]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
91a802ca567a1293e9029368d65b4a8f9e45ad42
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "../include/proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "../common/iso14443crc.h"
49 #include "../common/iso15693tools.h"
50 #include "iso15693tools.h"
51
52
53 static int timeout = 4096;
54
55
56 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
57
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
60 // variables.
61 //-----------------------------------------------------------------------------
62 static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_RECEIVING
67 } state;
68 uint16_t shiftReg;
69 int bitCnt;
70 int byteCnt;
71 int byteCntMax;
72 int posCnt;
73 int nOutOfCnt;
74 int OutOfCnt;
75 int syncBit;
76 int parityBits;
77 int samples;
78 int highCnt;
79 int swapper;
80 int counter;
81 int bitBuffer;
82 int dropPosition;
83 uint8_t *output;
84 } Uart;
85
86 static RAMFUNC int OutOfNDecoding(int bit)
87 {
88 //int error = 0;
89 int bitright;
90
91 if(!Uart.bitBuffer) {
92 Uart.bitBuffer = bit ^ 0xFF0;
93 return FALSE;
94 }
95 else {
96 Uart.bitBuffer <<= 4;
97 Uart.bitBuffer ^= bit;
98 }
99
100 /*if(Uart.swapper) {
101 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
102 Uart.byteCnt++;
103 Uart.swapper = 0;
104 if(Uart.byteCnt > 15) { return TRUE; }
105 }
106 else {
107 Uart.swapper = 1;
108 }*/
109
110 if(Uart.state != STATE_UNSYNCD) {
111 Uart.posCnt++;
112
113 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
114 bit = 0x00;
115 }
116 else {
117 bit = 0x01;
118 }
119 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
120 bitright = 0x00;
121 }
122 else {
123 bitright = 0x01;
124 }
125 if(bit != bitright) { bit = bitright; }
126
127
128 // So, now we only have to deal with *bit*, lets see...
129 if(Uart.posCnt == 1) {
130 // measurement first half bitperiod
131 if(!bit) {
132 // Drop in first half means that we are either seeing
133 // an SOF or an EOF.
134
135 if(Uart.nOutOfCnt == 1) {
136 // End of Communication
137 Uart.state = STATE_UNSYNCD;
138 Uart.highCnt = 0;
139 if(Uart.byteCnt == 0) {
140 // Its not straightforward to show single EOFs
141 // So just leave it and do not return TRUE
142 Uart.output[Uart.byteCnt] = 0xf0;
143 Uart.byteCnt++;
144
145 // Calculate the parity bit for the client...
146 Uart.parityBits = 1;
147 }
148 else {
149 return TRUE;
150 }
151 }
152 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
153 // When not part of SOF or EOF, it is an error
154 Uart.state = STATE_UNSYNCD;
155 Uart.highCnt = 0;
156 //error = 4;
157 }
158 }
159 }
160 else {
161 // measurement second half bitperiod
162 // Count the bitslot we are in... (ISO 15693)
163 Uart.nOutOfCnt++;
164
165 if(!bit) {
166 if(Uart.dropPosition) {
167 if(Uart.state == STATE_START_OF_COMMUNICATION) {
168 //error = 1;
169 }
170 else {
171 //error = 7;
172 }
173 // It is an error if we already have seen a drop in current frame
174 Uart.state = STATE_UNSYNCD;
175 Uart.highCnt = 0;
176 }
177 else {
178 Uart.dropPosition = Uart.nOutOfCnt;
179 }
180 }
181
182 Uart.posCnt = 0;
183
184
185 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
186 Uart.nOutOfCnt = 0;
187
188 if(Uart.state == STATE_START_OF_COMMUNICATION) {
189 if(Uart.dropPosition == 4) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 256;
192 }
193 else if(Uart.dropPosition == 3) {
194 Uart.state = STATE_RECEIVING;
195 Uart.OutOfCnt = 4;
196 //Uart.output[Uart.byteCnt] = 0xdd;
197 //Uart.byteCnt++;
198 }
199 else {
200 Uart.state = STATE_UNSYNCD;
201 Uart.highCnt = 0;
202 }
203 Uart.dropPosition = 0;
204 }
205 else {
206 // RECEIVING DATA
207 // 1 out of 4
208 if(!Uart.dropPosition) {
209 Uart.state = STATE_UNSYNCD;
210 Uart.highCnt = 0;
211 //error = 9;
212 }
213 else {
214 Uart.shiftReg >>= 2;
215
216 // Swap bit order
217 Uart.dropPosition--;
218 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
219 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
220
221 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
222 Uart.bitCnt += 2;
223 Uart.dropPosition = 0;
224
225 if(Uart.bitCnt == 8) {
226 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
227 Uart.byteCnt++;
228
229 // Calculate the parity bit for the client...
230 Uart.parityBits <<= 1;
231 //Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
232 Uart.parityBits ^= oddparity(Uart.shiftReg & 0xff);
233
234 Uart.bitCnt = 0;
235 Uart.shiftReg = 0;
236 }
237 }
238 }
239 }
240 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
241 // RECEIVING DATA
242 // 1 out of 256
243 if(!Uart.dropPosition) {
244 Uart.state = STATE_UNSYNCD;
245 Uart.highCnt = 0;
246 //error = 3;
247 }
248 else {
249 Uart.dropPosition--;
250 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
251 Uart.byteCnt++;
252
253 // Calculate the parity bit for the client...
