]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
More work on iclass simulation attack
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 // Needed for CRC in emulation mode;
45 // same construction as in ISO 14443;
46 // different initial value (CRC_ICLASS)
47 #include "iso14443crc.h"
48
49 static int timeout = 4096;
50
51
52 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
53
54 //-----------------------------------------------------------------------------
55 // The software UART that receives commands from the reader, and its state
56 // variables.
57 //-----------------------------------------------------------------------------
58 static struct {
59 enum {
60 STATE_UNSYNCD,
61 STATE_START_OF_COMMUNICATION,
62 STATE_RECEIVING
63 } state;
64 uint16_t shiftReg;
65 int bitCnt;
66 int byteCnt;
67 int byteCntMax;
68 int posCnt;
69 int nOutOfCnt;
70 int OutOfCnt;
71 int syncBit;
72 int parityBits;
73 int samples;
74 int highCnt;
75 int swapper;
76 int counter;
77 int bitBuffer;
78 int dropPosition;
79 uint8_t *output;
80 } Uart;
81
82 static RAMFUNC int OutOfNDecoding(int bit)
83 {
84 //int error = 0;
85 int bitright;
86
87 if(!Uart.bitBuffer) {
88 Uart.bitBuffer = bit ^ 0xFF0;
89 return FALSE;
90 }
91 else {
92 Uart.bitBuffer <<= 4;
93 Uart.bitBuffer ^= bit;
94 }
95
96 /*if(Uart.swapper) {
97 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
98 Uart.byteCnt++;
99 Uart.swapper = 0;
100 if(Uart.byteCnt > 15) { return TRUE; }
101 }
102 else {
103 Uart.swapper = 1;
104 }*/
105
106 if(Uart.state != STATE_UNSYNCD) {
107 Uart.posCnt++;
108
109 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
110 bit = 0x00;
111 }
112 else {
113 bit = 0x01;
114 }
115 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
116 bitright = 0x00;
117 }
118 else {
119 bitright = 0x01;
120 }
121 if(bit != bitright) { bit = bitright; }
122
123
124 // So, now we only have to deal with *bit*, lets see...
125 if(Uart.posCnt == 1) {
126 // measurement first half bitperiod
127 if(!bit) {
128 // Drop in first half means that we are either seeing
129 // an SOF or an EOF.
130
131 if(Uart.nOutOfCnt == 1) {
132 // End of Communication
133 Uart.state = STATE_UNSYNCD;
134 Uart.highCnt = 0;
135 if(Uart.byteCnt == 0) {
136 // Its not straightforward to show single EOFs
137 // So just leave it and do not return TRUE
138 Uart.output[Uart.byteCnt] = 0xf0;
139 Uart.byteCnt++;
140
141 // Calculate the parity bit for the client...
142 Uart.parityBits = 1;
143 }
144 else {
145 return TRUE;
146 }
147 }
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
153 }
154 }
155 }
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
160
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
165 }
166 else {
167 //error = 7;
168 }
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
172 }
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
175 }
176 }
177
178 Uart.posCnt = 0;
179
180
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
183
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
188 }
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
194 }
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
198 }
199 Uart.dropPosition = 0;
200 }
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
208 }
209 else {
210 Uart.shiftReg >>= 2;
211
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
220
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224
225 // Calculate the parity bit for the client...
226 Uart.parityBits <<= 1;
227 Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
228
229 Uart.bitCnt = 0;
230 Uart.shiftReg = 0;
231 }
232 }
233 }
234 }
235 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
236 // RECEIVING DATA
237 // 1 out of 256
238 if(!Uart.dropPosition) {
239 Uart.state = STATE_UNSYNCD;
240 Uart.highCnt = 0;
241 //error = 3;
242 }
243 else {
244 Uart.dropPosition--;
245 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
246 Uart.byteCnt++;
247
248 // Calculate the parity bit for the client...
