]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
also delete *.bin and fpga_compressor when "make clean".
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #ifdef WITH_LCD
29 #include "LCD.h"
30 #endif
31
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
39
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend[TOSEND_BUFFER_SIZE];
42 int ToSendMax;
43 static int ToSendBit;
44 struct common_area common_area __attribute__((section(".commonarea")));
45
46 void ToSendReset(void)
47 {
48 ToSendMax = -1;
49 ToSendBit = 8;
50 }
51
52 void ToSendStuffBit(int b)
53 {
54 if(ToSendBit >= 8) {
55 ToSendMax++;
56 ToSend[ToSendMax] = 0;
57 ToSendBit = 0;
58 }
59
60 if(b) {
61 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
62 }
63
64 ToSendBit++;
65
66 if(ToSendMax >= sizeof(ToSend)) {
67 ToSendBit = 0;
68 DbpString("ToSendStuffBit overflowed!");
69 }
70 }
71
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
75
76 void DbpString(char *str)
77 {
78 byte_t len = strlen(str);
79 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
80 }
81
82 #if 0
83 void DbpIntegers(int x1, int x2, int x3)
84 {
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
86 }
87 #endif
88
89 void Dbprintf(const char *fmt, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string[128];
92 va_list ap;
93
94 va_start(ap, fmt);
95 kvsprintf(fmt, output_string, 10, ap);
96 va_end(ap);
97
98 DbpString(output_string);
99 }
100
101 // prints HEX & ASCII
102 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
103 int l=0,i;
104 char ascii[9];
105
106 while (len>0) {
107 if (len>8) l=8;
108 else l=len;
109
110 memcpy(ascii,d,l);
111 ascii[l]=0;
112
113 // filter safe ascii
114 for (i=0;i<l;i++)
115 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
116
117 if (bAsci) {
118 Dbprintf("%-8s %*D",ascii,l,d," ");
119 } else {
120 Dbprintf("%*D",l,d," ");
121 }
122
123 len-=8;
124 d+=8;
125 }
126 }
127
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
131 // return that.
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch)
134 {
135 uint32_t d;
136
137 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
138 AT91C_BASE_ADC->ADC_MR =
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
142
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
146 //
147 // The maths are:
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
149 //
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
151 //
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
153
154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
157
158 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
159 ;
160 d = AT91C_BASE_ADC->ADC_CDR[ch];
161
162 return d;
163 }
164
165 int AvgAdc(int ch) // was static - merlok
166 {
167 int i;
168 int a = 0;
169
170 for(i = 0; i < 32; i++) {
171 a += ReadAdc(ch);
172 }
173
174 return (a + 15) >> 5;
175 }
176
177 void MeasureAntennaTuning(void)
178 {
179 uint8_t LF_Results[256];
180 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
181 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
182
183 LED_B_ON();
184
185 /*
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
192 */
193
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
196 for (i=255; i>=19; i--) {
197 WDT_HIT();
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
199 SpinDelay(20);
200 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
201 if (i==95) vLf125 = adcval; // voltage at 125Khz
202 if (i==89) vLf134 = adcval; // voltage at 134Khz
203
204 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results[i] > peak) {
206 peakv = adcval;
207 peak = LF_Results[i];
208 peakf = i;
209 //ptr = i;
210 }
211 }
212
213 for (i=18; i >= 0; i--) LF_Results[i] = 0;
214
215 LED_A_ON();
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
219 SpinDelay(20);
220 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
221
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
224 LED_A_OFF();
225 LED_B_OFF();
226 return;
227 }
228
229 void MeasureAntennaTuningHf(void)
230 {
231 int vHf = 0; // in mV
232
233 DbpString("Measuring HF antenna, press button to exit");
234
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
238
239 for (;;) {
240 SpinDelay(20);
241 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
242
243 Dbprintf("%d mV",vHf);
244 if (BUTTON_PRESS()) break;
245 }
246 DbpString("cancelled");
247
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249
250 }
251
252
253 void SimulateTagHfListen(void)
254 {
255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
259 uint8_t v = 0;
260 int i;
261 int p = 0;
262
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
267
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
270
271 FpgaSetupSsc();
272
273 i = 0;
274 for(;;) {
275 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
276 AT91C_BASE_SSC->SSC_THR = 0xff;
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
