]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
0. its alpha version!!!
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint8_t *trace = (uint8_t *) BigBuf;
24 static int traceLen = 0;
25 static int rsamples = 0;
26 static int tracing = TRUE;
27 static uint32_t iso14a_timeout;
28
29 // CARD TO READER
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
33 // READER TO CARD
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
37 #define SEC_D 0xf0
38 #define SEC_E 0x0f
39 #define SEC_F 0x00
40 #define SEC_X 0x0c
41 #define SEC_Y 0x00
42 #define SEC_Z 0xc0
43
44 static const uint8_t OddByteParity[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
61 };
62
63 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
64 #define RECV_CMD_OFFSET 3032
65 #define RECV_RES_OFFSET 3096
66 #define DMA_BUFFER_OFFSET 3160
67 #define DMA_BUFFER_SIZE 4096
68 #define TRACE_LENGTH 3000
69
70 uint8_t trigger = 0;
71 void iso14a_set_trigger(int enable) {
72 trigger = enable;
73 }
74
75 //-----------------------------------------------------------------------------
76 // Generate the parity value for a byte sequence
77 //
78 //-----------------------------------------------------------------------------
79 byte_t oddparity (const byte_t bt)
80 {
81 return OddByteParity[bt];
82 }
83
84 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
85 {
86 int i;
87 uint32_t dwPar = 0;
88
89 // Generate the encrypted data
90 for (i = 0; i < iLen; i++) {
91 // Save the encrypted parity bit
92 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
93 }
94 return dwPar;
95 }
96
97 void AppendCrc14443a(uint8_t* data, int len)
98 {
99 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
100 }
101
102 int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
103 {
104 // Return when trace is full
105 if (traceLen >= TRACE_LENGTH) return FALSE;
106
107 // Trace the random, i'm curious
108 rsamples += iSamples;
109 trace[traceLen++] = ((rsamples >> 0) & 0xff);
110 trace[traceLen++] = ((rsamples >> 8) & 0xff);
111 trace[traceLen++] = ((rsamples >> 16) & 0xff);
112 trace[traceLen++] = ((rsamples >> 24) & 0xff);
113 if (!bReader) {
114 trace[traceLen - 1] |= 0x80;
115 }
116 trace[traceLen++] = ((dwParity >> 0) & 0xff);
117 trace[traceLen++] = ((dwParity >> 8) & 0xff);
118 trace[traceLen++] = ((dwParity >> 16) & 0xff);
119 trace[traceLen++] = ((dwParity >> 24) & 0xff);
120 trace[traceLen++] = iLen;
121 memcpy(trace + traceLen, btBytes, iLen);
122 traceLen += iLen;
123 return TRUE;
124 }
125
126 //-----------------------------------------------------------------------------
127 // The software UART that receives commands from the reader, and its state
128 // variables.
129 //-----------------------------------------------------------------------------
130 static struct {
131 enum {
132 STATE_UNSYNCD,
133 STATE_START_OF_COMMUNICATION,
134 STATE_MILLER_X,
135 STATE_MILLER_Y,
136 STATE_MILLER_Z,
137 STATE_ERROR_WAIT
138 } state;
139 uint16_t shiftReg;
140 int bitCnt;
141 int byteCnt;
142 int byteCntMax;
143 int posCnt;
144 int syncBit;
145 int parityBits;
146 int samples;
147 int highCnt;
148 int bitBuffer;
149 enum {
150 DROP_NONE,
151 DROP_FIRST_HALF,
152 DROP_SECOND_HALF
153 } drop;
154 uint8_t *output;
155 } Uart;
156
157 static RAMFUNC int MillerDecoding(int bit)
158 {
159 int error = 0;
160 int bitright;
161
162 if(!Uart.bitBuffer) {
163 Uart.bitBuffer = bit ^ 0xFF0;
164 return FALSE;
165 }
166 else {
167 Uart.bitBuffer <<= 4;
168 Uart.bitBuffer ^= bit;
169 }
170
171 int EOC = FALSE;
172
173 if(Uart.state != STATE_UNSYNCD) {
174 Uart.posCnt++;
175
176 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
177 bit = 0x00;
178 }
179 else {
180 bit = 0x01;
181 }
182 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
183 bitright = 0x00;
184 }
185 else {
186 bitright = 0x01;
187 }
188 if(bit != bitright) { bit = bitright; }
189
190 if(Uart.posCnt == 1) {
191 // measurement first half bitperiod
192 if(!bit) {
193 Uart.drop = DROP_FIRST_HALF;
194 }
195 }
196 else {
197 // measurement second half bitperiod
198 if(!bit & (Uart.drop == DROP_NONE)) {
199 Uart.drop = DROP_SECOND_HALF;
200 }
201 else if(!bit) {
202 // measured a drop in first and second half
203 // which should not be possible
204 Uart.state = STATE_ERROR_WAIT;
205 error = 0x01;
206 }
207
208 Uart.posCnt = 0;
209
210 switch(Uart.state) {
211 case STATE_START_OF_COMMUNICATION:
212 Uart.shiftReg = 0;
213 if(Uart.drop == DROP_SECOND_HALF) {
214 // error, should not happen in SOC
215 Uart.state = STATE_ERROR_WAIT;
216 error = 0x02;
217 }
218 else {
219 // correct SOC
220 Uart.state = STATE_MILLER_Z;
221 }
222 break;
223
224 case STATE_MILLER_Z:
225 Uart.bitCnt++;
226 Uart.shiftReg >>= 1;
227 if(Uart.drop == DROP_NONE) {
228 // logic '0' followed by sequence Y
229 // end of communication
230 Uart.state = STATE_UNSYNCD;
231 EOC = TRUE;
232 }
233 // if(Uart.drop == DROP_FIRST_HALF) {
234 // Uart.state = STATE_MILLER_Z; stay the same
235 // we see a logic '0' }
236 if(Uart.drop == DROP_SECOND_HALF) {
237 // we see a logic '1'
238 Uart.shiftReg |= 0x100;
239 Uart.state = STATE_MILLER_X;
240 }
241 break;
242
243 case STATE_MILLER_X:
244 Uart.shiftReg >>= 1;
245 if(Uart.drop == DROP_NONE) {
246 // sequence Y, we see a '0'
247 Uart.state = STATE_MILLER_Y;
248 Uart.bitCnt++;
249 }
250 if(Uart.drop == DROP_FIRST_HALF) {
251 // Would be STATE_MILLER_Z
252 // but Z does not follow X, so error
253 Uart.state = STATE_ERROR_WAIT;
254 error = 0x03;
255 }
256 if(Uart.drop == DROP_SECOND_HALF) {
257 // We see a '1' and stay in state X
258 Uart.shiftReg |= 0x100;
259 Uart.bitCnt++;
260 }
261 break;
262
263 case STATE_MILLER_Y:
264 Uart.bitCnt++;
265 Uart.shiftReg >>= 1;
266 if(Uart.drop == DROP_NONE) {
267 // logic '0' followed by sequence Y
268 // end of communication
269 Uart.state = STATE_UNSYNCD;
270 EOC = TRUE;
271 }
272 if(Uart.drop == DROP_FIRST_HALF) {
273 // we see a '0'
274 Uart.state = STATE_MILLER_Z;
275 }
276 if(Uart.drop == DROP_SECOND_HALF) {
277 // We see a '1' and go to state X
278 Uart.shiftReg |= 0x100;
279 Uart.state = STATE_MILLER_X;
280 }
281 break;
282
283 case STATE_ERROR_WAIT:
284 // That went wrong. Now wait for at least two bit periods
285 // and try to sync again
286 if(Uart.drop == DROP_NONE) {
287 Uart.highCnt = 6;
288 Uart.state = STATE_UNSYNCD;
289 }
290 break;
291
292 default:
293 Uart.state = STATE_UNSYNCD;
294 Uart.highCnt = 0;
295 break;
296 }
297
298 Uart.drop = DROP_NONE;
299
300 // should have received at least one whole byte...
301 if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
302 return TRUE;
303 }
304
305 if(Uart.bitCnt == 9) {
306 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
307 Uart.byteCnt++;
308
309 Uart.parityBits <<= 1;
310 Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
311
312 if(EOC) {
313 // when End of Communication received and
314 // all data bits processed..