249 Uart.parityBits <<= 1;
250 Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
251
252 Uart.bitCnt = 0;
253 Uart.shiftReg = 0;
254 Uart.nOutOfCnt = 0;
255 Uart.dropPosition = 0;
256 }
257 }
258
259 /*if(error) {
260 Uart.output[Uart.byteCnt] = 0xAA;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = error & 0xFF;
263 Uart.byteCnt++;
264 Uart.output[Uart.byteCnt] = 0xAA;
265 Uart.byteCnt++;
266 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
267 Uart.byteCnt++;
268 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
269 Uart.byteCnt++;
270 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
271 Uart.byteCnt++;
272 Uart.output[Uart.byteCnt] = 0xAA;
273 Uart.byteCnt++;
274 return TRUE;
275 }*/
276 }
277
278 }
279 else {
280 bit = Uart.bitBuffer & 0xf0;
281 bit >>= 4;
282 bit ^= 0x0F; // drops become 1s ;-)
283 if(bit) {
284 // should have been high or at least (4 * 128) / fc
285 // according to ISO this should be at least (9 * 128 + 20) / fc
286 if(Uart.highCnt == 8) {
287 // we went low, so this could be start of communication
288 // it turns out to be safer to choose a less significant
289 // syncbit... so we check whether the neighbour also represents the drop
290 Uart.posCnt = 1; // apparently we are busy with our first half bit period
291 Uart.syncBit = bit & 8;
292 Uart.samples = 3;
293 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
294 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
295 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
296 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
297 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
298 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
299 Uart.syncBit = 8;
300
301 // the first half bit period is expected in next sample
302 Uart.posCnt = 0;
303 Uart.samples = 3;
304 }
305 }
306 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
307
308 Uart.syncBit <<= 4;
309 Uart.state = STATE_START_OF_COMMUNICATION;
310 Uart.bitCnt = 0;
311 Uart.byteCnt = 0;
312 Uart.parityBits = 0;
313 Uart.nOutOfCnt = 0;
314 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
315 Uart.dropPosition = 0;
316 Uart.shiftReg = 0;
317 //error = 0;
318 }
319 else {
320 Uart.highCnt = 0;
321 }
322 }
323 else {
324 if(Uart.highCnt < 8) {
325 Uart.highCnt++;
326 }
327 }
328 }
329
330 return FALSE;
331 }
332
333 //=============================================================================
334 // Manchester
335 //=============================================================================
336
337 static struct {
338 enum {
339 DEMOD_UNSYNCD,
340 DEMOD_START_OF_COMMUNICATION,
341 DEMOD_START_OF_COMMUNICATION2,
342 DEMOD_START_OF_COMMUNICATION3,
343 DEMOD_SOF_COMPLETE,
344 DEMOD_MANCHESTER_D,
345 DEMOD_MANCHESTER_E,
346 DEMOD_END_OF_COMMUNICATION,
347 DEMOD_END_OF_COMMUNICATION2,
348 DEMOD_MANCHESTER_F,
349 DEMOD_ERROR_WAIT
350 } state;
351 int bitCount;
352 int posCount;
353 int syncBit;
354 int parityBits;
355 uint16_t shiftReg;
356 int buffer;
357 int buffer2;
358 int buffer3;
359 int buff;
360 int samples;
361 int len;
362 enum {
363 SUB_NONE,
364 SUB_FIRST_HALF,
365 SUB_SECOND_HALF,
366 SUB_BOTH
367 } sub;
368 uint8_t *output;
369 } Demod;
370
371 static RAMFUNC int ManchesterDecoding(int v)
372 {
373 int bit;
374 int modulation;
375 int error = 0;
376
377 bit = Demod.buffer;
378 Demod.buffer = Demod.buffer2;
379 Demod.buffer2 = Demod.buffer3;
380 Demod.buffer3 = v;
381
382 if(Demod.buff < 3) {
383 Demod.buff++;
384 return FALSE;
385 }
386
387 if(Demod.state==DEMOD_UNSYNCD) {
388 Demod.output[Demod.len] = 0xfa;
389 Demod.syncBit = 0;
390 //Demod.samples = 0;
391 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
392
393 if(bit & 0x08) {
394 Demod.syncBit = 0x08;
395 }
396
397 if(bit & 0x04) {
398 if(Demod.syncBit) {
399 bit <<= 4;
400 }
401 Demod.syncBit = 0x04;
402 }
403
404 if(bit & 0x02) {
405 if(Demod.syncBit) {
406 bit <<= 2;
407 }
408 Demod.syncBit = 0x02;
409 }
410
411 if(bit & 0x01 && Demod.syncBit) {
412 Demod.syncBit = 0x01;
413 }
414
415 if(Demod.syncBit) {
416 Demod.len = 0;
417 Demod.state = DEMOD_START_OF_COMMUNICATION;
418 Demod.sub = SUB_FIRST_HALF;
419 Demod.bitCount = 0;
420 Demod.shiftReg = 0;
421 Demod.parityBits = 0;
422 Demod.samples = 0;
423 if(Demod.posCount) {
424 //if(trigger) LED_A_OFF(); // Not useful in this case...
425 switch(Demod.syncBit) {
426 case 0x08: Demod.samples = 3; break;
427 case 0x04: Demod.samples = 2; break;
428 case 0x02: Demod.samples = 1; break;
429 case 0x01: Demod.samples = 0; break;
430 }
431 // SOF must be long burst... otherwise stay unsynced!!!
432 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
433 Demod.state = DEMOD_UNSYNCD;
434 }
435 }
436 else {
437 // SOF must be long burst... otherwise stay unsynced!!!