279 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
280
281 v <<= 1;
282 if(r & 1) {
283 v |= 1;
284 }
285 p++;
286
287 if(p >= 8) {
288 dest[i] = v;
289 v = 0;
290 p = 0;
291 i++;
292
293 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
294 break;
295 }
296 }
297 }
298 }
299 DbpString("simulate tag (now type bitsamples)");
300 }
301
302 void ReadMem(int addr)
303 {
304 const uint8_t *data = ((uint8_t *)addr);
305
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
308 }
309
310 /* osimage version information is linked in */
311 extern struct version_information version_information;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
314 void SendVersion(void)
315 {
316 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
317 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
318
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
325 strcat(VersionString, "bootrom version information appears invalid\n");
326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
328 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
329 }
330
331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
332 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
333
334 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
335 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
336 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
337 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
338
339 // Send Chip ID and used flash memory
340 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
341 uint32_t compressed_data_section_size = common_area.arg1;
342 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
343 }
344
345 #ifdef WITH_LF
346 // samy's sniff and repeat routine
347 void SamyRun()
348 {
349 DbpString("Stand-alone mode! No PC necessary.");
350 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
351
352 // 3 possible options? no just 2 for now
353 #define OPTS 2
354
355 int high[OPTS], low[OPTS];
356
357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
367
368 int selected = 0;
369 int playing = 0;
370 int cardRead = 0;
371
372 // Turn on selected LED
373 LED(selected + 1, 0);
374
375 for (;;)
376 {
377 usb_poll();
378 WDT_HIT();
379
380 // Was our button held down or pressed?
381 int button_pressed = BUTTON_HELD(1000);
382 SpinDelay(300);
383
384 // Button was held for a second, begin recording
385 if (button_pressed > 0 && cardRead == 0)
386 {
387 LEDsoff();
388 LED(selected + 1, 0);
389 LED(LED_RED2, 0);
390
391 // record
392 DbpString("Starting recording");
393
394 // wait for button to be released
395 while(BUTTON_PRESS())
396 WDT_HIT();
397
398 /* need this delay to prevent catching some weird data */
399 SpinDelay(500);
400
401 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
402 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
403
404 LEDsoff();
405 LED(selected + 1, 0);
406 // Finished recording
407
408 // If we were previously playing, set playing off
409 // so next button push begins playing what we recorded
410 playing = 0;
411
412 cardRead = 1;
413
414 }
415
416 else if (button_pressed > 0 && cardRead == 1)
417 {
418 LEDsoff();
419 LED(selected + 1, 0);
420 LED(LED_ORANGE, 0);
421
422 // record
423 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
424
425 // wait for button to be released
426 while(BUTTON_PRESS())
427 WDT_HIT();
428
429 /* need this delay to prevent catching some weird data */
430 SpinDelay(500);
431
432 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
433 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
434
435 LEDsoff();
436 LED(selected + 1, 0);
437 // Finished recording
438
439 // If we were previously playing, set playing off
440 // so next button push begins playing what we recorded
441 playing = 0;
442
443 cardRead = 0;
444
445 }
446
447 // Change where to record (or begin playing)
448 else if (button_pressed)
449 {
450 // Next option if we were previously playing
451 if (playing)
452 selected = (selected + 1) % OPTS;
453 playing = !playing;
454
455 LEDsoff();
456 LED(selected + 1, 0);
457
458 // Begin transmitting
459 if (playing)
460 {
461 LED(LED_GREEN, 0);
462 DbpString("Playing");
463 // wait for button to be released
464 while(BUTTON_PRESS())
465 WDT_HIT();
466 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
467 CmdHIDsimTAG(high[selected], low[selected], 0);
468 DbpString("Done playing");
469 if (BUTTON_HELD(1000) > 0)
470 {
471 DbpString("Exiting");
472 LEDsoff();
473 return;
474 }
475
476 /* We pressed a button so ignore it here with a delay */
477 SpinDelay(300);
478
479 // when done, we're done playing, move to next option
480 selected = (selected + 1) % OPTS;
481 playing = !playing;
482 LEDsoff();
483 LED(selected + 1, 0);
484 }
485 else
486 while(BUTTON_PRESS())
487 WDT_HIT();
488 }
489 }
490 }
491 #endif
492
493 /*
494 OBJECTIVE
495 Listen and detect an external reader. Determine the best location
496 for the antenna.