254 Uart.parityBits <<= 1;
255 //Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
256 Uart.parityBits ^= oddparity((Uart.dropPosition & 0xff));
257
258 Uart.bitCnt = 0;
259 Uart.shiftReg = 0;
260 Uart.nOutOfCnt = 0;
261 Uart.dropPosition = 0;
262 }
263 }
264
265 /*if(error) {
266 Uart.output[Uart.byteCnt] = 0xAA;
267 Uart.byteCnt++;
268 Uart.output[Uart.byteCnt] = error & 0xFF;
269 Uart.byteCnt++;
270 Uart.output[Uart.byteCnt] = 0xAA;
271 Uart.byteCnt++;
272 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
273 Uart.byteCnt++;
274 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
275 Uart.byteCnt++;
276 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
277 Uart.byteCnt++;
278 Uart.output[Uart.byteCnt] = 0xAA;
279 Uart.byteCnt++;
280 return TRUE;
281 }*/
282 }
283
284 }
285 else {
286 bit = Uart.bitBuffer & 0xf0;
287 bit >>= 4;
288 bit ^= 0x0F; // drops become 1s ;-)
289 if(bit) {
290 // should have been high or at least (4 * 128) / fc
291 // according to ISO this should be at least (9 * 128 + 20) / fc
292 if(Uart.highCnt == 8) {
293 // we went low, so this could be start of communication
294 // it turns out to be safer to choose a less significant
295 // syncbit... so we check whether the neighbour also represents the drop
296 Uart.posCnt = 1; // apparently we are busy with our first half bit period
297 Uart.syncBit = bit & 8;
298 Uart.samples = 3;
299 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
300 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
301 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
302 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
303 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
304 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
305 Uart.syncBit = 8;
306
307 // the first half bit period is expected in next sample
308 Uart.posCnt = 0;
309 Uart.samples = 3;
310 }
311 }
312 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
313
314 Uart.syncBit <<= 4;
315 Uart.state = STATE_START_OF_COMMUNICATION;
316 Uart.bitCnt = 0;
317 Uart.byteCnt = 0;
318 Uart.parityBits = 0;
319 Uart.nOutOfCnt = 0;
320 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
321 Uart.dropPosition = 0;
322 Uart.shiftReg = 0;
323 //error = 0;
324 }
325 else {
326 Uart.highCnt = 0;
327 }
328 }
329 else {
330 if(Uart.highCnt < 8) {
331 Uart.highCnt++;
332 }
333 }
334 }
335
336 return FALSE;
337 }
338
339 //=============================================================================
340 // Manchester
341 //=============================================================================
342
343 static struct {
344 enum {
345 DEMOD_UNSYNCD,
346 DEMOD_START_OF_COMMUNICATION,
347 DEMOD_START_OF_COMMUNICATION2,
348 DEMOD_START_OF_COMMUNICATION3,
349 DEMOD_SOF_COMPLETE,
350 DEMOD_MANCHESTER_D,
351 DEMOD_MANCHESTER_E,
352 DEMOD_END_OF_COMMUNICATION,
353 DEMOD_END_OF_COMMUNICATION2,
354 DEMOD_MANCHESTER_F,
355 DEMOD_ERROR_WAIT
356 } state;
357 int bitCount;
358 int posCount;
359 int syncBit;
360 int parityBits;
361 uint16_t shiftReg;
362 int buffer;
363 int buffer2;
364 int buffer3;
365 int buff;
366 int samples;
367 int len;
368 enum {
369 SUB_NONE,
370 SUB_FIRST_HALF,
371 SUB_SECOND_HALF,
372 SUB_BOTH
373 } sub;
374 uint8_t *output;
375 } Demod;
376
377 static RAMFUNC int ManchesterDecoding(int v)
378 {
379 int bit;
380 int modulation;
381 int error = 0;
382
383 bit = Demod.buffer;
384 Demod.buffer = Demod.buffer2;
385 Demod.buffer2 = Demod.buffer3;
386 Demod.buffer3 = v;
387
388 if(Demod.buff < 3) {
389 Demod.buff++;
390 return FALSE;
391 }
392
393 if(Demod.state==DEMOD_UNSYNCD) {
394 Demod.output[Demod.len] = 0xfa;
395 Demod.syncBit = 0;
396 //Demod.samples = 0;
397 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
398
399 if(bit & 0x08) {
400 Demod.syncBit = 0x08;
401 }
402
403 if(bit & 0x04) {
404 if(Demod.syncBit) {
405 bit <<= 4;
406 }
407 Demod.syncBit = 0x04;
408 }
409
410 if(bit & 0x02) {
411 if(Demod.syncBit) {
412 bit <<= 2;
413 }
414 Demod.syncBit = 0x02;
415 }
416
417 if(bit & 0x01 && Demod.syncBit) {
418 Demod.syncBit = 0x01;
419 }
420
421 if(Demod.syncBit) {
422 Demod.len = 0;
423 Demod.state = DEMOD_START_OF_COMMUNICATION;
424 Demod.sub = SUB_FIRST_HALF;
425 Demod.bitCount = 0;
426 Demod.shiftReg = 0;
427 Demod.parityBits = 0;
428 Demod.samples = 0;
429 if(Demod.posCount) {
430 //if(trigger) LED_A_OFF(); // Not useful in this case...
431 switch(Demod.syncBit) {
432 case 0x08: Demod.samples = 3; break;
433 case 0x04: Demod.samples = 2; break;
434 case 0x02: Demod.samples = 1; break;
435 case 0x01: Demod.samples = 0; break;
436 }
437 // SOF must be long burst... otherwise stay unsynced!!!
438 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
439 Demod.state = DEMOD_UNSYNCD;
440 }
441 }
442 else {
443 // SOF must be long burst... otherwise stay unsynced!!!