438 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
439 Demod.state = DEMOD_UNSYNCD;
440 error = 0x88;
441 }
442
443 }
444 error = 0;
445
446 }
447 }
448 else {
449 modulation = bit & Demod.syncBit;
450 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
451 //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
452
453 Demod.samples += 4;
454
455 if(Demod.posCount==0) {
456 Demod.posCount = 1;
457 if(modulation) {
458 Demod.sub = SUB_FIRST_HALF;
459 }
460 else {
461 Demod.sub = SUB_NONE;
462 }
463 }
464 else {
465 Demod.posCount = 0;
466 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
467 if(Demod.state!=DEMOD_ERROR_WAIT) {
468 Demod.state = DEMOD_ERROR_WAIT;
469 Demod.output[Demod.len] = 0xaa;
470 error = 0x01;
471 }
472 }*/
473 //else if(modulation) {
474 if(modulation) {
475 if(Demod.sub == SUB_FIRST_HALF) {
476 Demod.sub = SUB_BOTH;
477 }
478 else {
479 Demod.sub = SUB_SECOND_HALF;
480 }
481 }
482 else if(Demod.sub == SUB_NONE) {
483 if(Demod.state == DEMOD_SOF_COMPLETE) {
484 Demod.output[Demod.len] = 0x0f;
485 Demod.len++;
486 Demod.parityBits <<= 1;
487 Demod.parityBits ^= OddByteParity[0x0f];
488 Demod.state = DEMOD_UNSYNCD;
489 // error = 0x0f;
490 return TRUE;
491 }
492 else {
493 Demod.state = DEMOD_ERROR_WAIT;
494 error = 0x33;
495 }
496 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
497 Demod.state = DEMOD_ERROR_WAIT;
498 Demod.output[Demod.len] = 0xaa;
499 error = 0x01;
500 }*/
501 }
502
503 switch(Demod.state) {
504 case DEMOD_START_OF_COMMUNICATION:
505 if(Demod.sub == SUB_BOTH) {
506 //Demod.state = DEMOD_MANCHESTER_D;
507 Demod.state = DEMOD_START_OF_COMMUNICATION2;
508 Demod.posCount = 1;
509 Demod.sub = SUB_NONE;
510 }
511 else {
512 Demod.output[Demod.len] = 0xab;
513 Demod.state = DEMOD_ERROR_WAIT;
514 error = 0xd2;
515 }
516 break;
517 case DEMOD_START_OF_COMMUNICATION2:
518 if(Demod.sub == SUB_SECOND_HALF) {
519 Demod.state = DEMOD_START_OF_COMMUNICATION3;
520 }
521 else {
522 Demod.output[Demod.len] = 0xab;
523 Demod.state = DEMOD_ERROR_WAIT;
524 error = 0xd3;
525 }
526 break;
527 case DEMOD_START_OF_COMMUNICATION3:
528 if(Demod.sub == SUB_SECOND_HALF) {
529 // Demod.state = DEMOD_MANCHESTER_D;
530 Demod.state = DEMOD_SOF_COMPLETE;
531 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
532 //Demod.len++;
533 }
534 else {
535 Demod.output[Demod.len] = 0xab;
536 Demod.state = DEMOD_ERROR_WAIT;
537 error = 0xd4;
538 }
539 break;
540 case DEMOD_SOF_COMPLETE:
541 case DEMOD_MANCHESTER_D:
542 case DEMOD_MANCHESTER_E:
543 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
544 // 00001111 = 1 (0 in 14443)
545 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
546 Demod.bitCount++;
547 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
548 Demod.state = DEMOD_MANCHESTER_D;
549 }
550 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
551 Demod.bitCount++;
552 Demod.shiftReg >>= 1;
553 Demod.state = DEMOD_MANCHESTER_E;
554 }
555 else if(Demod.sub == SUB_BOTH) {
556 Demod.state = DEMOD_MANCHESTER_F;
557 }
558 else {
559 Demod.state = DEMOD_ERROR_WAIT;
560 error = 0x55;
561 }
562 break;
563
564 case DEMOD_MANCHESTER_F:
565 // Tag response does not need to be a complete byte!