315 return TRUE;
316 }
317 Uart.bitCnt = 0;
318 }
319
320 /*if(error) {
321 Uart.output[Uart.byteCnt] = 0xAA;
322 Uart.byteCnt++;
323 Uart.output[Uart.byteCnt] = error & 0xFF;
324 Uart.byteCnt++;
325 Uart.output[Uart.byteCnt] = 0xAA;
326 Uart.byteCnt++;
327 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
328 Uart.byteCnt++;
329 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
330 Uart.byteCnt++;
331 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
332 Uart.byteCnt++;
333 Uart.output[Uart.byteCnt] = 0xAA;
334 Uart.byteCnt++;
335 return TRUE;
336 }*/
337 }
338
339 }
340 else {
341 bit = Uart.bitBuffer & 0xf0;
342 bit >>= 4;
343 bit ^= 0x0F;
344 if(bit) {
345 // should have been high or at least (4 * 128) / fc
346 // according to ISO this should be at least (9 * 128 + 20) / fc
347 if(Uart.highCnt == 8) {
348 // we went low, so this could be start of communication
349 // it turns out to be safer to choose a less significant
350 // syncbit... so we check whether the neighbour also represents the drop
351 Uart.posCnt = 1; // apparently we are busy with our first half bit period
352 Uart.syncBit = bit & 8;
353 Uart.samples = 3;
354 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
355 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
356 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
357 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
358 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
359 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
360 Uart.syncBit = 8;
361
362 // the first half bit period is expected in next sample
363 Uart.posCnt = 0;
364 Uart.samples = 3;
365 }
366 }
367 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
368
369 Uart.syncBit <<= 4;
370 Uart.state = STATE_START_OF_COMMUNICATION;
371 Uart.drop = DROP_FIRST_HALF;
372 Uart.bitCnt = 0;
373 Uart.byteCnt = 0;
374 Uart.parityBits = 0;
375 error = 0;
376 }
377 else {
378 Uart.highCnt = 0;
379 }
380 }
381 else {
382 if(Uart.highCnt < 8) {
383 Uart.highCnt++;
384 }
385 }
386 }
387
388 return FALSE;
389 }
390
391 //=============================================================================
392 // ISO 14443 Type A - Manchester
393 //=============================================================================
394
395 static struct {
396 enum {
397 DEMOD_UNSYNCD,
398 DEMOD_START_OF_COMMUNICATION,
399 DEMOD_MANCHESTER_D,
400 DEMOD_MANCHESTER_E,
401 DEMOD_MANCHESTER_F,
402 DEMOD_ERROR_WAIT
403 } state;
404 int bitCount;
405 int posCount;
406 int syncBit;
407 int parityBits;
408 uint16_t shiftReg;
409 int buffer;
410 int buff;
411 int samples;
412 int len;
413 enum {
414 SUB_NONE,
415 SUB_FIRST_HALF,
416 SUB_SECOND_HALF
417 } sub;
418 uint8_t *output;
419 } Demod;
420
421 static RAMFUNC int ManchesterDecoding(int v)
422 {
423 int bit;
424 int modulation;
425 int error = 0;
426
427 if(!Demod.buff) {
428 Demod.buff = 1;
429 Demod.buffer = v;
430 return FALSE;
431 }
432 else {
433 bit = Demod.buffer;
434 Demod.buffer = v;
435 }
436
437 if(Demod.state==DEMOD_UNSYNCD) {
438 Demod.output[Demod.len] = 0xfa;
439 Demod.syncBit = 0;
440 //Demod.samples = 0;
441 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
442
443 if(bit & 0x08) {
444 Demod.syncBit = 0x08;
445 }
446
447 if(bit & 0x04) {
448 if(Demod.syncBit) {
449 bit <<= 4;
450 }
451 Demod.syncBit = 0x04;
452 }
453
454 if(bit & 0x02) {
455 if(Demod.syncBit) {
456 bit <<= 2;
457 }
458 Demod.syncBit = 0x02;
459 }
460
461 if(bit & 0x01 && Demod.syncBit) {
462 Demod.syncBit = 0x01;
463 }
464
465 if(Demod.syncBit) {
466 Demod.len = 0;
467 Demod.state = DEMOD_START_OF_COMMUNICATION;
468 Demod.sub = SUB_FIRST_HALF;
469 Demod.bitCount = 0;
470 Demod.shiftReg = 0;
471 Demod.parityBits = 0;
472 Demod.samples = 0;
473 if(Demod.posCount) {
474 if(trigger) LED_A_OFF();
475 switch(Demod.syncBit) {
476 case 0x08: Demod.samples = 3; break;
477 case 0x04: Demod.samples = 2; break;
478 case 0x02: Demod.samples = 1; break;
479 case 0x01: Demod.samples = 0; break;
480 }
481 }
482 error = 0;
483 }
484 }
485 else {
486 //modulation = bit & Demod.syncBit;
487 modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
488
489 Demod.samples += 4;
490
491 if(Demod.posCount==0) {
492 Demod.posCount = 1;
493 if(modulation) {
494 Demod.sub = SUB_FIRST_HALF;
495 }
496 else {
497 Demod.sub = SUB_NONE;
498 }
499 }
500 else {
501 Demod.posCount = 0;
502 if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
503 if(Demod.state!=DEMOD_ERROR_WAIT) {
504 Demod.state = DEMOD_ERROR_WAIT;
505 Demod.output[Demod.len] = 0xaa;
506 error = 0x01;
507 }
508 }
509 else if(modulation) {
510 Demod.sub = SUB_SECOND_HALF;
511 }
512
513 switch(Demod.state) {
514 case DEMOD_START_OF_COMMUNICATION:
515 if(Demod.sub == SUB_FIRST_HALF) {
516 Demod.state = DEMOD_MANCHESTER_D;
517 }
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0x02;
522 }
523 break;
524
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 if(Demod.sub == SUB_FIRST_HALF) {
528 Demod.bitCount++;
529 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
530 Demod.state = DEMOD_MANCHESTER_D;
531 }
532 else if(Demod.sub == SUB_SECOND_HALF) {
533 Demod.bitCount++;
534 Demod.shiftReg >>= 1;
535 Demod.state = DEMOD_MANCHESTER_E;
536 }
537 else {
538 Demod.state = DEMOD_MANCHESTER_F;
539 }
540 break;
541
542 case DEMOD_MANCHESTER_F:
543 // Tag response does not need to be a complete byte!
544 if(Demod.len > 0 || Demod.bitCount > 0) {
545 if(Demod.bitCount > 0) {
546 Demod.shiftReg >>= (9 - Demod.bitCount);
547 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
548 Demod.len++;
549 // No parity bit, so just shift a 0
550 Demod.parityBits <<= 1;
551 }
552
553 Demod.state = DEMOD_UNSYNCD;
554 return TRUE;
555 }
556 else {
557 Demod.output[Demod.len] = 0xad;
558 Demod.state = DEMOD_ERROR_WAIT;
559 error = 0x03;
560 }
561 break;
562
563 case DEMOD_ERROR_WAIT:
564 Demod.state = DEMOD_UNSYNCD;
565 break;
566
567 default:
568 Demod.output[Demod.len] = 0xdd;
569 Demod.state = DEMOD_UNSYNCD;
570 break;
571 }
572
573 if(Demod.bitCount>=9) {
574 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
575 Demod.len++;
576
577 Demod.parityBits <<= 1;
578 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
579
580 Demod.bitCount = 0;
581 Demod.shiftReg = 0;
582 }
583
584 /*if(error) {
585 Demod.output[Demod.len] = 0xBB;
586 Demod.len++;
587 Demod.output[Demod.len] = error & 0xFF;
588 Demod.len++;
589 Demod.output[Demod.len] = 0xBB;
590 Demod.len++;
591 Demod.output[Demod.len] = bit & 0xFF;
592 Demod.len++;
593 Demod.output[Demod.len] = Demod.buffer & 0xFF;
594 Demod.len++;
595 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
596 Demod.len++;
597 Demod.output[Demod.len] = 0xBB;
598 Demod.len++;
599 return TRUE;
600 }*/
601
602 }
603
604 } // end (state != UNSYNCED)
605
606 return FALSE;
607 }
608
609 //=============================================================================
610 // Finally, a `sniffer' for ISO 14443 Type A
611 // Both sides of communication!
612 //=============================================================================
613
614 //-----------------------------------------------------------------------------
615 // Record the sequence of commands sent by the reader to the tag, with
616 // triggering so that we start recording at the point that the tag is moved
617 // near the reader.
618 //-----------------------------------------------------------------------------
619 void RAMFUNC SnoopIso14443a(void)
620 {
621 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
622 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
624 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
625 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
626
627 // We won't start recording the frames that we acquire until we trigger;
628 // a good trigger condition to get started is probably when we see a
629 // response from the tag.
630 int triggered = FALSE; // FALSE to wait first for card
631
632 // The command (reader -> tag) that we're receiving.
633 // The length of a received command will in most cases be no more than 18 bytes.
634 // So 32 should be enough!
635 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
636 // The response (tag -> reader) that we're receiving.
637 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
638
639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
640 // into trace, along with its length and other annotations.
641 //uint8_t *trace = (uint8_t *)BigBuf;
642
643 traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
644
645 // The DMA buffer, used to stream samples from the FPGA
646 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
647 int lastRxCounter;
648 int8_t *upTo;
649 int smpl;
650 int maxBehindBy = 0;
651
652 // Count of samples received so far, so that we can include timing
653 // information in the trace buffer.
654 int samples = 0;
655 int rsamples = 0;
656
657 memset(trace, 0x44, RECV_CMD_OFFSET);
658
659 // Set up the demodulator for tag -> reader responses.
660 Demod.output = receivedResponse;
661 Demod.len = 0;
662 Demod.state = DEMOD_UNSYNCD;
663
664 // Setup for the DMA.
665 FpgaSetupSsc();
666 upTo = dmaBuf;
667 lastRxCounter = DMA_BUFFER_SIZE;
668 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
669
670 // And the reader -> tag commands
671 memset(&Uart, 0, sizeof(Uart));
672 Uart.output = receivedCmd;
673 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
674 Uart.state = STATE_UNSYNCD;
675
676 // And put the FPGA in the appropriate mode
677 // Signal field is off with the appropriate LED
678 LED_D_OFF();
679 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
680 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
681
682
683 // And now we loop, receiving samples.