444 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
445 Demod.state = DEMOD_UNSYNCD;
446 error = 0x88;
447 }
448
449 }
450 error = 0;
451
452 }
453 }
454 else {
455 modulation = bit & Demod.syncBit;
456 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
457
458 Demod.samples += 4;
459
460 if(Demod.posCount==0) {
461 Demod.posCount = 1;
462 if(modulation) {
463 Demod.sub = SUB_FIRST_HALF;
464 }
465 else {
466 Demod.sub = SUB_NONE;
467 }
468 }
469 else {
470 Demod.posCount = 0;
471 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
472 if(Demod.state!=DEMOD_ERROR_WAIT) {
473 Demod.state = DEMOD_ERROR_WAIT;
474 Demod.output[Demod.len] = 0xaa;
475 error = 0x01;
476 }
477 }*/
478 //else if(modulation) {
479 if(modulation) {
480 if(Demod.sub == SUB_FIRST_HALF) {
481 Demod.sub = SUB_BOTH;
482 }
483 else {
484 Demod.sub = SUB_SECOND_HALF;
485 }
486 }
487 else if(Demod.sub == SUB_NONE) {
488 if(Demod.state == DEMOD_SOF_COMPLETE) {
489 Demod.output[Demod.len] = 0x0f;
490 Demod.len++;
491 Demod.parityBits <<= 1;
492 //Demod.parityBits ^= OddByteParity[0x0f];
493 Demod.parityBits ^= oddparity(0x0f);
494 Demod.state = DEMOD_UNSYNCD;
495 // error = 0x0f;
496 return TRUE;
497 }
498 else {
499 Demod.state = DEMOD_ERROR_WAIT;
500 error = 0x33;
501 }
502 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
503 Demod.state = DEMOD_ERROR_WAIT;
504 Demod.output[Demod.len] = 0xaa;
505 error = 0x01;
506 }*/
507 }
508
509 switch(Demod.state) {
510 case DEMOD_START_OF_COMMUNICATION:
511 if(Demod.sub == SUB_BOTH) {
512 //Demod.state = DEMOD_MANCHESTER_D;
513 Demod.state = DEMOD_START_OF_COMMUNICATION2;
514 Demod.posCount = 1;
515 Demod.sub = SUB_NONE;
516 }
517 else {
518 Demod.output[Demod.len] = 0xab;
519 Demod.state = DEMOD_ERROR_WAIT;
520 error = 0xd2;
521 }
522 break;
523 case DEMOD_START_OF_COMMUNICATION2:
524 if(Demod.sub == SUB_SECOND_HALF) {
525 Demod.state = DEMOD_START_OF_COMMUNICATION3;
526 }
527 else {
528 Demod.output[Demod.len] = 0xab;
529 Demod.state = DEMOD_ERROR_WAIT;
530 error = 0xd3;
531 }
532 break;
533 case DEMOD_START_OF_COMMUNICATION3:
534 if(Demod.sub == SUB_SECOND_HALF) {
535 // Demod.state = DEMOD_MANCHESTER_D;
536 Demod.state = DEMOD_SOF_COMPLETE;
537 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
538 //Demod.len++;
539 }
540 else {
541 Demod.output[Demod.len] = 0xab;
542 Demod.state = DEMOD_ERROR_WAIT;
543 error = 0xd4;
544 }
545 break;
546 case DEMOD_SOF_COMPLETE:
547 case DEMOD_MANCHESTER_D:
548 case DEMOD_MANCHESTER_E:
549 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
550 // 00001111 = 1 (0 in 14443)
551 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
552 Demod.bitCount++;
553 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
554 Demod.state = DEMOD_MANCHESTER_D;
555 }
556 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
557 Demod.bitCount++;
558 Demod.shiftReg >>= 1;
559 Demod.state = DEMOD_MANCHESTER_E;
560 }
561 else if(Demod.sub == SUB_BOTH) {
562 Demod.state = DEMOD_MANCHESTER_F;
563 }
564 else {
565 Demod.state = DEMOD_ERROR_WAIT;
566 error = 0x55;
567 }
568 break;
569
570 case DEMOD_MANCHESTER_F:
571 // Tag response does not need to be a complete byte!
572 if(Demod.len > 0 || Demod.bitCount > 0) {
573 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
574 Demod.shiftReg >>= (9 - Demod.bitCount);
575 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
576 Demod.len++;
577 // No parity bit, so just shift a 0
578 Demod.parityBits <<= 1;
579 }
580
581 Demod.state = DEMOD_UNSYNCD;
582 return TRUE;
583 }
584 else {
585 Demod.output[Demod.len] = 0xad;
586 Demod.state = DEMOD_ERROR_WAIT;
587 error = 0x03;
588 }
589 break;
590
591 case DEMOD_ERROR_WAIT:
592 Demod.state = DEMOD_UNSYNCD;
593 break;
594
595 default:
596 Demod.output[Demod.len] = 0xdd;
597 Demod.state = DEMOD_UNSYNCD;
598 break;
599 }
600
601 /*if(Demod.bitCount>=9) {
602 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
603 Demod.len++;
604
605 Demod.parityBits <<= 1;
606 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
607
608 Demod.bitCount = 0;
609 Demod.shiftReg = 0;
610 }*/
611 if(Demod.bitCount>=8) {
612 Demod.shiftReg >>= 1;
613 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
614 Demod.len++;
615
616 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
617 Demod.parityBits <<= 1;
618 //Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
619 Demod.parityBits ^= oddparity((Demod.shiftReg & 0xff));
620
621 Demod.bitCount = 0;
622 Demod.shiftReg = 0;
623 }
624
625 if(error) {
626 Demod.output[Demod.len] = 0xBB;
627 Demod.len++;
628 Demod.output[Demod.len] = error & 0xFF;
629 Demod.len++;
630 Demod.output[Demod.len] = 0xBB;
631 Demod.len++;
632 Demod.output[Demod.len] = bit & 0xFF;
633 Demod.len++;
634 Demod.output[Demod.len] = Demod.buffer & 0xFF;
635 Demod.len++;
636 // Look harder ;-)
637 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
638 Demod.len++;
639 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
640 Demod.len++;
641 Demod.output[Demod.len] = 0xBB;
642 Demod.len++;
643 return TRUE;
644 }
645
646 }
647
648 } // end (state != UNSYNCED)
649
650 return FALSE;
651 }
652
653 //=============================================================================
654 // Finally, a `sniffer' for iClass communication
655 // Both sides of communication!
656 //=============================================================================
657
658 //-----------------------------------------------------------------------------
659 // Record the sequence of commands sent by the reader to the tag, with
660 // triggering so that we start recording at the point that the tag is moved
661 // near the reader.
662 //-----------------------------------------------------------------------------
663 void RAMFUNC SnoopIClass(void)
664 {
665
666
667 // We won't start recording the frames that we acquire until we trigger;
668 // a good trigger condition to get started is probably when we see a
669 // response from the tag.
670 //int triggered = FALSE; // FALSE to wait first for card
671
672 // The command (reader -> tag) that we're receiving.
673 // The length of a received command will in most cases be no more than 18 bytes.
674 // So 32 should be enough!
675 uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
676 // The response (tag -> reader) that we're receiving.
677 uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
678
679 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
680
681 // reset traceLen to 0
682 iso14a_set_tracing(TRUE);
683 iso14a_clear_trace();
684 iso14a_set_trigger(FALSE);
685
686 // The DMA buffer, used to stream samples from the FPGA
687 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
688 int lastRxCounter;
689 int8_t *upTo;
690 int smpl;
691 int maxBehindBy = 0;
692
693 // Count of samples received so far, so that we can include timing
694 // information in the trace buffer.
695 int samples = 0;
696 rsamples = 0;
697
698 // Set up the demodulator for tag -> reader responses.
699 Demod.output = tagToReaderResponse;
700 Demod.len = 0;
701 Demod.state = DEMOD_UNSYNCD;
702
703 // Setup for the DMA.