497
498 INSTRUCTIONS:
499 Inside the ListenReaderField() function, there is two mode.
500 By default, when you call the function, you will enter mode 1.
501 If you press the PM3 button one time, you will enter mode 2.
502 If you press the PM3 button a second time, you will exit the function.
503
504 DESCRIPTION OF MODE 1:
505 This mode just listens for an external reader field and lights up green
506 for HF and/or red for LF. This is the original mode of the detectreader
507 function.
508
509 DESCRIPTION OF MODE 2:
510 This mode will visually represent, using the LEDs, the actual strength of the
511 current compared to the maximum current detected. Basically, once you know
512 what kind of external reader is present, it will help you spot the best location to place
513 your antenna. You will probably not get some good results if there is a LF and a HF reader
514 at the same place! :-)
515
516 LIGHT SCHEME USED:
517 */
518 static const char LIGHT_SCHEME[] = {
519 0x0, /* ---- | No field detected */
520 0x1, /* X--- | 14% of maximum current detected */
521 0x2, /* -X-- | 29% of maximum current detected */
522 0x4, /* --X- | 43% of maximum current detected */
523 0x8, /* ---X | 57% of maximum current detected */
524 0xC, /* --XX | 71% of maximum current detected */
525 0xE, /* -XXX | 86% of maximum current detected */
526 0xF, /* XXXX | 100% of maximum current detected */
527 };
528 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
529
530 void ListenReaderField(int limit)
531 {
532 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
533 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
534 int mode=1, display_val, display_max, i;
535
536 #define LF_ONLY 1
537 #define HF_ONLY 2
538 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
539
540
541 // switch off FPGA - we don't want to measure our own signal
542 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
543 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
544
545 LEDsoff();
546
547 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
548
549 if(limit != HF_ONLY) {
550 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
551 lf_baseline = lf_av;
552 }
553
554 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
555
556 if (limit != LF_ONLY) {
557 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
558 hf_baseline = hf_av;
559 }
560
561 for(;;) {
562 if (BUTTON_PRESS()) {
563 SpinDelay(500);
564 switch (mode) {
565 case 1:
566 mode=2;
567 DbpString("Signal Strength Mode");
568 break;
569 case 2:
570 default:
571 DbpString("Stopped");
572 LEDsoff();
573 return;
574 break;
575 }
576 }
577 WDT_HIT();
578
579 if (limit != HF_ONLY) {
580 if(mode == 1) {
581 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
582 LED_D_ON();
583 else
584 LED_D_OFF();
585 }
586
587 lf_av_new = AvgAdc(ADC_CHAN_LF);
588 // see if there's a significant change
589 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
590 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
591 lf_av = lf_av_new;
592 if (lf_av > lf_max)
593 lf_max = lf_av;
594 }
595 }
596
597 if (limit != LF_ONLY) {
598 if (mode == 1){
599 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
600 LED_B_ON();
601 else
602 LED_B_OFF();
603 }
604
605 hf_av_new = AvgAdc(ADC_CHAN_HF);
606 // see if there's a significant change
607 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
608 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
609 hf_av = hf_av_new;
610 if (hf_av > hf_max)
611 hf_max = hf_av;
612 }
613 }
614
615 if(mode == 2) {
616 if (limit == LF_ONLY) {
617 display_val = lf_av;
618 display_max = lf_max;
619 } else if (limit == HF_ONLY) {
620 display_val = hf_av;
621 display_max = hf_max;
622 } else { /* Pick one at random */
623 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
624 display_val = hf_av;
625 display_max = hf_max;
626 } else {
627 display_val = lf_av;
628 display_max = lf_max;
629 }
630 }
631 for (i=0; i<LIGHT_LEN; i++) {
632 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
633 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
634 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