684 for(;;) {
685 LED_A_ON();
686 WDT_HIT();
687 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
688 (DMA_BUFFER_SIZE-1);
689 if(behindBy > maxBehindBy) {
690 maxBehindBy = behindBy;
691 if(behindBy > 400) {
692 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
693 goto done;
694 }
695 }
696 if(behindBy < 1) continue;
697
698 LED_A_OFF();
699 smpl = upTo[0];
700 upTo++;
701 lastRxCounter -= 1;
702 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
703 upTo -= DMA_BUFFER_SIZE;
704 lastRxCounter += DMA_BUFFER_SIZE;
705 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
706 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
707 }
708
709 samples += 4;
710 if(MillerDecoding((smpl & 0xF0) >> 4)) {
711 rsamples = samples - Uart.samples;
712 LED_C_ON();
713 if(triggered) {
714 trace[traceLen++] = ((rsamples >> 0) & 0xff);
715 trace[traceLen++] = ((rsamples >> 8) & 0xff);
716 trace[traceLen++] = ((rsamples >> 16) & 0xff);
717 trace[traceLen++] = ((rsamples >> 24) & 0xff);
718 trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
719 trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
720 trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
721 trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
722 trace[traceLen++] = Uart.byteCnt;
723 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
724 traceLen += Uart.byteCnt;
725 if(traceLen > TRACE_LENGTH) break;
726 }
727 /* And ready to receive another command. */
728 Uart.state = STATE_UNSYNCD;
729 /* And also reset the demod code, which might have been */
730 /* false-triggered by the commands from the reader. */
731 Demod.state = DEMOD_UNSYNCD;
732 LED_B_OFF();
733 }
734
735 if(ManchesterDecoding(smpl & 0x0F)) {
736 rsamples = samples - Demod.samples;
737 LED_B_ON();
738
739 // timestamp, as a count of samples
740 trace[traceLen++] = ((rsamples >> 0) & 0xff);
741 trace[traceLen++] = ((rsamples >> 8) & 0xff);
742 trace[traceLen++] = ((rsamples >> 16) & 0xff);
743 trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
744 trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
745 trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
746 trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
747 trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
748 // length
749 trace[traceLen++] = Demod.len;
750 memcpy(trace+traceLen, receivedResponse, Demod.len);
751 traceLen += Demod.len;
752 if(traceLen > TRACE_LENGTH) break;
753
754 triggered = TRUE;
755
756 // And ready to receive another response.
757 memset(&Demod, 0, sizeof(Demod));
758 Demod.output = receivedResponse;
759 Demod.state = DEMOD_UNSYNCD;
760 LED_C_OFF();
761 }
762
763 if(BUTTON_PRESS()) {
764 DbpString("cancelled_a");
765 goto done;
766 }
767 }
768
769 DbpString("COMMAND FINISHED");
770
771 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
772 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
773
774 done:
775 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
776 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
777 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
778 LED_A_OFF();
779 LED_B_OFF();
780 LED_C_OFF();
781 LED_D_OFF();
782 }
783
784 //-----------------------------------------------------------------------------
785 // Prepare tag messages
786 //-----------------------------------------------------------------------------
787 static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
788 {
789 int i;
790 int oddparity;
791
792 ToSendReset();
793
794 // Correction bit, might be removed when not needed
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(1); // 1
800 ToSendStuffBit(0);
801 ToSendStuffBit(0);
802 ToSendStuffBit(0);
803
804 // Send startbit
805 ToSend[++ToSendMax] = SEC_D;
806
807 for(i = 0; i < len; i++) {
808 int j;
809 uint8_t b = cmd[i];
810
811 // Data bits
812 oddparity = 0x01;
813 for(j = 0; j < 8; j++) {
814 oddparity ^= (b & 1);
815 if(b & 1) {
816 ToSend[++ToSendMax] = SEC_D;
817 } else {
818 ToSend[++ToSendMax] = SEC_E;
819 }
820 b >>= 1;
821 }
822
823 // Parity bit
824 if(oddparity) {
825 ToSend[++ToSendMax] = SEC_D;
826 } else {
827 ToSend[++ToSendMax] = SEC_E;
828 }
829 }
830
831 // Send stopbit
832 ToSend[++ToSendMax] = SEC_F;
833
834 // Flush the buffer in FPGA!!
835 for(i = 0; i < 5; i++) {
836 ToSend[++ToSendMax] = SEC_F;
837 }
838
839 // Convert from last byte pos to length
840 ToSendMax++;
841
842 // Add a few more for slop
843 ToSend[ToSendMax++] = 0x00;
844 ToSend[ToSendMax++] = 0x00;
845 //ToSendMax += 2;
846 }
847
848 //-----------------------------------------------------------------------------
849 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
850 //-----------------------------------------------------------------------------
851 static void CodeStrangeAnswer()
852 {
853 int i;
854
855 ToSendReset();
856
857 // Correction bit, might be removed when not needed
858 ToSendStuffBit(0);
859 ToSendStuffBit(0);
860 ToSendStuffBit(0);
861 ToSendStuffBit(0);
862 ToSendStuffBit(1); // 1
863 ToSendStuffBit(0);
864 ToSendStuffBit(0);
865 ToSendStuffBit(0);
866
867 // Send startbit
868 ToSend[++ToSendMax] = SEC_D;
869
870 // 0
871 ToSend[++ToSendMax] = SEC_E;
872
873 // 0
874 ToSend[++ToSendMax] = SEC_E;
875
876 // 1
877 ToSend[++ToSendMax] = SEC_D;
878
879 // Send stopbit
880 ToSend[++ToSendMax] = SEC_F;
881
882 // Flush the buffer in FPGA!!
883 for(i = 0; i < 5; i++) {
884 ToSend[++ToSendMax] = SEC_F;
885 }
886
887 // Convert from last byte pos to length
888 ToSendMax++;
889
890 // Add a few more for slop
891 ToSend[ToSendMax++] = 0x00;
892 ToSend[ToSendMax++] = 0x00;
893 //ToSendMax += 2;
894 }
895
896 //-----------------------------------------------------------------------------
897 // Wait for commands from reader
898 // Stop when button is pressed
899 // Or return TRUE when command is captured
900 //-----------------------------------------------------------------------------
901 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
902 {
903 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
904 // only, since we are receiving, not transmitting).
905 // Signal field is off with the appropriate LED
906 LED_D_OFF();
907 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
908
909 // Now run a `software UART' on the stream of incoming samples.
910 Uart.output = received;
911 Uart.byteCntMax = maxLen;
912 Uart.state = STATE_UNSYNCD;
913
914 for(;;) {
915 WDT_HIT();
916
917 if(BUTTON_PRESS()) return FALSE;
918
919 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
920 AT91C_BASE_SSC->SSC_THR = 0x00;
921 }
922 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
923 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
924 if(MillerDecoding((b & 0xf0) >> 4)) {
925 *len = Uart.byteCnt;
926 return TRUE;
927 }
928 if(MillerDecoding(b & 0x0f)) {
929 *len = Uart.byteCnt;
930 return TRUE;
931 }
932 }
933 }
934 }
935 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
936
937 //-----------------------------------------------------------------------------
938 // Main loop of simulated tag: receive commands from reader, decide what
939 // response to send, and send it.
940 //-----------------------------------------------------------------------------
941 void SimulateIso14443aTag(int tagType, int TagUid)
942 {
943 // This function contains the tag emulation
944
945 // Prepare protocol messages
946 // static const uint8_t cmd1[] = { 0x26 };
947 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
948 //
949 static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
950 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
951
952 // UID response
953 // static const uint8_t cmd2[] = { 0x93, 0x20 };
954 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
955
956 // my desfire
957 static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
958
959
960 // When reader selects us during cascade1 it will send cmd3
961 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
962 uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
963 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
964
965 // send cascade2 2nd half of UID
966 static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
967 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
968
969 // When reader selects us during cascade2 it will send cmd3a
970 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
971 uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
972 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
973
974 static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
975
976 uint8_t *resp;
977 int respLen;
978
979 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
980 // This will need
981 // 144 data bits (18 * 8)
982 // 18 parity bits
983 // 2 Start and stop
984 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
985 // 1 just for the case
986 // ----------- +
987 // 166
988 //
989 // 166 bytes, since every bit that needs to be send costs us a byte
990 //
991
992 // Respond with card type
993 uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
994 int resp1Len;
995
996 // Anticollision cascade1 - respond with uid
997 uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
998 int resp2Len;
999
1000 // Anticollision cascade2 - respond with 2nd half of uid if asked
1001 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1002 uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
1003 int resp2aLen;
1004
1005 // Acknowledge select - cascade 1
1006 uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
1007 int resp3Len;
1008
1009 // Acknowledge select - cascade 2
1010 uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
1011 int resp3aLen;
1012
1013 // Response to a read request - not implemented atm
1014 uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
1015 int resp4Len;
1016
1017 // Authenticate response - nonce
1018 uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
1019 int resp5Len;
1020
1021 uint8_t *receivedCmd = (uint8_t *)BigBuf;
1022 int len;
1023
1024 int i;
1025 int u;
1026 uint8_t b;
1027
1028 // To control where we are in the protocol
1029 int order = 0;
1030 int lastorder;
1031
1032 // Just to allow some checks
1033 int happened = 0;
1034 int happened2 = 0;
1035
1036 int cmdsRecvd = 0;
1037
1038 int fdt_indicator;
1039
1040 memset(receivedCmd, 0x44, 400);
1041
1042 // Prepare the responses of the anticollision phase
1043 // there will be not enough time to do this at the moment the reader sends it REQA
1044
1045 // Answer to request
1046 CodeIso14443aAsTag(response1, sizeof(response1));
1047 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1048
1049 // Send our UID (cascade 1)
1050 CodeIso14443aAsTag(response2, sizeof(response2));
1051 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1052
1053 // Answer to select (cascade1)
1054 CodeIso14443aAsTag(response3, sizeof(response3));
1055 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1056
1057 // Send the cascade 2 2nd part of the uid
1058 CodeIso14443aAsTag(response2a, sizeof(response2a));
1059 memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
1060
1061 // Answer to select (cascade 2)
1062 CodeIso14443aAsTag(response3a, sizeof(response3a));
1063 memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
1064
1065 // Strange answer is an example of rare message size (3 bits)
1066 CodeStrangeAnswer();
1067 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1068
1069 // Authentication answer (random nonce)
1070 CodeIso14443aAsTag(response5, sizeof(response5));
1071 memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
1072
1073 // We need to listen to the high-frequency, peak-detected path.