704 FpgaSetupSsc();
705 upTo = dmaBuf;
706 lastRxCounter = DMA_BUFFER_SIZE;
707 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
708
709 // And the reader -> tag commands
710 memset(&Uart, 0, sizeof(Uart));
711 Uart.output = readerToTagCmd;
712 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
713 Uart.state = STATE_UNSYNCD;
714
715 // And put the FPGA in the appropriate mode
716 // Signal field is off with the appropriate LED
717 LED_D_OFF();
718 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
719 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
720
721 uint32_t time_0 = GetCountSspClk();
722
723
724 int div = 0;
725 //int div2 = 0;
726 int decbyte = 0;
727 int decbyter = 0;
728
729 // And now we loop, receiving samples.
730 for(;;) {
731 LED_A_ON();
732 WDT_HIT();
733 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
734 (DMA_BUFFER_SIZE-1);
735 if(behindBy > maxBehindBy) {
736 maxBehindBy = behindBy;
737 if(behindBy > 400) {
738 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
739 goto done;
740 }
741 }
742 if(behindBy < 1) continue;
743
744 LED_A_OFF();
745 smpl = upTo[0];
746 upTo++;
747 lastRxCounter -= 1;
748 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
749 upTo -= DMA_BUFFER_SIZE;
750 lastRxCounter += DMA_BUFFER_SIZE;
751 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
752 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
753 }
754
755 //samples += 4;
756 samples += 1;
757
758 if(smpl & 0xF) {
759 decbyte ^= (1 << (3 - div));
760 }
761
762 // FOR READER SIDE COMMUMICATION...
763
764 decbyter <<= 2;
765 decbyter ^= (smpl & 0x30);
766
767 div++;
768
769 if((div + 1) % 2 == 0) {
770 smpl = decbyter;
771 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
772 rsamples = samples - Uart.samples;
773 LED_C_ON();
774
775 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
776 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
777 if(tracing)
778 {
779 LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE);
780 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE);
781 }
782
783
784 /* And ready to receive another command. */
785 Uart.state = STATE_UNSYNCD;
786 /* And also reset the demod code, which might have been */
787 /* false-triggered by the commands from the reader. */
788 Demod.state = DEMOD_UNSYNCD;
789 LED_B_OFF();
790 Uart.byteCnt = 0;
791 }
792 decbyter = 0;
793 }
794
795 if(div > 3) {
796 smpl = decbyte;
797 if(ManchesterDecoding(smpl & 0x0F)) {
798 rsamples = samples - Demod.samples;
799 LED_B_ON();
800
801 if(tracing)
802 {
803 LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE);
804 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE);
805 }
806
807
808 // And ready to receive another response.
809 memset(&Demod, 0, sizeof(Demod));
810 Demod.output = tagToReaderResponse;
811 Demod.state = DEMOD_UNSYNCD;
812 LED_C_OFF();
813 }
814
815 div = 0;
816 decbyte = 0x00;
817 }
818 //}
819
820 if(BUTTON_PRESS()) {
821 DbpString("cancelled_a");
822 goto done;
823 }
824 }
825
826 DbpString("COMMAND FINISHED");
827
828 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
829 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
830
831 done:
832 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
833 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
834 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
835 LED_A_OFF();
836 LED_B_OFF();
837 LED_C_OFF();
838 LED_D_OFF();
839 }
840
841 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
842 int i;
843 for(i = 0; i < 8; i++) {
844 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
845 }
846 }
847
848 //-----------------------------------------------------------------------------
849 // Wait for commands from reader
850 // Stop when button is pressed
851 // Or return TRUE when command is captured
852 //-----------------------------------------------------------------------------
853 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
854 {
855 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
856 // only, since we are receiving, not transmitting).
857 // Signal field is off with the appropriate LED
858 LED_D_OFF();
859 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
860
861 // Now run a `software UART' on the stream of incoming samples.
862 Uart.output = received;
863 Uart.byteCntMax = maxLen;
864 Uart.state = STATE_UNSYNCD;
865
866 for(;;) {
867 WDT_HIT();
868
869 if(BUTTON_PRESS()) return FALSE;
870
871 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
872 AT91C_BASE_SSC->SSC_THR = 0x00;
873 }
874 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
875 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
876
877 if(OutOfNDecoding(b & 0x0f)) {
878 *len = Uart.byteCnt;
879 return TRUE;
880 }
881 }
882 }
883 }
884
885
886 //-----------------------------------------------------------------------------
887 // Prepare tag messages
888 //-----------------------------------------------------------------------------
889 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
890 {
891 //So far a dummy implementation, not used
892 //int lastProxToAirDuration =0;
893 int i;
894
895 ToSendReset();
896
897 // Send SOF
898 ToSend[++ToSendMax] = 0x00;
899 ToSend[++ToSendMax] = 0x00;
900 ToSend[++ToSendMax] = 0x00;
901 ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
902 ToSend[++ToSendMax] = 0xff;
903 ToSend[++ToSendMax] = 0xff;
904 ToSend[++ToSendMax] = 0x00;
905 ToSend[++ToSendMax] = 0xff;
906
907 for(i = 0; i < len; i++) {
908 int j;
909 uint8_t b = cmd[i];
910
911 // Data bits
912 for(j = 0; j < 8; j++) {
913 if(b & 1) {
914 ToSend[++ToSendMax] = 0x00;
915 ToSend[++ToSendMax] = 0xff;
916 } else {
917 ToSend[++ToSendMax] = 0xff;
918 ToSend[++ToSendMax] = 0x00;
919 }
920 b >>= 1;
921 }
922 }
923
924 // Send EOF
925 ToSend[++ToSendMax] = 0xff;
926 ToSend[++ToSendMax] = 0x00;
927 ToSend[++ToSendMax] = 0xff;
928 ToSend[++ToSendMax] = 0xff;
929 ToSend[++ToSendMax] = 0xff;
930 ToSend[++ToSendMax] = 0x00;
931 ToSend[++ToSendMax] = 0x00;
932 ToSend[++ToSendMax] = 0x00;
933
934 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
935
936 // Convert from last byte pos to length
937 ToSendMax++;
938 }
939
940 // Only SOF
941 static void CodeIClassTagSOF()
942 {
943 //So far a dummy implementation, not used
944 //int lastProxToAirDuration =0;
945
946 ToSendReset();
947 // Send SOF
948 ToSend[++ToSendMax] = 0x00;
949 ToSend[++ToSendMax] = 0x00;
950 ToSend[++ToSendMax] = 0x00;
951 ToSend[++ToSendMax] = 0xff;
952 ToSend[++ToSendMax] = 0xff;
953 ToSend[++ToSendMax] = 0xff;
954 ToSend[++ToSendMax] = 0x00;
955 ToSend[++ToSendMax] = 0xff;
956
957 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
958
959
960 // Convert from last byte pos to length
961 ToSendMax++;
962 }
963 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
964 /**
965 * @brief SimulateIClass simulates an iClass card.