635 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
636 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
637 break;
638 }
639 }
640 }
641 }
642 }
643
644 void UsbPacketReceived(uint8_t *packet, int len)
645 {
646 UsbCommand *c = (UsbCommand *)packet;
647
648 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
649
650 switch(c->cmd) {
651 #ifdef WITH_LF
652 case CMD_SET_LF_SAMPLING_CONFIG:
653 setSamplingConfig((sample_config *) c->d.asBytes);
654 break;
655 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
656 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
657 break;
658 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
659 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
660 break;
661 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
662 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
663 break;
664 case CMD_HID_DEMOD_FSK:
665 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
666 break;
667 case CMD_HID_SIM_TAG:
668 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
669 break;
670 case CMD_FSK_SIM_TAG:
671 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
672 break;
673 case CMD_ASK_SIM_TAG:
674 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
675 break;
676 case CMD_PSK_SIM_TAG:
677 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
678 break;
679 case CMD_HID_CLONE_TAG:
680 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
681 break;
682 case CMD_IO_DEMOD_FSK:
683 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
684 break;
685 case CMD_IO_CLONE_TAG:
686 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
687 break;
688 case CMD_EM410X_DEMOD:
689 CmdEM410xdemod(c->arg[0], 0, 0, 1);
690 break;
691 case CMD_EM410X_WRITE_TAG:
692 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
693 break;
694 case CMD_READ_TI_TYPE:
695 ReadTItag();
696 break;
697 case CMD_WRITE_TI_TYPE:
698 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
699 break;
700 case CMD_SIMULATE_TAG_125K:
701 LED_A_ON();
702 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
703 LED_A_OFF();
704 break;
705 case CMD_LF_SIMULATE_BIDIR:
706 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
707 break;
708 case CMD_INDALA_CLONE_TAG:
709 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
710 break;
711 case CMD_INDALA_CLONE_TAG_L:
712 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
713 break;
714 case CMD_T55XX_READ_BLOCK:
715 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
716 break;
717 case CMD_T55XX_WRITE_BLOCK:
718 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
719 break;
720 case CMD_T55XX_READ_TRACE:
721 T55xxReadTrace();
722 break;
723 case CMD_PCF7931_READ:
724 ReadPCF7931();
725 cmd_send(CMD_ACK,0,0,0,0,0);
726 break;
727 case CMD_EM4X_READ_WORD:
728 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
729 break;
730 case CMD_EM4X_WRITE_WORD:
731 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
732 break;
733 #endif
734
735 #ifdef WITH_HITAG
736 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
737 SnoopHitag(c->arg[0]);
738 break;
739 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
740 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
741 break;
742 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
743 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
744 break;
745 #endif
746
747 #ifdef WITH_ISO15693
748 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
749 AcquireRawAdcSamplesIso15693();
750 break;
751 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
752 RecordRawAdcSamplesIso15693();
753 break;
754
755 case CMD_ISO_15693_COMMAND:
756 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
757 break;
758
759 case CMD_ISO_15693_FIND_AFI:
760 BruteforceIso15693Afi(c->arg[0]);
761 break;
762
763 case CMD_ISO_15693_DEBUG:
764 SetDebugIso15693(c->arg[0]);
765 break;
766
767 case CMD_READER_ISO_15693:
768 ReaderIso15693(c->arg[0]);
769 break;
770 case CMD_SIMTAG_ISO_15693:
771 SimTagIso15693(c->arg[0], c->d.asBytes);
772 break;
773 #endif
774
775 #ifdef WITH_LEGICRF
776 case CMD_SIMULATE_TAG_LEGIC_RF:
777 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
778 break;