1074 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1075 FpgaSetupSsc();
1076
1077 cmdsRecvd = 0;
1078
1079 LED_A_ON();
1080 for(;;) {
1081
1082 if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
1083 DbpString("button press");
1084 break;
1085 }
1086 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1087 // Okay, look at the command now.
1088 lastorder = order;
1089 i = 1; // first byte transmitted
1090 if(receivedCmd[0] == 0x26) {
1091 // Received a REQUEST
1092 resp = resp1; respLen = resp1Len; order = 1;
1093 //DbpString("Hello request from reader:");
1094 } else if(receivedCmd[0] == 0x52) {
1095 // Received a WAKEUP
1096 resp = resp1; respLen = resp1Len; order = 6;
1097 // //DbpString("Wakeup request from reader:");
1098
1099 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
1100 // Received request for UID (cascade 1)
1101 resp = resp2; respLen = resp2Len; order = 2;
1102 // DbpString("UID (cascade 1) request from reader:");
1103 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1104
1105
1106 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
1107 // Received request for UID (cascade 2)
1108 resp = resp2a; respLen = resp2aLen; order = 20;
1109 // DbpString("UID (cascade 2) request from reader:");
1110 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1111
1112
1113 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
1114 // Received a SELECT
1115 resp = resp3; respLen = resp3Len; order = 3;
1116 // DbpString("Select (cascade 1) request from reader:");
1117 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1118
1119
1120 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
1121 // Received a SELECT
1122 resp = resp3a; respLen = resp3aLen; order = 30;
1123 // DbpString("Select (cascade 2) request from reader:");
1124 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1125
1126
1127 } else if(receivedCmd[0] == 0x30) {
1128 // Received a READ
1129 resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1130 Dbprintf("Read request from reader: %x %x %x",
1131 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1132
1133
1134 } else if(receivedCmd[0] == 0x50) {
1135 // Received a HALT
1136 resp = resp1; respLen = 0; order = 5; // Do nothing
1137 DbpString("Reader requested we HALT!:");
1138
1139 } else if(receivedCmd[0] == 0x60) {
1140 // Received an authentication request
1141 resp = resp5; respLen = resp5Len; order = 7;
1142 Dbprintf("Authenticate request from reader: %x %x %x",
1143 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1144
1145 } else if(receivedCmd[0] == 0xE0) {
1146 // Received a RATS request
1147 resp = resp1; respLen = 0;order = 70;
1148 Dbprintf("RATS request from reader: %x %x %x",
1149 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1150 } else {
1151 // Never seen this command before
1152 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1153 len,
1154 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1155 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1156 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1157 // Do not respond
1158 resp = resp1; respLen = 0; order = 0;
1159 }
1160
1161 // Count number of wakeups received after a halt
1162 if(order == 6 && lastorder == 5) { happened++; }
1163
1164 // Count number of other messages after a halt
1165 if(order != 6 && lastorder == 5) { happened2++; }
1166
1167 // Look at last parity bit to determine timing of answer
1168 if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
1169 // 1236, so correction bit needed
1170 i = 0;
1171 }
1172
1173 memset(receivedCmd, 0x44, 32);
1174
1175 if(cmdsRecvd > 999) {
1176 DbpString("1000 commands later...");
1177 break;
1178 }
1179 else {
1180 cmdsRecvd++;
1181 }
1182
1183 if(respLen <= 0) continue;
1184 //----------------------------
1185 u = 0;
1186 b = 0x00;
1187 fdt_indicator = FALSE;
1188
1189 EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
1190 /* // Modulate Manchester
1191 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1192 AT91C_BASE_SSC->SSC_THR = 0x00;
1193 FpgaSetupSsc();
1194
1195 // ### Transmit the response ###
1196 u = 0;
1197 b = 0x00;
1198 fdt_indicator = FALSE;
1199 for(;;) {
1200 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1201 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1202 (void)b;
1203 }
1204 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1205 if(i > respLen) {
1206 b = 0x00;
1207 u++;
1208 } else {
1209 b = resp[i];
1210 i++;
1211 }
1212 AT91C_BASE_SSC->SSC_THR = b;
1213
1214 if(u > 4) {
1215 break;
1216 }
1217 }
1218 if(BUTTON_PRESS()) {
1219 break;
1220 }
1221 }
1222 */
1223 }
1224
1225 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1226 LED_A_OFF();
1227 }
1228
1229 //-----------------------------------------------------------------------------
1230 // Transmit the command (to the tag) that was placed in ToSend[].
1231 //-----------------------------------------------------------------------------
1232 static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
1233 {
1234 int c;
1235
1236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1237
1238 if (wait)
1239 if(*wait < 10)
1240 *wait = 10;
1241
1242 for(c = 0; c < *wait;) {
1243 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1244 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1245 c++;
1246 }
1247 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1248 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1249 (void)r;
1250 }
1251 WDT_HIT();
1252 }
1253
1254 c = 0;
1255 for(;;) {
1256 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1257 AT91C_BASE_SSC->SSC_THR = cmd[c];
1258 c++;
1259 if(c >= len) {
1260 break;
1261 }
1262 }
1263 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1264 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1265 (void)r;
1266 }
1267 WDT_HIT();
1268 }
1269 if (samples) *samples = (c + *wait) << 3;
1270 }
1271
1272 //-----------------------------------------------------------------------------
1273 // Code a 7-bit command without parity bit
1274 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1275 //-----------------------------------------------------------------------------
1276 void ShortFrameFromReader(const uint8_t bt)
1277 {
1278 int j;
1279 int last;
1280 uint8_t b;
1281
1282 ToSendReset();
1283
1284 // Start of Communication (Seq. Z)
1285 ToSend[++ToSendMax] = SEC_Z;
1286 last = 0;
1287
1288 b = bt;
1289 for(j = 0; j < 7; j++) {
1290 if(b & 1) {
1291 // Sequence X
1292 ToSend[++ToSendMax] = SEC_X;
1293 last = 1;
1294 } else {
1295 if(last == 0) {
1296 // Sequence Z
1297 ToSend[++ToSendMax] = SEC_Z;
1298 }
1299 else {
1300 // Sequence Y
1301 ToSend[++ToSendMax] = SEC_Y;
1302 last = 0;
1303 }
1304 }
1305 b >>= 1;
1306 }
1307
1308 // End of Communication
1309 if(last == 0) {
1310 // Sequence Z
1311 ToSend[++ToSendMax] = SEC_Z;
1312 }
1313 else {
1314 // Sequence Y
1315 ToSend[++ToSendMax] = SEC_Y;
1316 last = 0;
1317 }
1318 // Sequence Y
1319 ToSend[++ToSendMax] = SEC_Y;
1320
1321 // Just to be sure!
1322 ToSend[++ToSendMax] = SEC_Y;
1323 ToSend[++ToSendMax] = SEC_Y;
1324 ToSend[++ToSendMax] = SEC_Y;
1325
1326 // Convert from last character reference to length
1327 ToSendMax++;
1328 }
1329
1330 //-----------------------------------------------------------------------------
1331 // Prepare reader command to send to FPGA
1332 //
1333 //-----------------------------------------------------------------------------
1334 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1335 {
1336 int i, j;
1337 int last;
1338 uint8_t b;
1339
1340 ToSendReset();
1341
1342 // Start of Communication (Seq. Z)
1343 ToSend[++ToSendMax] = SEC_Z;
1344 last = 0;
1345
1346 // Generate send structure for the data bits
1347 for (i = 0; i < len; i++) {
1348 // Get the current byte to send
1349 b = cmd[i];
1350
1351 for (j = 0; j < 8; j++) {
1352 if (b & 1) {
1353 // Sequence X
1354 ToSend[++ToSendMax] = SEC_X;
1355 last = 1;
1356 } else {
1357 if (last == 0) {
1358 // Sequence Z
1359 ToSend[++ToSendMax] = SEC_Z;
1360 } else {
1361 // Sequence Y
1362 ToSend[++ToSendMax] = SEC_Y;
1363 last = 0;
1364 }
1365 }
1366 b >>= 1;
1367 }
1368
1369 // Get the parity bit
1370 if ((dwParity >> i) & 0x01) {
1371 // Sequence X
1372 ToSend[++ToSendMax] = SEC_X;
1373 last = 1;
1374 } else {
1375 if (last == 0) {
1376 // Sequence Z
1377 ToSend[++ToSendMax] = SEC_Z;
1378 } else {
1379 // Sequence Y
1380 ToSend[++ToSendMax] = SEC_Y;
1381 last = 0;
1382 }
1383 }
1384 }
1385
1386 // End of Communication
1387 if (last == 0) {
1388 // Sequence Z
1389 ToSend[++ToSendMax] = SEC_Z;
1390 } else {
1391 // Sequence Y
1392 ToSend[++ToSendMax] = SEC_Y;
1393 last = 0;
1394 }
1395 // Sequence Y
1396 ToSend[++ToSendMax] = SEC_Y;
1397
1398 // Just to be sure!