966 * @param arg0 type of simulation
967 * - 0 uses the first 8 bytes in usb data as CSN
968 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
969 * in the usb data. This mode collects MAC from the reader, in order to do an offline
970 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
971 * - Other : Uses the default CSN (031fec8af7ff12e0)
972 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
973 * @param arg2
974 * @param datain
975 */
976 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
977 {
978 uint32_t simType = arg0;
979 uint32_t numberOfCSNS = arg1;
980 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
981
982 // Enable and clear the trace
983 iso14a_set_tracing(TRUE);
984 iso14a_clear_trace();
985
986 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
987 if(simType == 0) {
988 // Use the CSN from commandline
989 memcpy(csn_crc, datain, 8);
990 doIClassSimulation(csn_crc,0,NULL);
991 }else if(simType == 1)
992 {
993 doIClassSimulation(csn_crc,0,NULL);
994 }
995 else if(simType == 2)
996 {
997
998 uint8_t mac_responses[64] = { 0 };
999 Dbprintf("Going into attack mode");
1000 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1001 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1002 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1003 int i = 0;
1004 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1005 {
1006 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1007
1008 memcpy(csn_crc, datain+(i*8), 8);
1009 if(doIClassSimulation(csn_crc,1,mac_responses))
1010 {
1011 return; // Button pressed
1012 }
1013 }
1014 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1015
1016 }
1017 else{
1018 // We may want a mode here where we hardcode the csns to use (from proxclone).
1019 // That will speed things up a little, but not required just yet.
1020 Dbprintf("The mode is not implemented, reserved for future use");
1021 }
1022 Dbprintf("Done...");
1023
1024 }
1025 /**
1026 * @brief Does the actual simulation
1027 * @param csn - csn to use
1028 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1029 */
1030 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
1031 {
1032
1033
1034 // CSN followed by two CRC bytes
1035 uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1036 uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
1037 memcpy(response3,csn,sizeof(response3));
1038 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1039 // e-Purse
1040 uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1041
1042 // Construct anticollision-CSN
1043 rotateCSN(response3,response2);
1044
1045 // Compute CRC on both CSNs
1046 ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
1047 ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
1048
1049 int exitLoop = 0;
1050 // Reader 0a
1051 // Tag 0f
1052 // Reader 0c
1053 // Tag anticoll. CSN
1054 // Reader 81 anticoll. CSN
1055 // Tag CSN
1056
1057 uint8_t *resp;
1058 int respLen;
1059 uint8_t* respdata = NULL;
1060 int respsize = 0;
1061 uint8_t sof = 0x0f;
1062
1063 // Respond SOF -- takes 8 bytes
1064 uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1065 int resp1Len;
1066
1067 // Anticollision CSN (rotated CSN)
1068 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1069 uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
1070 int resp2Len;
1071
1072 // CSN
1073 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1074 uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
1075 int resp3Len;
1076
1077 // e-Purse
1078 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1079 uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
1080 int resp4Len;
1081
1082 // + 1720..
1083 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
1084 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1085 int len;
1086
1087 // Prepare card messages
1088 ToSendMax = 0;
1089
1090 // First card answer: SOF
1091 CodeIClassTagSOF();
1092 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1093
1094 // Anticollision CSN
1095 CodeIClassTagAnswer(response2, sizeof(response2));
1096 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1097
1098 // CSN
1099 CodeIClassTagAnswer(response3, sizeof(response3));
1100 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1101
1102 // e-Purse
1103 CodeIClassTagAnswer(response4, sizeof(response4));
1104 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1105
1106
1107 // Start from off (no field generated)
1108 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1109 //SpinDelay(200);
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1111 SpinDelay(100);
1112 StartCountSspClk();
1113 // We need to listen to the high-frequency, peak-detected path.
1114 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1115 FpgaSetupSsc();
1116
1117 // To control where we are in the protocol
1118 int cmdsRecvd = 0;
1119 uint32_t time_0 = GetCountSspClk();
1120 uint32_t t2r_time =0;
1121 uint32_t r2t_time =0;
1122
1123 LED_A_ON();
1124 bool buttonPressed = false;
1125
1126 /** Hack for testing
1127 memcpy(reader_mac_buf,csn,8);
1128 exitLoop = true;
1129 end hack **/
1130
1131 while(!exitLoop) {
1132
1133 LED_B_OFF();
1134 //Signal tracer
1135 // Can be used to get a trigger for an oscilloscope..
1136 LED_C_OFF();
1137
1138 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1139 buttonPressed = true;
1140 break;
1141 }
1142 r2t_time = GetCountSspClk();
1143 //Signal tracer
1144 LED_C_ON();
1145
1146 // Okay, look at the command now.
1147 if(receivedCmd[0] == 0x0a ) {
1148 // Reader in anticollission phase
1149 resp = resp1; respLen = resp1Len; //order = 1;
1150 respdata = &sof;
1151 respsize = sizeof(sof);
1152 } else if(receivedCmd[0] == 0x0c) {
1153 // Reader asks for anticollission CSN
1154 resp = resp2; respLen = resp2Len; //order = 2;
1155 respdata = response2;
1156 respsize = sizeof(response2);
1157 //DbpString("Reader requests anticollission CSN:");
1158 } else if(receivedCmd[0] == 0x81) {
1159 // Reader selects anticollission CSN.
1160 // Tag sends the corresponding real CSN
1161 resp = resp3; respLen = resp3Len; //order = 3;
1162 respdata = response3;
1163 respsize = sizeof(response3);
1164 //DbpString("Reader selects anticollission CSN:");
1165 } else if(receivedCmd[0] == 0x88) {
1166 // Read e-purse (88 02)
1167 resp = resp4; respLen = resp4Len; //order = 4;
1168 respdata = response4;
1169 respsize = sizeof(response4);
1170 LED_B_ON();
1171 } else if(receivedCmd[0] == 0x05) {
1172 // Reader random and reader MAC!!!