779
780 case CMD_WRITER_LEGIC_RF:
781 LegicRfWriter(c->arg[1], c->arg[0]);
782 break;
783
784 case CMD_READER_LEGIC_RF:
785 LegicRfReader(c->arg[0], c->arg[1]);
786 break;
787 #endif
788
789 #ifdef WITH_ISO14443b
790 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
791 AcquireRawAdcSamplesIso14443(c->arg[0]);
792 break;
793 case CMD_READ_SRI512_TAG:
794 ReadSTMemoryIso14443(0x0F);
795 break;
796 case CMD_READ_SRIX4K_TAG:
797 ReadSTMemoryIso14443(0x7F);
798 break;
799 case CMD_SNOOP_ISO_14443:
800 SnoopIso14443();
801 break;
802 case CMD_SIMULATE_TAG_ISO_14443:
803 SimulateIso14443Tag();
804 break;
805 case CMD_ISO_14443B_COMMAND:
806 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
807 break;
808 #endif
809
810 #ifdef WITH_ISO14443a
811 case CMD_SNOOP_ISO_14443a:
812 SnoopIso14443a(c->arg[0]);
813 break;
814 case CMD_READER_ISO_14443a:
815 ReaderIso14443a(c);
816 break;
817 case CMD_SIMULATE_TAG_ISO_14443a:
818 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
819 break;
820
821 case CMD_EPA_PACE_COLLECT_NONCE:
822 EPA_PACE_Collect_Nonce(c);
823 break;
824
825 case CMD_READER_MIFARE:
826 ReaderMifare(c->arg[0]);
827 break;
828 case CMD_MIFARE_READBL:
829 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
830 break;
831 case CMD_MIFAREU_READBL:
832 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
833 break;
834 case CMD_MIFAREUC_AUTH:
835 MifareUC_Auth(c->arg[0],c->d.asBytes);
836 break;
837 case CMD_MIFAREU_READCARD:
838 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840 case CMD_MIFAREUC_SETPWD:
841 MifareUSetPwd(c->arg[0], c->d.asBytes);
842 break;
843 case CMD_MIFARE_READSC:
844 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846 case CMD_MIFARE_WRITEBL:
847 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
849 case CMD_MIFAREU_WRITEBL_COMPAT:
850 MifareUWriteBlock(c->arg[0], c->d.asBytes);
851 break;
852 case CMD_MIFAREU_WRITEBL:
853 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
854 break;
855 case CMD_MIFARE_NESTED:
856 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
857 break;
858 case CMD_MIFARE_CHKKEYS:
859 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
860 break;
861 case CMD_SIMULATE_MIFARE_CARD:
862 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
863 break;
864
865 // emulator
866 case CMD_MIFARE_SET_DBGMODE:
867 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
868 break;
869 case CMD_MIFARE_EML_MEMCLR:
870 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
871 break;
872 case CMD_MIFARE_EML_MEMSET:
873 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
874 break;
875 case CMD_MIFARE_EML_MEMGET:
876 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
877 break;
878 case CMD_MIFARE_EML_CARDLOAD:
879 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
880 break;
881
882 // Work with "magic Chinese" card
883 case CMD_MIFARE_CSETBLOCK:
884 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
885 break;
886 case CMD_MIFARE_CGETBLOCK:
887 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
888 break;
889 case CMD_MIFARE_CIDENT:
890 MifareCIdent();
891 break;
892
893 // mifare sniffer
894 case CMD_MIFARE_SNIFFER:
895 SniffMifare(c->arg[0]);
896 break;
897
898 #endif
899
900 #ifdef WITH_ICLASS
901 // Makes use of ISO14443a FPGA Firmware
902 case CMD_SNOOP_ICLASS:
903 SnoopIClass();
904 break;
905 case CMD_SIMULATE_TAG_ICLASS:
906 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
907 break;
908 case CMD_READER_ICLASS:
909 ReaderIClass(c->arg[0]);
910 break;
911 case CMD_READER_ICLASS_REPLAY:
912 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
913 break;
914 case CMD_ICLASS_EML_MEMSET:
915 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
916 break;
917 #endif
918
919 case CMD_SIMULATE_TAG_HF_LISTEN:
920 SimulateTagHfListen();
921 break;
922
923 case CMD_BUFF_CLEAR:
924 BigBuf_Clear();
925 break;
926
927 case CMD_MEASURE_ANTENNA_TUNING:
928 MeasureAntennaTuning();
929 break;
930
931 case CMD_MEASURE_ANTENNA_TUNING_HF:
932 MeasureAntennaTuningHf();
933 break;
934
935 case CMD_LISTEN_READER_FIELD:
936 ListenReaderField(c->arg[0]);
937 break;
938