1399 ToSend[++ToSendMax] = SEC_Y;
1400 ToSend[++ToSendMax] = SEC_Y;
1401 ToSend[++ToSendMax] = SEC_Y;
1402
1403 // Convert from last character reference to length
1404 ToSendMax++;
1405 }
1406
1407 //-----------------------------------------------------------------------------
1408 // Wait for commands from reader
1409 // Stop when button is pressed (return 1) or field was gone (return 2)
1410 // Or return 0 when command is captured
1411 //-----------------------------------------------------------------------------
1412 static int EmGetCmd(uint8_t *received, int *len, int maxLen)
1413 {
1414 *len = 0;
1415
1416 uint32_t timer = 0, vtime = 0;
1417 int analogCnt = 0;
1418 int analogAVG = 0;
1419
1420 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1421 // only, since we are receiving, not transmitting).
1422 // Signal field is off with the appropriate LED
1423 LED_D_OFF();
1424 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1425
1426 // Set ADC to read field strength
1427 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1428 AT91C_BASE_ADC->ADC_MR =
1429 ADC_MODE_PRESCALE(32) |
1430 ADC_MODE_STARTUP_TIME(16) |
1431 ADC_MODE_SAMPLE_HOLD_TIME(8);
1432 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1433 // start ADC
1434 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1435
1436 // Now run a 'software UART' on the stream of incoming samples.
1437 Uart.output = received;
1438 Uart.byteCntMax = maxLen;
1439 Uart.state = STATE_UNSYNCD;
1440
1441 for(;;) {
1442 WDT_HIT();
1443
1444 if (BUTTON_PRESS()) return 1;
1445
1446 // test if the field exists
1447 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1448 analogCnt++;
1449 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1450 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1451 if (analogCnt >= 32) {
1452 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1453 vtime = GetTickCount();
1454 if (!timer) timer = vtime;
1455 // 50ms no field --> card to idle state
1456 if (vtime - timer > 50) return 2;
1457 } else
1458 if (timer) timer = 0;
1459 analogCnt = 0;
1460 analogAVG = 0;
1461 }
1462 }
1463 // transmit none
1464 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1465 AT91C_BASE_SSC->SSC_THR = 0x00;
1466 }
1467 // receive and test the miller decoding
1468 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1469 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1470 if(MillerDecoding((b & 0xf0) >> 4)) {
1471 *len = Uart.byteCnt;
1472 return 0;
1473 }
1474 if(MillerDecoding(b & 0x0f)) {
1475 *len = Uart.byteCnt;
1476 return 0;
1477 }
1478 }
1479 }
1480 }
1481
1482 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
1483 {
1484 int i, u = 0;
1485 uint8_t b = 0;
1486
1487 // Modulate Manchester
1488 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1489 AT91C_BASE_SSC->SSC_THR = 0x00;
1490 FpgaSetupSsc();
1491
1492 // include correction bit
1493 i = 1;
1494 if((Uart.parityBits & 0x01) || correctionNeeded) {
1495 // 1236, so correction bit needed
1496 i = 0;
1497 }
1498
1499 // send cycle
1500 for(;;) {
1501 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1502 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1503 (void)b;
1504 }
1505 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1506 if(i > respLen) {
1507 b = 0x00;
1508 u++;
1509 } else {
1510 b = resp[i];
1511 i++;
1512 }
1513 AT91C_BASE_SSC->SSC_THR = b;
1514
1515 if(u > 4) break;
1516 }
1517 if(BUTTON_PRESS()) {
1518 break;
1519 }
1520 }
1521
1522 return 0;
1523 }
1524
1525 static int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
1526 CodeIso14443aAsTag(resp, respLen);
1527 return EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1528 }
1529
1530 static int EmSendCmd(uint8_t *resp, int respLen){
1531 return EmSendCmdEx(resp, respLen, 0);
1532 }
1533
1534 //-----------------------------------------------------------------------------
1535 // Wait a certain time for tag response
1536 // If a response is captured return TRUE
1537 // If it takes to long return FALSE
1538 //-----------------------------------------------------------------------------
1539 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1540 {
1541 // buffer needs to be 512 bytes
1542 int c;
1543
1544 // Set FPGA mode to "reader listen mode", no modulation (listen
1545 // only, since we are receiving, not transmitting).
1546 // Signal field is on with the appropriate LED
1547 LED_D_ON();
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1549
1550 // Now get the answer from the card
1551 Demod.output = receivedResponse;
1552 Demod.len = 0;
1553 Demod.state = DEMOD_UNSYNCD;
1554
1555 uint8_t b;
1556 if (elapsed) *elapsed = 0;
1557
1558 c = 0;
1559 for(;;) {
1560 WDT_HIT();
1561
1562 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1563 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1564 if (elapsed) (*elapsed)++;
1565 }
1566 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1567 if(c < iso14a_timeout) { c++; } else { return FALSE; }
1568 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1569 if(ManchesterDecoding((b>>4) & 0xf)) {
1570 *samples = ((c - 1) << 3) + 4;
1571 return TRUE;
1572 }
1573 if(ManchesterDecoding(b & 0x0f)) {
1574 *samples = c << 3;
1575 return TRUE;
1576 }
1577 }
1578 }
1579 }
1580
1581 void ReaderTransmitShort(const uint8_t* bt)
1582 {
1583 int wait = 0;
1584 int samples = 0;
1585
1586 ShortFrameFromReader(*bt);
1587
1588 // Select the card
1589 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1590
1591 // Store reader command in buffer
1592 if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
1593 }
1594
1595 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
1596 {
1597 int wait = 0;
1598 int samples = 0;
1599
1600 // This is tied to other size changes
1601 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1602 CodeIso14443aAsReaderPar(frame,len,par);
1603
1604 // Select the card
1605 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1606 if(trigger)
1607 LED_A_ON();
1608
1609 // Store reader command in buffer
1610 if (tracing) LogTrace(frame,len,0,par,TRUE);
1611 }
1612
1613
1614 void ReaderTransmit(uint8_t* frame, int len)
1615 {
1616 // Generate parity and redirect
1617 ReaderTransmitPar(frame,len,GetParity(frame,len));
1618 }
1619
1620 int ReaderReceive(uint8_t* receivedAnswer)
1621 {
1622 int samples = 0;
1623 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1624 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1625 if(samples == 0) return FALSE;
1626 return Demod.len;
1627 }
1628
1629 int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
1630 {
1631 int samples = 0;
1632 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1633 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1634 *parptr = Demod.parityBits;
1635 if(samples == 0) return FALSE;
1636 return Demod.len;
1637 }
1638
1639 /* performs iso14443a anticolision procedure
1640 * fills the uid pointer unless NULL
1641 * fills resp_data unless NULL */
1642 int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
1643 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1644 uint8_t sel_all[] = { 0x93,0x20 };
1645 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1646 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1647
1648 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1649
1650 uint8_t sak = 0x04; // cascade uid
1651 int cascade_level = 0;
1652
1653 int len;
1654
1655 // clear uid
1656 memset(uid_ptr, 0, 8);
1657
1658 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1659 ReaderTransmitShort(wupa);
1660 // Receive the ATQA
1661 if(!ReaderReceive(resp)) return 0;
1662
1663 if(resp_data)
1664 memcpy(resp_data->atqa, resp, 2);
1665
1666 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1667 // which case we need to make a cascade 2 request and select - this is a long UID
1668 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1669 for(; sak & 0x04; cascade_level++)
1670 {
1671 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1672 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1673
1674 // SELECT_ALL
1675 ReaderTransmit(sel_all,sizeof(sel_all));
1676 if (!ReaderReceive(resp)) return 0;
1677 if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
1678
1679 // calculate crypto UID
1680 if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
1681
1682 // Construct SELECT UID command
1683 memcpy(sel_uid+2,resp,5);
1684 AppendCrc14443a(sel_uid,7);
1685 ReaderTransmit(sel_uid,sizeof(sel_uid));
1686
1687 // Receive the SAK
1688 if (!ReaderReceive(resp)) return 0;
1689 sak = resp[0];
1690 }
1691 if(resp_data) {
1692 resp_data->sak = sak;
1693 resp_data->ats_len = 0;
1694 }
1695 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1696 if (uid_ptr[0] == 0x88) {
1697 memcpy(uid_ptr, uid_ptr + 1, 7);
1698 uid_ptr[7] = 0;
1699 }
1700
1701 if( (sak & 0x20) == 0)
1702 return 2; // non iso14443a compliant tag
1703
1704 // Request for answer to select
1705 if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1706 AppendCrc14443a(rats, 2);
1707 ReaderTransmit(rats, sizeof(rats));
1708
1709 if (!(len = ReaderReceive(resp))) return 0;
1710
1711 memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
1712 resp_data->ats_len = len;
1713 }
1714
1715 return 1;
1716 }
1717
1718 void iso14443a_setup() {
1719 // Setup SSC
1720 FpgaSetupSsc();
1721 // Start from off (no field generated)
1722 // Signal field is off with the appropriate LED
1723 LED_D_OFF();
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1725 SpinDelay(200);
1726
1727 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1728
1729 // Now give it time to spin up.