1173 // Do not respond
1174 // We do not know what to answer, so lets keep quiet
1175 resp = resp1; respLen = 0; //order = 5;
1176 respdata = NULL;
1177 respsize = 0;
1178 if (breakAfterMacReceived){
1179 // dbprintf:ing ...
1180 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1181 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1182 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1183 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1184 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1185 if (reader_mac_buf != NULL)
1186 {
1187 memcpy(reader_mac_buf,receivedCmd+1,8);
1188 }
1189 exitLoop = true;
1190 }
1191 } else if(receivedCmd[0] == 0x00 && len == 1) {
1192 // Reader ends the session
1193 resp = resp1; respLen = 0; //order = 0;
1194 respdata = NULL;
1195 respsize = 0;
1196 } else {
1197 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1198 // Never seen this command before
1199 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1200 len,
1201 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1202 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1203 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1204 // Do not respond
1205 resp = resp1; respLen = 0; //order = 0;
1206 respdata = NULL;
1207 respsize = 0;
1208 }
1209
1210 if(cmdsRecvd > 100) {
1211 //DbpString("100 commands later...");
1212 //break;
1213 }
1214 else {
1215 cmdsRecvd++;
1216 }
1217
1218 if(respLen > 0) {
1219 SendIClassAnswer(resp, respLen, 21);
1220 t2r_time = GetCountSspClk();
1221 }
1222
1223 if (tracing) {
1224 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE);
1225 LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE);
1226
1227 if (respdata != NULL) {
1228 LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE);
1229 LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE);
1230
1231
1232 }
1233 if(!tracing) {
1234 DbpString("Trace full");
1235 //break;
1236 }
1237
1238 }
1239 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1240 }
1241
1242 //Dbprintf("%x", cmdsRecvd);
1243 LED_A_OFF();
1244 LED_B_OFF();
1245 if(buttonPressed)
1246 {
1247 DbpString("Button pressed");
1248 }
1249 return buttonPressed;
1250 }
1251
1252 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1253 {
1254 int i = 0, d=0;//, u = 0, d = 0;
1255 uint8_t b = 0;
1256
1257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1258
1259 AT91C_BASE_SSC->SSC_THR = 0x00;
1260 FpgaSetupSsc();
1261 while(!BUTTON_PRESS()) {
1262 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1263 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1264 }
1265 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1266 b = 0x00;
1267 if(d < delay) {
1268 d++;
1269 }
1270 else {
1271 if( i < respLen){
1272 b = resp[i];
1273 //Hack
1274 //b = 0xAC;
1275 }
1276 i++;
1277 }
1278 AT91C_BASE_SSC->SSC_THR = b;
1279 }
1280
1281 if (i > respLen +4) break;
1282 }
1283
1284 return 0;
1285 }
1286
1287 /// THE READER CODE
1288
1289 //-----------------------------------------------------------------------------
1290 // Transmit the command (to the tag) that was placed in ToSend[].
1291 //-----------------------------------------------------------------------------
1292 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1293 {
1294 int c;
1295 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1296 AT91C_BASE_SSC->SSC_THR = 0x00;
1297 FpgaSetupSsc();
1298
1299 if (wait)
1300 if(*wait < 10)
1301 *wait = 10;
1302
1303 for(c = 0; c < *wait;) {
1304 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1305 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1306 c++;
1307 }
1308 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1309 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1310 (void)r;
1311 }
1312 WDT_HIT();
1313 }
1314
1315 uint8_t sendbyte;
1316 bool firstpart = TRUE;
1317 c = 0;
1318 for(;;) {
1319 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1320
1321 // DOUBLE THE SAMPLES!
1322 if(firstpart) {
1323 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1324 }
1325 else {
1326 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1327 c++;
1328 }
1329 if(sendbyte == 0xff) {
1330 sendbyte = 0xfe;
1331 }
1332 AT91C_BASE_SSC->SSC_THR = sendbyte;
1333 firstpart = !firstpart;
1334
1335 if(c >= len) {
1336 break;
1337 }
1338 }
1339 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1340 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1341 (void)r;
1342 }
1343 WDT_HIT();
1344 }
1345 if (samples) *samples = (c + *wait) << 3;
1346 }
1347
1348
1349 //-----------------------------------------------------------------------------
1350 // Prepare iClass reader command to send to FPGA
1351 //-----------------------------------------------------------------------------
1352 void CodeIClassCommand(const uint8_t * cmd, int len)
1353 {
1354 int i, j, k;
1355 uint8_t b;
1356
1357 ToSendReset();
1358
1359 // Start of Communication: 1 out of 4
1360 ToSend[++ToSendMax] = 0xf0;
1361 ToSend[++ToSendMax] = 0x00;
1362 ToSend[++ToSendMax] = 0x0f;
1363 ToSend[++ToSendMax] = 0x00;
1364
1365 // Modulate the bytes
1366 for (i = 0; i < len; i++) {
1367 b = cmd[i];
1368 for(j = 0; j < 4; j++) {
1369 for(k = 0; k < 4; k++) {
1370 if(k == (b & 3)) {
1371 ToSend[++ToSendMax] = 0x0f;
1372 }
1373 else {
1374 ToSend[++ToSendMax] = 0x00;
1375 }
1376 }
1377 b >>= 2;
1378 }
1379 }
1380
1381 // End of Communication
1382 ToSend[++ToSendMax] = 0x00;
1383 ToSend[++ToSendMax] = 0x00;
1384 ToSend[++ToSendMax] = 0xf0;
1385 ToSend[++ToSendMax] = 0x00;
1386
1387 // Convert from last character reference to length
1388 ToSendMax++;
1389 }
1390
1391 void ReaderTransmitIClass(uint8_t* frame, int len)
1392 {
1393 int wait = 0;
1394 int samples = 0;
1395 int par = 0;
1396
1397 // This is tied to other size changes
1398 CodeIClassCommand(frame,len);
1399
1400 // Select the card
1401 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1402 if(trigger)
1403 LED_A_ON();
1404
1405 // Store reader command in buffer
1406 if (tracing) LogTrace(frame,len,rsamples,par,TRUE);
1407 }
1408
1409 //-----------------------------------------------------------------------------
1410 // Wait a certain time for tag response
1411 // If a response is captured return TRUE
1412 // If it takes too long return FALSE
1413 //-----------------------------------------------------------------------------
1414 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1415 {
1416 // buffer needs to be 512 bytes
1417 int c;
1418
1419 // Set FPGA mode to "reader listen mode", no modulation (listen
1420 // only, since we are receiving, not transmitting).