566 if(Demod.len > 0 || Demod.bitCount > 0) {
567 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
568 Demod.shiftReg >>= (9 - Demod.bitCount);
569 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
570 Demod.len++;
571 // No parity bit, so just shift a 0
572 Demod.parityBits <<= 1;
573 }
574
575 Demod.state = DEMOD_UNSYNCD;
576 return TRUE;
577 }
578 else {
579 Demod.output[Demod.len] = 0xad;
580 Demod.state = DEMOD_ERROR_WAIT;
581 error = 0x03;
582 }
583 break;
584
585 case DEMOD_ERROR_WAIT:
586 Demod.state = DEMOD_UNSYNCD;
587 break;
588
589 default:
590 Demod.output[Demod.len] = 0xdd;
591 Demod.state = DEMOD_UNSYNCD;
592 break;
593 }
594
595 /*if(Demod.bitCount>=9) {
596 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
597 Demod.len++;
598
599 Demod.parityBits <<= 1;
600 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
601
602 Demod.bitCount = 0;
603 Demod.shiftReg = 0;
604 }*/
605 if(Demod.bitCount>=8) {
606 Demod.shiftReg >>= 1;
607 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
608 Demod.len++;
609
610 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
611 Demod.parityBits <<= 1;
612 Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
613
614 Demod.bitCount = 0;
615 Demod.shiftReg = 0;
616 }
617
618 if(error) {
619 Demod.output[Demod.len] = 0xBB;
620 Demod.len++;
621 Demod.output[Demod.len] = error & 0xFF;
622 Demod.len++;
623 Demod.output[Demod.len] = 0xBB;
624 Demod.len++;
625 Demod.output[Demod.len] = bit & 0xFF;
626 Demod.len++;
627 Demod.output[Demod.len] = Demod.buffer & 0xFF;
628 Demod.len++;
629 // Look harder ;-)
630 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
631 Demod.len++;
632 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
633 Demod.len++;
634 Demod.output[Demod.len] = 0xBB;
635 Demod.len++;
636 return TRUE;
637 }
638
639 }
640
641 } // end (state != UNSYNCED)
642
643 return FALSE;
644 }
645
646 //=============================================================================
647 // Finally, a `sniffer' for iClass communication
648 // Both sides of communication!
649 //=============================================================================
650
651 //-----------------------------------------------------------------------------
652 // Record the sequence of commands sent by the reader to the tag, with
653 // triggering so that we start recording at the point that the tag is moved
654 // near the reader.
655 //-----------------------------------------------------------------------------
656 void RAMFUNC SnoopIClass(void)
657 {
658
659
660 // We won't start recording the frames that we acquire until we trigger;
661 // a good trigger condition to get started is probably when we see a
662 // response from the tag.
663 //int triggered = FALSE; // FALSE to wait first for card
664
665 // The command (reader -> tag) that we're receiving.
666 // The length of a received command will in most cases be no more than 18 bytes.
667 // So 32 should be enough!
668 uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
669 // The response (tag -> reader) that we're receiving.
670 uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
671
672 // reset traceLen to 0
673 iso14a_set_tracing(TRUE);
674 iso14a_clear_trace();
675 iso14a_set_trigger(FALSE);
676
677 // The DMA buffer, used to stream samples from the FPGA
678 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
679 int lastRxCounter;
680 int8_t *upTo;
681 int smpl;
682 int maxBehindBy = 0;
683
684 // Count of samples received so far, so that we can include timing
685 // information in the trace buffer.
686 int samples = 0;
687 rsamples = 0;
688
689 // Set up the demodulator for tag -> reader responses.
690 Demod.output = tagToReaderResponse;
691 Demod.len = 0;
692 Demod.state = DEMOD_UNSYNCD;
693
694 // Setup for the DMA.
695 FpgaSetupSsc();
696 upTo = dmaBuf;
697 lastRxCounter = DMA_BUFFER_SIZE;
698 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
699
700 // And the reader -> tag commands
701 memset(&Uart, 0, sizeof(Uart));
702 Uart.output = readerToTagCmd;
703 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
704 Uart.state = STATE_UNSYNCD;
705
706 // And put the FPGA in the appropriate mode
707 // Signal field is off with the appropriate LED
708 LED_D_OFF();
709 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
710 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
711
712 uint32_t time_0 = GetCountSspClk();
713
714
715 int div = 0;
716 //int div2 = 0;
717 int decbyte = 0;
718 int decbyter = 0;
719
720 // And now we loop, receiving samples.
721 for(;;) {
722 LED_A_ON();
723 WDT_HIT();
724 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
725 (DMA_BUFFER_SIZE-1);
726 if(behindBy > maxBehindBy) {
727 maxBehindBy = behindBy;
728 if(behindBy > 400) {
729 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
730 goto done;
731 }
732 }
733 if(behindBy < 1) continue;
734
735 LED_A_OFF();
736 smpl = upTo[0];
737 upTo++;
738 lastRxCounter -= 1;
739 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
740 upTo -= DMA_BUFFER_SIZE;
741 lastRxCounter += DMA_BUFFER_SIZE;
742 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
743 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
744 }
745
746 //samples += 4;
747 samples += 1;
748
749 if(smpl & 0xF) {
750 decbyte ^= (1 << (3 - div));
751 }
752
753 // FOR READER SIDE COMMUMICATION...