1730 // Signal field is on with the appropriate LED
1731 LED_D_ON();
1732 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1733 SpinDelay(200);
1734
1735 iso14a_timeout = 2048; //default
1736 }
1737
1738 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1739 uint8_t real_cmd[cmd_len+4];
1740 real_cmd[0] = 0x0a; //I-Block
1741 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1742 memcpy(real_cmd+2, cmd, cmd_len);
1743 AppendCrc14443a(real_cmd,cmd_len+2);
1744
1745 ReaderTransmit(real_cmd, cmd_len+4);
1746 size_t len = ReaderReceive(data);
1747 if(!len)
1748 return -1; //DATA LINK ERROR
1749
1750 return len;
1751 }
1752
1753
1754 //-----------------------------------------------------------------------------
1755 // Read an ISO 14443a tag. Send out commands and store answers.
1756 //
1757 //-----------------------------------------------------------------------------
1758 void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
1759 {
1760 iso14a_command_t param = c->arg[0];
1761 uint8_t * cmd = c->d.asBytes;
1762 size_t len = c->arg[1];
1763
1764 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
1765
1766 if(param & ISO14A_CONNECT) {
1767 iso14443a_setup();
1768 ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
1769 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1770 }
1771
1772 if(param & ISO14A_SET_TIMEOUT) {
1773 iso14a_timeout = c->arg[2];
1774 }
1775
1776 if(param & ISO14A_SET_TIMEOUT) {
1777 iso14a_timeout = c->arg[2];
1778 }
1779
1780 if(param & ISO14A_APDU) {
1781 ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
1782 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1783 }
1784
1785 if(param & ISO14A_RAW) {
1786 if(param & ISO14A_APPEND_CRC) {
1787 AppendCrc14443a(cmd,len);
1788 len += 2;
1789 }
1790 ReaderTransmit(cmd,len);
1791 ack->arg[0] = ReaderReceive(ack->d.asBytes);
1792 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1793 }
1794
1795 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
1796
1797 if(param & ISO14A_NO_DISCONNECT)
1798 return;
1799
1800 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1801 LEDsoff();
1802 }
1803 //-----------------------------------------------------------------------------
1804 // Read an ISO 14443a tag. Send out commands and store answers.
1805 //
1806 //-----------------------------------------------------------------------------
1807 void ReaderMifare(uint32_t parameter)
1808 {
1809 // Mifare AUTH
1810 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1811 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1812
1813 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1814 traceLen = 0;
1815 tracing = false;
1816
1817 iso14443a_setup();
1818
1819 LED_A_ON();
1820 LED_B_OFF();
1821 LED_C_OFF();
1822
1823 byte_t nt_diff = 0;
1824 LED_A_OFF();
1825 byte_t par = 0;
1826 byte_t par_mask = 0xff;
1827 byte_t par_low = 0;
1828 int led_on = TRUE;
1829 uint8_t uid[8];
1830 uint32_t cuid;
1831
1832 tracing = FALSE;
1833 byte_t nt[4] = {0,0,0,0};
1834 byte_t nt_attacked[4], nt_noattack[4];
1835 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1836 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
1837 num_to_bytes(parameter, 4, nt_noattack);
1838 int isOK = 0, isNULL = 0;
1839
1840 while(TRUE)
1841 {
1842 LED_C_ON();
1843 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1844 SpinDelay(200);
1845 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1846 LED_C_OFF();
1847
1848 // Test if the action was cancelled
1849 if(BUTTON_PRESS()) {
1850 break;
1851 }
1852
1853 if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
1854
1855 // Transmit MIFARE_CLASSIC_AUTH
1856 ReaderTransmit(mf_auth, sizeof(mf_auth));
1857
1858 // Receive the (16 bit) "random" nonce
1859 if (!ReaderReceive(receivedAnswer)) continue;
1860 memcpy(nt, receivedAnswer, 4);
1861
1862 // Transmit reader nonce and reader answer
1863 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
1864
1865 // Receive 4 bit answer
1866 if (ReaderReceive(receivedAnswer))
1867 {
1868 if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
1869
1870 isNULL = (nt_attacked[0] = 0) && (nt_attacked[1] = 0) && (nt_attacked[2] = 0) && (nt_attacked[3] = 0);
1871 if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
1872
1873 if (nt_diff == 0)
1874 {
1875 LED_A_ON();
1876 memcpy(nt_attacked, nt, 4);
1877 par_mask = 0xf8;
1878 par_low = par & 0x07;
1879 }
1880
1881 led_on = !led_on;
1882 if(led_on) LED_B_ON(); else LED_B_OFF();
1883 par_list[nt_diff] = par;
1884 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
1885
1886 // Test if the information is complete
1887 if (nt_diff == 0x07) {
1888 isOK = 1;
1889 break;
1890 }
1891
1892 nt_diff = (nt_diff + 1) & 0x07;
1893 mf_nr_ar[3] = nt_diff << 5;
1894 par = par_low;
1895 } else {
1896 if (nt_diff == 0)
1897 {
1898 par++;
1899 } else {
1900 par = (((par >> 3) + 1) << 3) | par_low;
1901 }
1902 }
1903 }
1904
1905 LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
1906 LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
1907 LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
1908
1909 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1910 memcpy(ack.d.asBytes + 0, uid, 4);
1911 memcpy(ack.d.asBytes + 4, nt, 4);
1912 memcpy(ack.d.asBytes + 8, par_list, 8);
1913 memcpy(ack.d.asBytes + 16, ks_list, 8);
1914
1915 LED_B_ON();
1916 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1917 LED_B_OFF();
1918
1919 // Thats it...
1920 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1921 LEDsoff();
1922 tracing = TRUE;
1923
1924 if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED");
1925 }
1926
1927 //-----------------------------------------------------------------------------
1928 // Select, Authenticaate, Read an MIFARE tag.
1929 // read block
1930 //-----------------------------------------------------------------------------
1931 void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1932 {
1933 // params
1934 uint8_t blockNo = arg0;
1935 uint8_t keyType = arg1;
1936 uint64_t ui64Key = 0;
1937 ui64Key = bytes_to_num(datain, 6);
1938
1939 // variables
1940 byte_t isOK = 0;
1941 byte_t dataoutbuf[16];
1942 uint8_t uid[8];
1943 uint32_t cuid;
1944 struct Crypto1State mpcs = {0, 0};
1945 struct Crypto1State *pcs;
1946 pcs = &mpcs;
1947
1948 // clear trace
1949 traceLen = 0;
1950 // tracing = false;
1951
1952 iso14443a_setup();
1953
1954 LED_A_ON();
1955 LED_B_OFF();
1956 LED_C_OFF();
1957
1958 while (true) {
1959 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1960 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
1961 break;
1962 };
1963
1964 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
1965 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
1966 break;
1967 };
1968
1969 if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
1970 if (MF_DBGLEVEL >= 1) Dbprintf("Read block error");
1971 break;
1972 };
1973
1974 if(mifare_classic_halt(pcs, cuid)) {
1975 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
1976 break;
1977 };
1978
1979 isOK = 1;
1980 break;
1981 }
1982
1983 // ----------------------------- crypto1 destroy
1984 crypto1_destroy(pcs);
1985
1986 if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
1987
1988 // add trace trailer
1989 uid[0] = 0xff;
1990 uid[1] = 0xff;
1991 uid[2] = 0xff;
1992 uid[3] = 0xff;
1993 LogTrace(uid, 4, 0, 0, TRUE);
1994
1995 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1996 memcpy(ack.d.asBytes, dataoutbuf, 16);
1997
1998 LED_B_ON();
1999 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2000 LED_B_OFF();
2001
2002
2003 // Thats it...
2004 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2005 LEDsoff();
2006 // tracing = TRUE;
2007
2008 }
2009
2010 //-----------------------------------------------------------------------------
2011 // Select, Authenticaate, Read an MIFARE tag.