1421 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1422
1423 // Now get the answer from the card
1424 Demod.output = receivedResponse;
1425 Demod.len = 0;
1426 Demod.state = DEMOD_UNSYNCD;
1427
1428 uint8_t b;
1429 if (elapsed) *elapsed = 0;
1430
1431 bool skip = FALSE;
1432
1433 c = 0;
1434 for(;;) {
1435 WDT_HIT();
1436
1437 if(BUTTON_PRESS()) return FALSE;
1438
1439 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1440 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1441 if (elapsed) (*elapsed)++;
1442 }
1443 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1444 if(c < timeout) { c++; } else { return FALSE; }
1445 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1446 skip = !skip;
1447 if(skip) continue;
1448
1449 if(ManchesterDecoding(b & 0x0f)) {
1450 *samples = c << 3;
1451 return TRUE;
1452 }
1453 }
1454 }
1455 }
1456
1457 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1458 {
1459 int samples = 0;
1460 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1461 rsamples += samples;
1462 if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE);
1463 if(samples == 0) return FALSE;
1464 return Demod.len;
1465 }
1466
1467 void setupIclassReader()
1468 {
1469 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1470 // Reset trace buffer
1471 iso14a_set_tracing(TRUE);
1472 iso14a_clear_trace();
1473
1474 // Setup SSC
1475 FpgaSetupSsc();
1476 // Start from off (no field generated)
1477 // Signal field is off with the appropriate LED
1478 LED_D_OFF();
1479 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1480 SpinDelay(200);
1481
1482 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1483
1484 // Now give it time to spin up.
1485 // Signal field is on with the appropriate LED
1486 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1487 SpinDelay(200);
1488 LED_A_ON();
1489
1490 }
1491
1492 // Reader iClass Anticollission
1493 void ReaderIClass(uint8_t arg0) {
1494 uint8_t act_all[] = { 0x0a };
1495 uint8_t identify[] = { 0x0c };
1496 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1497 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1498
1499 uint8_t card_data[24]={0};
1500 uint8_t last_csn[8]={0};
1501
1502 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1503
1504 int read_status= 0;
1505 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1506
1507 setupIclassReader();
1508
1509 size_t datasize = 0;
1510 while(!BUTTON_PRESS())
1511 {
1512 WDT_HIT();
1513
1514 // Send act_all
1515 ReaderTransmitIClass(act_all, 1);
1516 // Card present?
1517 if(ReaderReceiveIClass(resp)) {
1518
1519 ReaderTransmitIClass(identify, 1);
1520
1521 if(ReaderReceiveIClass(resp) == 10) {
1522 //Copy the Anti-collision CSN to our select-packet
1523 memcpy(&select[1],resp,8);
1524 //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2],
1525 // resp[3], resp[4], resp[5],
1526 // resp[6], resp[7]);
1527 //Select the card
1528 ReaderTransmitIClass(select, sizeof(select));
1529
1530 if(ReaderReceiveIClass(resp) == 10) {
1531 //Save CSN in response data
1532 memcpy(card_data,resp,8);
1533 datasize += 8;
1534 //Flag that we got to at least stage 1, read CSN
1535 read_status = 1;
1536
1537 // Card selected
1538 //Dbprintf("Readcheck on Sector 2");
1539 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1540 if(ReaderReceiveIClass(resp) == 8) {
1541 //Save CC (e-purse) in response data
1542 memcpy(card_data+8,resp,8);
1543 datasize += 8;
1544 //Got both
1545 read_status = 2;
1546 }
1547
1548 LED_B_ON();
1549 //Send back to client, but don't bother if we already sent this
1550 if(memcmp(last_csn, card_data, 8) != 0)
1551 cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
1552
1553 //Save that we already sent this....
1554 if(read_status == 2)
1555 memcpy(last_csn, card_data, 8);
1556
1557 LED_B_OFF();
1558
1559 if(abort_after_read) break;
1560 }
1561 }
1562 }
1563
1564 if(traceLen > TRACE_SIZE) {
1565 DbpString("Trace full");
1566 break;
1567 }
1568 }
1569 LED_A_OFF();
1570 }
1571
1572 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1573 uint8_t act_all[] = { 0x0a };
1574 uint8_t identify[] = { 0x0c };
1575 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1576 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1577 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1578 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1579
1580 uint16_t crc = 0;
1581 uint8_t cardsize=0;
1582 bool read_success=false;
1583 uint8_t mem=0;
1584
1585 static struct memory_t{
1586 int k16;
1587 int book;
1588 int k2;
1589 int lockauth;
1590 int keyaccess;
1591 } memory;
1592
1593 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1594
1595 setupIclassReader();
1596
1597
1598 for(int i=0;i<1;i++) {
1599
1600 if(traceLen > TRACE_SIZE) {
1601 DbpString("Trace full");
1602 break;
1603 }
1604
1605 if (BUTTON_PRESS()) break;
1606
1607 // Send act_all
1608 ReaderTransmitIClass(act_all, 1);
1609 // Card present?