754
755 decbyter <<= 2;
756 decbyter ^= (smpl & 0x30);
757
758 div++;
759
760 if((div + 1) % 2 == 0) {
761 smpl = decbyter;
762 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
763 rsamples = samples - Uart.samples;
764 LED_C_ON();
765
766 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
767 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
768 if(tracing)
769 {
770 LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE);
771 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE);
772 }
773
774
775 /* And ready to receive another command. */
776 Uart.state = STATE_UNSYNCD;
777 /* And also reset the demod code, which might have been */
778 /* false-triggered by the commands from the reader. */
779 Demod.state = DEMOD_UNSYNCD;
780 LED_B_OFF();
781 Uart.byteCnt = 0;
782 }
783 decbyter = 0;
784 }
785
786 if(div > 3) {
787 smpl = decbyte;
788 if(ManchesterDecoding(smpl & 0x0F)) {
789 rsamples = samples - Demod.samples;
790 LED_B_ON();
791
792 if(tracing)
793 {
794 LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE);
795 LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE);
796 }
797
798
799 // And ready to receive another response.
800 memset(&Demod, 0, sizeof(Demod));
801 Demod.output = tagToReaderResponse;
802 Demod.state = DEMOD_UNSYNCD;
803 LED_C_OFF();
804 }
805
806 div = 0;
807 decbyte = 0x00;
808 }
809 //}
810
811 if(BUTTON_PRESS()) {
812 DbpString("cancelled_a");
813 goto done;
814 }
815 }
816
817 DbpString("COMMAND FINISHED");
818
819 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
820 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
821
822 done:
823 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
824 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
825 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
826 LED_A_OFF();
827 LED_B_OFF();
828 LED_C_OFF();
829 LED_D_OFF();
830 }
831
832 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
833 int i;
834 for(i = 0; i < 8; i++) {
835 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
836 }
837 }
838
839 //-----------------------------------------------------------------------------
840 // Wait for commands from reader
841 // Stop when button is pressed
842 // Or return TRUE when command is captured
843 //-----------------------------------------------------------------------------
844 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
845 {
846 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
847 // only, since we are receiving, not transmitting).
848 // Signal field is off with the appropriate LED
849 LED_D_OFF();
850 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
851
852 // Now run a `software UART' on the stream of incoming samples.
853 Uart.output = received;
854 Uart.byteCntMax = maxLen;
855 Uart.state = STATE_UNSYNCD;
856
857 for(;;) {
858 WDT_HIT();
859
860 if(BUTTON_PRESS()) return FALSE;
861
862 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
863 AT91C_BASE_SSC->SSC_THR = 0x00;
864 }
865 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
866 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
867 /*if(OutOfNDecoding((b & 0xf0) >> 4)) {
868 *len = Uart.byteCnt;
869 return TRUE;
870 }*/
871 if(OutOfNDecoding(b & 0x0f)) {
872 *len = Uart.byteCnt;
873 return TRUE;
874 }
875 }
876 }
877 }
878
879
880 //-----------------------------------------------------------------------------
881 // Prepare tag messages
882 //-----------------------------------------------------------------------------
883 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
884 {
885 //So far a dummy implementation, not used
886 //int lastProxToAirDuration =0;
887 int i;
888
889 ToSendReset();
890
891 // Send SOF
892 ToSend[++ToSendMax] = 0x00;
893 ToSend[++ToSendMax] = 0x00;
894 ToSend[++ToSendMax] = 0x00;
895 ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
896 ToSend[++ToSendMax] = 0xff;
897 ToSend[++ToSendMax] = 0xff;
898 ToSend[++ToSendMax] = 0x00;
899 ToSend[++ToSendMax] = 0xff;
900
901 for(i = 0; i < len; i++) {
902 int j;
903 uint8_t b = cmd[i];
904
905 // Data bits
906 for(j = 0; j < 8; j++) {
907 if(b & 1) {
908 ToSend[++ToSendMax] = 0x00;
909 ToSend[++ToSendMax] = 0xff;
910 } else {
911 ToSend[++ToSendMax] = 0xff;
912 ToSend[++ToSendMax] = 0x00;
913 }
914 b >>= 1;
915 }
916 }
917
918 // Send EOF
919 ToSend[++ToSendMax] = 0xff;
920 ToSend[++ToSendMax] = 0x00;
921 ToSend[++ToSendMax] = 0xff;
922 ToSend[++ToSendMax] = 0xff;
923 ToSend[++ToSendMax] = 0xff;
924 ToSend[++ToSendMax] = 0x00;
925 ToSend[++ToSendMax] = 0x00;
926 ToSend[++ToSendMax] = 0x00;
927
928 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
929
930 // Convert from last byte pos to length
931 ToSendMax++;
932 }
933
934 // Only SOF
935 static void CodeIClassTagSOF()
936 {
937 //So far a dummy implementation, not used
938 //int lastProxToAirDuration =0;
939
940 ToSendReset();
941 // Send SOF
942 ToSend[++ToSendMax] = 0x00;
943 ToSend[++ToSendMax] = 0x00;
944 ToSend[++ToSendMax] = 0x00;
945 ToSend[++ToSendMax] = 0xff;
946 ToSend[++ToSendMax] = 0xff;
947 ToSend[++ToSendMax] = 0xff;
948 ToSend[++ToSendMax] = 0x00;
949 ToSend[++ToSendMax] = 0xff;
950
951 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
952
953
954 // Convert from last byte pos to length
955 ToSendMax++;
956 }
957 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
958 /**
959 * @brief SimulateIClass simulates an iClass card.