2012 // read sector (data = 4 x 16 bytes = 64 bytes)
2013 //-----------------------------------------------------------------------------
2014 void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2015 {
2016 // params
2017 uint8_t sectorNo = arg0;
2018 uint8_t keyType = arg1;
2019 uint64_t ui64Key = 0;
2020 ui64Key = bytes_to_num(datain, 6);
2021
2022 // variables
2023 byte_t isOK = 0;
2024 byte_t dataoutbuf[16 * 4];
2025 uint8_t uid[8];
2026 uint32_t cuid;
2027 struct Crypto1State mpcs = {0, 0};
2028 struct Crypto1State *pcs;
2029 pcs = &mpcs;
2030
2031 // clear trace
2032 traceLen = 0;
2033 // tracing = false;
2034
2035 iso14443a_setup();
2036
2037 LED_A_ON();
2038 LED_B_OFF();
2039 LED_C_OFF();
2040
2041 while (true) {
2042 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2043 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2044 break;
2045 };
2046
2047 if(mifare_classic_auth(pcs, cuid, sectorNo * 4, keyType, ui64Key, AUTH_FIRST)) {
2048 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
2049 break;
2050 };
2051
2052 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 0, dataoutbuf + 16 * 0)) {
2053 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 0 error");
2054 break;
2055 };
2056 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 1, dataoutbuf + 16 * 1)) {
2057 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 1 error");
2058 break;
2059 };
2060 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 2, dataoutbuf + 16 * 2)) {
2061 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 2 error");
2062 break;
2063 };
2064 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 3, dataoutbuf + 16 * 3)) {
2065 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 3 error");
2066 break;
2067 };
2068
2069 if(mifare_classic_halt(pcs, cuid)) {
2070 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
2071 break;
2072 };
2073
2074 isOK = 1;
2075 break;
2076 }
2077
2078 // ----------------------------- crypto1 destroy
2079 crypto1_destroy(pcs);
2080
2081 if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
2082
2083 // add trace trailer
2084 uid[0] = 0xff;
2085 uid[1] = 0xff;
2086 uid[2] = 0xff;
2087 uid[3] = 0xff;
2088 LogTrace(uid, 4, 0, 0, TRUE);
2089
2090 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2091 memcpy(ack.d.asBytes, dataoutbuf, 16 * 2);
2092
2093 LED_B_ON();
2094 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2095
2096 SpinDelay(100);
2097
2098 memcpy(ack.d.asBytes, dataoutbuf + 16 * 2, 16 * 2);
2099 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2100 LED_B_OFF();
2101
2102 // Thats it...
2103 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2104 LEDsoff();
2105 // tracing = TRUE;
2106
2107 }
2108
2109 //-----------------------------------------------------------------------------
2110 // Select, Authenticaate, Read an MIFARE tag.
2111 // read block
2112 //-----------------------------------------------------------------------------
2113 void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2114 {
2115 // params
2116 uint8_t blockNo = arg0;
2117 uint8_t keyType = arg1;
2118 uint64_t ui64Key = 0;
2119 byte_t blockdata[16];
2120
2121 ui64Key = bytes_to_num(datain, 6);
2122 memcpy(blockdata, datain + 10, 16);
2123
2124 // variables
2125 byte_t isOK = 0;
2126 uint8_t uid[8];
2127 uint32_t cuid;
2128 struct Crypto1State mpcs = {0, 0};
2129 struct Crypto1State *pcs;
2130 pcs = &mpcs;
2131
2132 // clear trace
2133 traceLen = 0;
2134 // tracing = false;
2135
2136 iso14443a_setup();
2137
2138 LED_A_ON();
2139 LED_B_OFF();
2140 LED_C_OFF();
2141
2142 while (true) {
2143 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2144 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2145 break;
2146 };
2147
2148 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2149 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
2150 break;
2151 };
2152
2153 if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
2154 if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
2155 break;
2156 };
2157
2158 if(mifare_classic_halt(pcs, cuid)) {
2159 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
2160 break;
2161 };
2162
2163 isOK = 1;
2164 break;
2165 }
2166
2167 // ----------------------------- crypto1 destroy
2168 crypto1_destroy(pcs);
2169
2170 if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
2171
2172 // add trace trailer
2173 uid[0] = 0xff;
2174 uid[1] = 0xff;
2175 uid[2] = 0xff;
2176 uid[3] = 0xff;
2177 LogTrace(uid, 4, 0, 0, TRUE);
2178
2179 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2180
2181 LED_B_ON();
2182 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2183 LED_B_OFF();
2184
2185
2186 // Thats it...
2187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2188 LEDsoff();
2189 // tracing = TRUE;
2190
2191 }
2192
2193 // Return 1 if the nonce is invalid else return 0
2194 int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
2195 return ((oddparity((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
2196 (oddparity((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
2197 (oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
2198 }
2199
2200
2201 //-----------------------------------------------------------------------------
2202 // MIFARE nested authentication.
2203 //
2204 //-----------------------------------------------------------------------------
2205 void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
2206 {
2207 // params
2208 uint8_t blockNo = arg0;
2209 uint8_t keyType = arg1;
2210 uint8_t targetBlockNo = arg2 & 0xff;
2211 uint8_t targetKeyType = (arg2 >> 8) & 0xff;
2212 uint64_t ui64Key = 0;
2213
2214 ui64Key = bytes_to_num(datain, 6);
2215
2216 // variables
2217 int rtr, i, j, m, len;
2218 int davg, dmin, dmax;
2219 uint8_t uid[8];
2220 uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
2221 uint8_t par_array[4];
2222 nestedVector nvector[NES_MAX_INFO + 1][10];
2223 int nvectorcount[NES_MAX_INFO + 1];
2224 int ncount = 0;
2225 UsbCommand ack = {CMD_ACK, {0, 0, 0}};
2226 struct Crypto1State mpcs = {0, 0};
2227 struct Crypto1State *pcs;
2228 pcs = &mpcs;
2229 uint8_t* receivedAnswer = mifare_get_bigbufptr();
2230
2231 //init
2232 for (i = 0; i < NES_MAX_INFO + 1; i++) nvectorcount[i] = 11; // 11 - empty block;
2233
2234 // clear trace
2235 traceLen = 0;
2236 tracing = false;
2237
2238 iso14443a_setup();
2239
2240 LED_A_ON();
2241 LED_B_ON();
2242 LED_C_OFF();
2243
2244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2245 SpinDelay(200);
2246
2247 davg = dmax = 0;
2248 dmin = 2000;
2249
2250 // test nonce distance
2251 for (rtr = 0; rtr < 10; rtr++) {
2252 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2253 SpinDelay(100);
2254 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2255
2256 // Test if the action was cancelled
2257 if(BUTTON_PRESS()) {
2258 break;
2259 }
2260
2261 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2262 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2263 break;
2264 };
2265
2266 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2267 if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
2268 break;
2269 };
2270
2271 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2)) {
2272 if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error");
2273 break;
2274 };
2275
2276 nttmp = prng_successor(nt1, 500);
2277 for (i = 501; i < 2000; i++) {
2278 nttmp = prng_successor(nttmp, 1);
2279 if (nttmp == nt2) break;
2280 }
2281
2282 if (i != 2000) {
2283 davg += i;
2284 if (dmin > i) dmin = i;
2285 if (dmax < i) dmax = i;
2286 if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
2287 }
2288 }
2289
2290 if (rtr == 0) return;
2291
2292 davg = davg / rtr;
2293 if (MF_DBGLEVEL >= 3) Dbprintf("distance: min=%d max=%d avg=%d", dmin, dmax, davg);
2294
2295 LED_B_OFF();
2296
2297 // -------------------------------------------------------------------------------------------------
2298
2299 LED_C_ON();
2300
2301 // get crypted nonces for target sector
2302 for (rtr = 0; rtr < NS_RETRIES_GETNONCE; rtr++) {
2303 if (MF_DBGLEVEL >= 4) Dbprintf("------------------------------");
2304
2305 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2306 SpinDelay(100);
2307 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2308
2309 // Test if the action was cancelled
2310 if(BUTTON_PRESS()) {
2311 break;
2312 }
2313
2314 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2315 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2316 break;
2317 };
2318
2319 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2320 if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
2321 break;
2322 };
2323
2324 // nested authentication
2325 len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par);
2326 if (len != 4) {
2327 if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error len=%d", len);
2328 break;
2329 };
2330
2331 nt2 = bytes_to_num(receivedAnswer, 4);
2332 if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
2333
2334 // Parity validity check
2335 for (i = 0; i < 4; i++) {
2336 par_array[i] = (oddparity(receivedAnswer[i]) != ((par & 0x08) >> 3));
2337 par = par << 1;
2338 }
2339
2340 ncount = 0;
2341 for (m = dmin - NS_TOLERANCE; m < dmax + NS_TOLERANCE; m++) {
2342 nttest = prng_successor(nt1, m);
2343 ks1 = nt2 ^ nttest;
2344
2345 if (valid_nonce(nttest, nt2, ks1, par_array) && (ncount < 11)){
2346
2347 nvector[NES_MAX_INFO][ncount].nt = nttest;
2348 nvector[NES_MAX_INFO][ncount].ks1 = ks1;
2349 ncount++;
2350 nvectorcount[NES_MAX_INFO] = ncount;
2351 if (MF_DBGLEVEL >= 4) Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2352 }
2353
2354 }
2355
2356 // select vector with length less than got
2357 if (nvectorcount[NES_MAX_INFO] != 0) {
2358 m = NES_MAX_INFO;
2359
2360 for (i = 0; i < NES_MAX_INFO; i++)
2361 if (nvectorcount[i] > 10) {
2362 m = i;
2363 break;
2364 }
2365
2366 if (m == NES_MAX_INFO)
2367 for (i = 0; i < NES_MAX_INFO; i++)
2368 if (nvectorcount[NES_MAX_INFO] < nvectorcount[i]) {
2369 m = i;
2370 break;
2371 }
2372
2373 if (m != NES_MAX_INFO) {
2374 for (i = 0; i < nvectorcount[m]; i++) {
2375 nvector[m][i] = nvector[NES_MAX_INFO][i];
2376 }
2377 nvectorcount[m] = nvectorcount[NES_MAX_INFO];
2378 }
2379 }
2380 }
2381
2382 LED_C_OFF();
2383
2384 // ----------------------------- crypto1 destroy
2385 crypto1_destroy(pcs);
2386
2387 // add trace trailer
2388 uid[0] = 0xff;
2389 uid[1] = 0xff;
2390 uid[2] = 0xff;
2391 uid[3] = 0xff;
2392 LogTrace(uid, 4, 0, 0, TRUE);
2393
2394 for (i = 0; i < NES_MAX_INFO; i++) {
2395 if (nvectorcount[i] > 10) continue;
2396
2397 for (j = 0; j < nvectorcount[i]; j += 5) {
2398 ncount = nvectorcount[i] - j;
2399 if (ncount > 5) ncount = 5;
2400
2401 ack.arg[0] = 0; // isEOF = 0
2402 ack.arg[1] = ncount;
2403 ack.arg[2] = targetBlockNo + (targetKeyType * 0x100);
2404 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2405
2406 memcpy(ack.d.asBytes, &cuid, 4);
2407 for (m = 0; m < ncount; m++) {
2408 memcpy(ack.d.asBytes + 8 + m * 8 + 0, &nvector[i][m + j].nt, 4);
2409 memcpy(ack.d.asBytes + 8 + m * 8 + 4, &nvector[i][m + j].ks1, 4);
2410 }
2411
2412 LED_B_ON();
2413 SpinDelay(100);
2414 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2415 LED_B_OFF();
2416 }
2417 }
2418
2419 // finalize list
2420 ack.arg[0] = 1; // isEOF = 1
2421 ack.arg[1] = 0;
2422 ack.arg[2] = 0;
2423 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2424
2425 LED_B_ON();
2426 SpinDelay(300);
2427 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2428 LED_B_OFF();
2429
2430 if (MF_DBGLEVEL >= 4) DbpString("NESTED FINISHED");
2431
2432 // Thats it...