1610 if(ReaderReceiveIClass(resp)) {
1611 ReaderTransmitIClass(identify, 1);
1612 if(ReaderReceiveIClass(resp) == 10) {
1613 // Select card
1614 memcpy(&select[1],resp,8);
1615 ReaderTransmitIClass(select, sizeof(select));
1616
1617 if(ReaderReceiveIClass(resp) == 10) {
1618 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1619 resp[0], resp[1], resp[2],
1620 resp[3], resp[4], resp[5],
1621 resp[6], resp[7]);
1622 }
1623 // Card selected
1624 Dbprintf("Readcheck on Sector 2");
1625 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1626 if(ReaderReceiveIClass(resp) == 8) {
1627 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1628 resp[0], resp[1], resp[2],
1629 resp[3], resp[4], resp[5],
1630 resp[6], resp[7]);
1631 }else return;
1632 Dbprintf("Authenticate");
1633 //for now replay captured auth (as cc not updated)
1634 memcpy(check+5,MAC,4);
1635 //Dbprintf(" AA: %02x %02x %02x %02x",
1636 // check[5], check[6], check[7],check[8]);
1637 ReaderTransmitIClass(check, sizeof(check));
1638 if(ReaderReceiveIClass(resp) == 4) {
1639 Dbprintf(" AR: %02x %02x %02x %02x",
1640 resp[0], resp[1], resp[2],resp[3]);
1641 }else {
1642 Dbprintf("Error: Authentication Fail!");
1643 return;
1644 }
1645 Dbprintf("Dump Contents");
1646 //first get configuration block
1647 read_success=false;
1648 read[1]=1;
1649 uint8_t *blockno=&read[1];
1650 crc = iclass_crc16((char *)blockno,1);
1651 read[2] = crc >> 8;
1652 read[3] = crc & 0xff;
1653 while(!read_success){
1654 ReaderTransmitIClass(read, sizeof(read));
1655 if(ReaderReceiveIClass(resp) == 10) {
1656 read_success=true;
1657 mem=resp[5];
1658 memory.k16= (mem & 0x80);
1659 memory.book= (mem & 0x20);
1660 memory.k2= (mem & 0x8);
1661 memory.lockauth= (mem & 0x2);
1662 memory.keyaccess= (mem & 0x1);
1663
1664 }
1665 }
1666 if (memory.k16){
1667 cardsize=255;
1668 }else cardsize=32;
1669 //then loop around remaining blocks
1670 for(uint8_t j=0; j<cardsize; j++){
1671 read_success=false;
1672 uint8_t *blockno=&j;
1673 //crc_data[0]=j;
1674 read[1]=j;
1675 crc = iclass_crc16((char *)blockno,1);
1676 read[2] = crc >> 8;
1677 read[3] = crc & 0xff;
1678 while(!read_success){
1679 ReaderTransmitIClass(read, sizeof(read));
1680 if(ReaderReceiveIClass(resp) == 10) {
1681 read_success=true;
1682 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1683 j, resp[0], resp[1], resp[2],
1684 resp[3], resp[4], resp[5],
1685 resp[6], resp[7]);
1686 }
1687 }
1688 }
1689 }
1690 }
1691 WDT_HIT();
1692 }
1693
1694 LED_A_OFF();
1695 }
1696
1697 //2. Create Read method (cut-down from above) based off responses from 1.
1698 // Since we have the MAC could continue to use replay function.
1699 //3. Create Write method
1700 /*
1701 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1702 uint8_t act_all[] = { 0x0a };
1703 uint8_t identify[] = { 0x0c };
1704 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1705 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1706 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1707 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1708 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1709
1710 uint16_t crc = 0;
1711
1712 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1713
1714 // Reset trace buffer
1715 memset(trace, 0x44, RECV_CMD_OFFSET);
1716 traceLen = 0;
1717
1718 // Setup SSC
1719 FpgaSetupSsc();
1720 // Start from off (no field generated)
1721 // Signal field is off with the appropriate LED
1722 LED_D_OFF();
1723 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1724 SpinDelay(200);
1725
1726 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1727
1728 // Now give it time to spin up.
1729 // Signal field is on with the appropriate LED
1730 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1731 SpinDelay(200);
1732
1733 LED_A_ON();
1734
1735 for(int i=0;i<1;i++) {
1736
1737 if(traceLen > TRACE_SIZE) {
1738 DbpString("Trace full");
1739 break;
1740 }
1741
1742 if (BUTTON_PRESS()) break;
1743
1744 // Send act_all
1745 ReaderTransmitIClass(act_all, 1);
1746 // Card present?
1747 if(ReaderReceiveIClass(resp)) {
1748 ReaderTransmitIClass(identify, 1);
1749 if(ReaderReceiveIClass(resp) == 10) {
1750 // Select card
1751 memcpy(&select[1],resp,8);
1752 ReaderTransmitIClass(select, sizeof(select));
1753
1754 if(ReaderReceiveIClass(resp) == 10) {
1755 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1756 resp[0], resp[1], resp[2],
1757 resp[3], resp[4], resp[5],
1758 resp[6], resp[7]);
1759 }
1760 // Card selected
1761 Dbprintf("Readcheck on Sector 2");
1762 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1763 if(ReaderReceiveIClass(resp) == 8) {
1764 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1765 resp[0], resp[1], resp[2],
1766 resp[3], resp[4], resp[5],
1767 resp[6], resp[7]);
1768 }else return;
1769 Dbprintf("Authenticate");
1770 //for now replay captured auth (as cc not updated)
1771 memcpy(check+5,MAC,4);
1772 Dbprintf(" AA: %02x %02x %02x %02x",
1773 check[5], check[6], check[7],check[8]);
1774 ReaderTransmitIClass(check, sizeof(check));
1775 if(ReaderReceiveIClass(resp) == 4) {
1776 Dbprintf(" AR: %02x %02x %02x %02x",
1777 resp[0], resp[1], resp[2],resp[3]);
1778 }else {
1779 Dbprintf("Error: Authentication Fail!");
1780 return;
1781 }
1782 Dbprintf("Write Block");
1783
1784 //read configuration for max block number
1785 read_success=false;
1786 read[1]=1;
1787 uint8_t *blockno=&read[1];
1788 crc = iclass_crc16((char *)blockno,1);
1789 read[2] = crc >> 8;
1790 read[3] = crc & 0xff;
1791 while(!read_success){
1792 ReaderTransmitIClass(read, sizeof(read));
1793 if(ReaderReceiveIClass(resp) == 10) {
1794 read_success=true;
1795 mem=resp[5];
1796 memory.k16= (mem & 0x80);
1797 memory.book= (mem & 0x20);
1798 memory.k2= (mem & 0x8);
1799 memory.lockauth= (mem & 0x2);
1800 memory.keyaccess= (mem & 0x1);
1801
1802 }
1803 }
1804 if (memory.k16){
1805 cardsize=255;
1806 }else cardsize=32;
1807 //check card_size
1808
1809 memcpy(write+1,blockNo,1);
1810 memcpy(write+2,data,8);
1811 memcpy(write+10,mac,4);
1812 while(!send_success){
1813 ReaderTransmitIClass(write, sizeof(write));
1814 if(ReaderReceiveIClass(resp) == 10) {
1815 write_success=true;
1816 }
1817 }//
1818 }
1819 WDT_HIT();
1820 }
1821
1822 LED_A_OFF();
1823 }*/
Impressum, Datenschutz