939 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
940 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
941 SpinDelay(200);
942 LED_D_OFF(); // LED D indicates field ON or OFF
943 break;
944
945 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
946
947 LED_B_ON();
948 uint8_t *BigBuf = BigBuf_get_addr();
949 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
950 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
951 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
952 }
953 // Trigger a finish downloading signal with an ACK frame
954 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
955 LED_B_OFF();
956 break;
957
958 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
959 uint8_t *b = BigBuf_get_addr();
960 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
961 cmd_send(CMD_ACK,0,0,0,0,0);
962 break;
963 }
964 case CMD_READ_MEM:
965 ReadMem(c->arg[0]);
966 break;
967
968 case CMD_SET_LF_DIVISOR:
969 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
970 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
971 break;
972
973 case CMD_SET_ADC_MUX:
974 switch(c->arg[0]) {
975 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
976 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
977 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
978 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
979 }
980 break;
981
982 case CMD_VERSION:
983 SendVersion();
984 break;
985
986 #ifdef WITH_LCD
987 case CMD_LCD_RESET:
988 LCDReset();
989 break;
990 case CMD_LCD:
991 LCDSend(c->arg[0]);
992 break;
993 #endif
994 case CMD_SETUP_WRITE:
995 case CMD_FINISH_WRITE:
996 case CMD_HARDWARE_RESET:
997 usb_disable();
998 SpinDelay(1000);
999 SpinDelay(1000);
1000 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1001 for(;;) {
1002 // We're going to reset, and the bootrom will take control.
1003 }
1004 break;
1005
1006 case CMD_START_FLASH:
1007 if(common_area.flags.bootrom_present) {
1008 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1009 }
1010 usb_disable();
1011 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1012 for(;;);
1013 break;
1014
1015 case CMD_DEVICE_INFO: {
1016 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1017 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1018 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1019 break;
1020 }
1021 default:
1022 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1023 break;
1024 }
1025 }
1026
1027 void __attribute__((noreturn)) AppMain(void)
1028 {
1029 SpinDelay(100);
1030 clear_trace();
1031 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1032 /* Initialize common area */
1033 memset(&common_area, 0, sizeof(common_area));
1034 common_area.magic = COMMON_AREA_MAGIC;
1035 common_area.version = 1;
1036 }
1037 common_area.flags.osimage_present = 1;
1038
1039 LED_D_OFF();
1040 LED_C_OFF();
1041 LED_B_OFF();
1042 LED_A_OFF();
1043
1044 // Init USB device
1045 usb_enable();
1046
1047 // The FPGA gets its clock from us from PCK0 output, so set that up.
1048 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1049 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1050 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1051 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1052 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1053 AT91C_PMC_PRES_CLK_4;
1054 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1055
1056 // Reset SPI
1057 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1058 // Reset SSC
1059 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1060
1061 // Load the FPGA image, which we have stored in our flash.
1062 // (the HF version by default)
1063 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1064
1065 StartTickCount();
1066
1067 #ifdef WITH_LCD
1068 LCDInit();
1069 #endif
1070
1071 byte_t rx[sizeof(UsbCommand)];
1072 size_t rx_len;
1073
1074 for(;;) {
1075 if (usb_poll()) {
1076 rx_len = usb_read(rx,sizeof(UsbCommand));
1077 if (rx_len) {
1078 UsbPacketReceived(rx,rx_len);
1079 }
1080 }
1081 WDT_HIT();
1082
1083 #ifdef WITH_LF
1084 if (BUTTON_HELD(1000) > 0)
1085 SamyRun();
1086 #endif
1087 }
1088 }
Impressum, Datenschutz