2433 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2434 LEDsoff();
2435
2436 tracing = TRUE;
2437 }
2438
2439 //-----------------------------------------------------------------------------
2440 // MIFARE check keys. key count up to 8.
2441 //
2442 //-----------------------------------------------------------------------------
2443 void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2444 {
2445 // params
2446 uint8_t blockNo = arg0;
2447 uint8_t keyType = arg1;
2448 uint8_t keyCount = arg2;
2449 uint64_t ui64Key = 0;
2450
2451 // variables
2452 int i;
2453 byte_t isOK = 0;
2454 uint8_t uid[8];
2455 uint32_t cuid;
2456 struct Crypto1State mpcs = {0, 0};
2457 struct Crypto1State *pcs;
2458 pcs = &mpcs;
2459
2460 // clear debug level
2461 int OLD_MF_DBGLEVEL = MF_DBGLEVEL;
2462 MF_DBGLEVEL = MF_DBG_NONE;
2463
2464 // clear trace
2465 traceLen = 0;
2466 tracing = TRUE;
2467
2468 iso14443a_setup();
2469
2470 LED_A_ON();
2471 LED_B_OFF();
2472 LED_C_OFF();
2473
2474 SpinDelay(300);
2475 for (i = 0; i < keyCount; i++) {
2476 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2477 SpinDelay(100);
2478 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2479
2480 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2481 if (OLD_MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2482 break;
2483 };
2484
2485 ui64Key = bytes_to_num(datain + i * 6, 6);
2486 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2487 continue;
2488 };
2489
2490 isOK = 1;
2491 break;
2492 }
2493
2494 // ----------------------------- crypto1 destroy
2495 crypto1_destroy(pcs);
2496
2497 // add trace trailer
2498 uid[0] = 0xff;
2499 uid[1] = 0xff;
2500 uid[2] = 0xff;
2501 uid[3] = 0xff;
2502 LogTrace(uid, 4, 0, 0, TRUE);
2503
2504 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2505 if (isOK) memcpy(ack.d.asBytes, datain + i * 6, 6);
2506
2507 LED_B_ON();
2508 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2509 LED_B_OFF();
2510
2511 // Thats it...
2512 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2513 LEDsoff();
2514
2515 // restore debug level
2516 MF_DBGLEVEL = OLD_MF_DBGLEVEL;
2517 }
2518
2519 //-----------------------------------------------------------------------------
2520 // MIFARE 1K simulate.
2521 //
2522 //-----------------------------------------------------------------------------
2523 void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2524 {
2525 int cardSTATE = MFEMUL_NOFIELD;
2526 int vHf = 0; // in mV
2527 int res;
2528 uint32_t timer = 0;
2529 int len = 0;
2530 uint8_t cardAUTHSC = 0;
2531 uint8_t cardAUTHKEY = 0xff; // no authentication
2532 uint32_t cuid = 0;
2533 struct Crypto1State mpcs = {0, 0};
2534 struct Crypto1State *pcs;
2535 pcs = &mpcs;
2536
2537 uint64_t key64 = 0xffffffffffffULL;
2538
2539 uint8_t* receivedCmd = mifare_get_bigbufptr();
2540
2541 static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k
2542
2543 static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2544 static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2545
2546 static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2547
2548 static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2549
2550 // -------------------------------------- test area
2551
2552
2553 // -------------------------------------- END test area
2554
2555 // We need to listen to the high-frequency, peak-detected path.
2556 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2557 FpgaSetupSsc();
2558
2559 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2560 SpinDelay(200);
2561
2562 Dbprintf("--> start");
2563 while (true) {
2564 WDT_HIT();
2565 // timer = GetTickCount();
2566 // Dbprintf("time: %d", GetTickCount() - timer);
2567
2568 // find reader field
2569 // Vref = 3300mV, and an 10:1 voltage divider on the input
2570 // can measure voltages up to 33000 mV
2571 if (cardSTATE == MFEMUL_NOFIELD) {
2572 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2573 if (vHf > MF_MINFIELDV) {
2574 cardSTATE = MFEMUL_IDLE;
2575 LED_A_ON();
2576 }
2577 }
2578
2579 if (cardSTATE != MFEMUL_NOFIELD) {
2580 res = EmGetCmd(receivedCmd, &len, 100);
2581 if (res == 2) {
2582 cardSTATE = MFEMUL_NOFIELD;
2583 LEDsoff();
2584 continue;
2585 }
2586 if(res) break;
2587 }
2588
2589 if(BUTTON_PRESS()) {
2590 break;
2591 }
2592
2593 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2594
2595 switch (cardSTATE) {
2596 case MFEMUL_NOFIELD:{
2597 break;
2598 }
2599 case MFEMUL_HALTED:{
2600 // WUP request
2601 if (!(len == 1 && receivedCmd[0] == 0x52)) break;
2602 }
2603 case MFEMUL_IDLE:{
2604 // REQ or WUP request
2605 if (len == 1 && (receivedCmd[0] == 0x26 || receivedCmd[0] == 0x52)) {
2606 timer = GetTickCount();
2607 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2608 cardSTATE = MFEMUL_SELECT1;
2609
2610 // init crypto block
2611 crypto1_destroy(pcs);
2612 cardAUTHKEY = 0xff;
2613 }
2614 break;
2615 }
2616 case MFEMUL_SELECT1:{
2617 // select all
2618 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2619 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2620
2621 if (rUIDBCC1[0] == 0x88) {
2622 cardSTATE = MFEMUL_SELECT2;
2623 }
2624 }
2625
2626 // select card
2627 if (len == 9 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70)) {
2628 EmSendCmd(rSAK, sizeof(rSAK));
2629
2630 cuid = bytes_to_num(rUIDBCC1, 4);
2631 cardSTATE = MFEMUL_WORK;
2632 LED_B_ON();
2633 Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - timer);
2634 }
2635
2636 break;
2637 }
2638 case MFEMUL_SELECT2:{
2639 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2640
2641 cuid = bytes_to_num(rUIDBCC2, 4);
2642 cardSTATE = MFEMUL_WORK;
2643 LED_B_ON();
2644 Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - timer);
2645 break;
2646 }
2647 case MFEMUL_AUTH1:{
2648 if (len) Dbprintf("au1 len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2649 if (len == 8) {
2650
2651 }
2652 break;
2653 }
2654 case MFEMUL_AUTH2:{
2655
2656 LED_C_ON();
2657 Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - timer);
2658 break;
2659 }
2660 case MFEMUL_WORK:{
2661 // auth
2662 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2663 timer = GetTickCount();
2664 crypto1_create(pcs, key64);
2665 // if (cardAUTHKEY == 0xff) { // first auth
2666 crypto1_word(pcs, cuid ^ bytes_to_num(rAUTH_NT, 4), 0); // uid ^ nonce
2667 // } else { // nested auth
2668 // }
2669
2670 EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT));
2671 cardAUTHSC = receivedCmd[1];
2672 cardAUTHKEY = receivedCmd[0] - 0x60;
2673 cardSTATE = MFEMUL_AUTH1;
2674 }
2675
2676 // halt
2677 if (len == 4 && (receivedCmd[0] == 0x50 || receivedCmd[0] == 0x00)) {
2678 cardSTATE = MFEMUL_HALTED;
2679 LED_B_OFF();
2680 }
2681 break;
2682 }
2683
2684 }
2685
2686 }
2687
2688 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2689 LEDsoff();
2690
2691 DbpString("Emulator stopped.");
2692 }
Impressum, Datenschutz