }
835 }
836
837 //quick test for EM4x05/EM4x69 tag
838 bool EM4x05Block0Test(uint32_t *wordData) {
839 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
840 return true;
841 }
842 return false;
843 }
844
845 int CmdEM4x05info(const char *Cmd) {
846 //uint8_t addr = 0;
847 //uint32_t pwd;
848 uint32_t wordData = 0;
849 // bool usePwd = false;
850 uint8_t ctmp = param_getchar(Cmd, 0);
851 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
852
853 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
854 //pwd = param_get32ex(Cmd, 0, 1, 16);
855
856 //if ( pwd != 1 ) {
857 // usePwd = true;
858 //}
859 int success = 1;
860 // read blk 0
861
862 //block 0 can be read even without a password.
863 if ( !EM4x05Block0Test(&wordData) )
864 return -1;
865
866 uint8_t chipType = (wordData >> 1) & 0xF;
867 uint8_t cap = (wordData >> 5) & 3;
868 uint16_t custCode = (wordData >> 9) & 0x3FF;
869
870 wordData = 0;
871 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
872 //failed, but continue anyway...
873 }
874 printEM4x05info(chipType, cap, custCode, wordData);
875
876 // add read block 4 and read out config if successful
877 // needs password if one is set
878
879 return success;
880 }
881
882
883 static command_t CommandTable[] =
884 {
885 {"help", CmdHelp, 1, "This help"},
886 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
887 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
888 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
889 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
890 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
891 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
892 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
893 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
894 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
895 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
896 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
897 {NULL, NULL, 0, NULL}
898 };
899
900 int CmdLFEM4X(const char *Cmd)
901 {
902 CmdsParse(CommandTable, Cmd);
903 return 0;
904 }
905
906 int CmdHelp(const char *Cmd)
907 {
908 CmdsHelp(CommandTable);
909 return 0;
910 }
Impressum, Datenschutz