960 * @param arg0 type of simulation
961 * - 0 uses the first 8 bytes in usb data as CSN
962 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
963 * in the usb data. This mode collects MAC from the reader, in order to do an offline
964 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
965 * - Other : Uses the default CSN (031fec8af7ff12e0)
966 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
967 * @param arg2
968 * @param datain
969 */
970 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
971 {
972 uint32_t simType = arg0;
973 uint32_t numberOfCSNS = arg1;
974
975 // Enable and clear the trace
976 iso14a_set_tracing(TRUE);
977 iso14a_clear_trace();
978
979 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
980 if(simType == 0) {
981 // Use the CSN from commandline
982 memcpy(csn_crc, datain, 8);
983 doIClassSimulation(csn_crc,0,NULL);
984 }else if(simType == 1)
985 {
986 doIClassSimulation(csn_crc,0,NULL);
987 }
988 else if(simType == 2)
989 {
990
991 uint8_t mac_responses[64] = { 0 };
992 Dbprintf("Going into attack mode");
993 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
994 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
995 // in order to obtain the keys, as in the "dismantling iclass"-paper.
996 int i = 0;
997 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
998 {
999 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1000
1001 memcpy(csn_crc, datain+(i*8), 8);
1002 if(doIClassSimulation(csn_crc,1,mac_responses))
1003 {
1004 return; // Button pressed
1005 }
1006 }
1007 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1008
1009 }
1010 else{
1011 // We may want a mode here where we hardcode the csns to use (from proxclone).
1012 // That will speed things up a little, but not required just yet.
1013 Dbprintf("The mode is not implemented, reserved for future use");
1014 }
1015 Dbprintf("Done...");
1016
1017 }
1018 /**
1019 * @brief Does the actual simulation
1020 * @param csn - csn to use
1021 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1022 */
1023 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
1024 {
1025
1026 // CSN followed by two CRC bytes
1027 uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1028 uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
1029 memcpy(response3,csn,sizeof(response3));
1030 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1031 // e-Purse
1032 uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1033
1034 // Construct anticollision-CSN
1035 rotateCSN(response3,response2);
1036
1037 // Compute CRC on both CSNs
1038 ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
1039 ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
1040
1041 int exitLoop = 0;
1042 // Reader 0a
1043 // Tag 0f
1044 // Reader 0c
1045 // Tag anticoll. CSN
1046 // Reader 81 anticoll. CSN
1047 // Tag CSN
1048
1049 uint8_t *resp;
1050 int respLen;
1051 uint8_t* respdata = NULL;
1052 int respsize = 0;
1053 uint8_t sof = 0x0f;
1054
1055 // Respond SOF -- takes 8 bytes
1056 uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1057 int resp1Len;
1058
1059 // Anticollision CSN (rotated CSN)
1060 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1061 uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
1062 int resp2Len;
1063
1064 // CSN
1065 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1066 uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
1067 int resp3Len;
1068
1069 // e-Purse
1070 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1071 uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
1072 int resp4Len;
1073
1074 // + 1720..
1075 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
1076 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1077 int len;
1078
1079 // Prepare card messages
1080 ToSendMax = 0;
1081
1082 // First card answer: SOF
1083 CodeIClassTagSOF();
1084 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1085
1086 // Anticollision CSN
1087 CodeIClassTagAnswer(response2, sizeof(response2));
1088 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1089
1090 // CSN
1091 CodeIClassTagAnswer(response3, sizeof(response3));
1092 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1093
1094 // e-Purse
1095 CodeIClassTagAnswer(response4, sizeof(response4));
1096 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1097
1098
1099 // Start from off (no field generated)
1100 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1101 //SpinDelay(200);
1102 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1103 SpinDelay(100);
1104 StartCountSspClk();
1105 // We need to listen to the high-frequency, peak-detected path.
1106 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1107 FpgaSetupSsc();
1108
1109 // To control where we are in the protocol
1110 int cmdsRecvd = 0;
1111 uint32_t time_0 = GetCountSspClk();
1112 uint32_t t2r_time =0;
1113 uint32_t r2t_time =0;
1114
1115 LED_A_ON();
1116 bool buttonPressed = false;
1117
1118 /** Hack for testing
1119 memcpy(reader_mac_buf,csn,8);
1120 exitLoop = true;
1121 end hack **/
1122
1123 while(!exitLoop) {
1124
1125 LED_B_OFF();
1126 //Signal tracer
1127 // Can be used to get a trigger for an oscilloscope..
1128 LED_C_OFF();
1129
1130 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1131 buttonPressed = true;
1132 break;
1133 }
1134 r2t_time = GetCountSspClk();
1135 //Signal tracer
1136 LED_C_ON();
1137
1138 // Okay, look at the command now.
1139 if(receivedCmd[0] == 0x0a ) {
1140 // Reader in anticollission phase
1141 resp = resp1; respLen = resp1Len; //order = 1;
1142 respdata = &sof;
1143 respsize = sizeof(sof);
1144 } else if(receivedCmd[0] == 0x0c) {
1145 // Reader asks for anticollission CSN
1146 resp = resp2; respLen = resp2Len; //order = 2;
1147 respdata = response2;
1148 respsize = sizeof(response2);
1149 //DbpString("Reader requests anticollission CSN:");
1150 } else if(receivedCmd[0] == 0x81) {
1151 // Reader selects anticollission CSN.
1152 // Tag sends the corresponding real CSN
1153 resp = resp3; respLen = resp3Len; //order = 3;
1154 respdata = response3;
1155 respsize = sizeof(response3);
1156 //DbpString("Reader selects anticollission CSN:");
1157 } else if(receivedCmd[0] == 0x88) {
1158 // Read e-purse (88 02)
1159 resp = resp4; respLen = resp4Len; //order = 4;
1160 respdata = response4;
1161 respsize = sizeof(response4);
1162 LED_B_ON();
1163 } else if(receivedCmd[0] == 0x05) {
1164 // Reader random and reader MAC!!!
1165 // Do not respond
1166 // We do not know what to answer, so lets keep quit
1167 resp = resp1; respLen = 0; //order = 5;
1168 respdata = NULL;
1169 respsize = 0;
1170 if (breakAfterMacReceived){
1171 // TODO, actually return this to the caller instead of just
1172 // dbprintf:ing ...
1173 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1174 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1175 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1176 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1177 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1178 if (reader_mac_buf != NULL)
1179 {
1180 memcpy(reader_mac_buf,receivedCmd+1,8);
1181 }
1182 exitLoop = true;
1183 }
1184 } else if(receivedCmd[0] == 0x00 && len == 1) {
1185 // Reader ends the session
1186 resp = resp1; respLen = 0; //order = 0;
1187 respdata = NULL;
1188 respsize = 0;
1189 } else {
1190 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1191 // Never seen this command before
1192 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1193 len,
1194 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1195 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1196 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1197 // Do not respond
1198 resp = resp1; respLen = 0; //order = 0;
1199 respdata = NULL;
1200 respsize = 0;
1201 }
1202
1203 if(cmdsRecvd > 100) {
1204 //DbpString("100 commands later...");
1205 //break;
1206 }
1207 else {
1208 cmdsRecvd++;
1209 }
1210
1211 if(respLen > 0) {
1212 SendIClassAnswer(resp, respLen, 21);
1213 t2r_time = GetCountSspClk();
1214 }
1215
1216 if (tracing) {
1217 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE);
1218 LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE);
1219
1220 if (respdata != NULL) {
1221 LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE);
1222 LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE);
1223
1224
1225 }
1226 if(!tracing) {
1227 DbpString("Trace full");
1228 //break;
1229 }
1230
1231 }
1232 memset(receivedCmd, 0x44, RECV_CMD_SIZE);
1233 }
1234
1235 //Dbprintf("%x", cmdsRecvd);
1236 LED_A_OFF();
1237 LED_B_OFF();
1238 if(buttonPressed)
1239 {
1240 DbpString("Button pressed");
1241 }
1242 return buttonPressed;
1243 }
1244
1245 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1246 {
1247 int i = 0, d=0;//, u = 0, d = 0;
1248 uint8_t b = 0;
1249
1250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1251
1252 AT91C_BASE_SSC->SSC_THR = 0x00;
1253 FpgaSetupSsc();
1254 while(!BUTTON_PRESS()) {
1255 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1256 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1257 }
1258 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1259 b = 0x00;
1260 if(d < delay) {
1261 d++;
1262 }
1263 else {
1264 if( i < respLen){
1265 b = resp[i];
1266 //Hack
1267 //b = 0xAC;
1268 }
1269 i++;
1270 }
1271 AT91C_BASE_SSC->SSC_THR = b;
1272 }
1273
1274 if (i > respLen +4) break;
1275 }
1276
1277 return 0;
1278 }
1279
1280 /// THE READER CODE
1281
1282 //-----------------------------------------------------------------------------
1283 // Transmit the command (to the tag) that was placed in ToSend[].
1284 //-----------------------------------------------------------------------------
1285 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1286 {
1287 int c;
1288 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1289 AT91C_BASE_SSC->SSC_THR = 0x00;
1290 FpgaSetupSsc();
1291
1292 if (wait)
1293 if(*wait < 10)
1294 *wait = 10;
1295
1296 for(c = 0; c < *wait;) {
1297 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1298 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1299 c++;
1300 }
1301 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1302 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1303 (void)r;
1304 }
1305 WDT_HIT();
1306 }
1307
1308 uint8_t sendbyte;
1309 bool firstpart = TRUE;
1310 c = 0;
1311 for(;;) {
1312 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1313
1314 // DOUBLE THE SAMPLES!
1315 if(firstpart) {
1316 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1317 }
1318 else {
1319 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1320 c++;
1321 }
1322 if(sendbyte == 0xff) {
1323 sendbyte = 0xfe;
1324 }
1325 AT91C_BASE_SSC->SSC_THR = sendbyte;
1326 firstpart = !firstpart;
1327
1328 if(c >= len) {
1329 break;
1330 }
1331 }
1332 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1333 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1334 (void)r;
1335 }
1336 WDT_HIT();
1337 }
1338 if (samples) *samples = (c + *wait) << 3;
1339 }
1340
1341
1342 //-----------------------------------------------------------------------------
1343 // Prepare iClass reader command to send to FPGA
1344 //-----------------------------------------------------------------------------
1345 void CodeIClassCommand(const uint8_t * cmd, int len)
1346 {
1347 int i, j, k;
1348 uint8_t b;
1349
1350 ToSendReset();
1351
1352 // Start of Communication: 1 out of 4
1353 ToSend[++ToSendMax] = 0xf0;
1354 ToSend[++ToSendMax] = 0x00;
1355 ToSend[++ToSendMax] = 0x0f;
1356 ToSend[++ToSendMax] = 0x00;
1357
1358 // Modulate the bytes
1359 for (i = 0; i < len; i++) {
1360 b = cmd[i];
1361 for(j = 0; j < 4; j++) {
1362 for(k = 0; k < 4; k++) {
1363 if(k == (b & 3)) {
1364 ToSend[++ToSendMax] = 0x0f;
1365 }
1366 else {
1367 ToSend[++ToSendMax] = 0x00;
1368 }
1369 }
1370 b >>= 2;
1371 }
1372 }
1373
1374 // End of Communication
1375 ToSend[++ToSendMax] = 0x00;
1376 ToSend[++ToSendMax] = 0x00;
1377 ToSend[++ToSendMax] = 0xf0;
1378 ToSend[++ToSendMax] = 0x00;
1379
1380 // Convert from last character reference to length
1381 ToSendMax++;
1382 }
1383
1384 void ReaderTransmitIClass(uint8_t* frame, int len)
1385 {
1386 int wait = 0;
1387 int samples = 0;
1388 int par = 0;
1389
1390 // This is tied to other size changes
1391 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1392 CodeIClassCommand(frame,len);
1393
1394 // Select the card
1395 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1396 if(trigger)
1397 LED_A_ON();
1398
1399 // Store reader command in buffer
1400 if (tracing) LogTrace(frame,len,rsamples,par,TRUE);
1401 }
1402
1403 //-----------------------------------------------------------------------------
1404 // Wait a certain time for tag response
1405 // If a response is captured return TRUE
1406 // If it takes too long return FALSE
1407 //-----------------------------------------------------------------------------
1408 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1409 {
1410 // buffer needs to be 512 bytes
1411 int c;
1412
1413 // Set FPGA mode to "reader listen mode", no modulation (listen
1414 // only, since we are receiving, not transmitting).
1415 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1416
1417 // Now get the answer from the card
1418 Demod.output = receivedResponse;
1419 Demod.len = 0;
1420 Demod.state = DEMOD_UNSYNCD;
1421
1422 uint8_t b;
1423 if (elapsed) *elapsed = 0;
1424
1425 bool skip = FALSE;
1426
1427 c = 0;
1428 for(;;) {
1429 WDT_HIT();
1430
1431 if(BUTTON_PRESS()) return FALSE;
1432
1433 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1434 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1435 if (elapsed) (*elapsed)++;
1436 }
1437 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1438 if(c < timeout) { c++; } else { return FALSE; }
1439 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1440 skip = !skip;
1441 if(skip) continue;
1442 /*if(ManchesterDecoding((b>>4) & 0xf)) {
1443 *samples = ((c - 1) << 3) + 4;
1444 return TRUE;
1445 }*/
1446 if(ManchesterDecoding(b & 0x0f)) {
1447 *samples = c << 3;
1448 return TRUE;
1449 }
1450 }
1451 }
1452 }
1453
1454 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1455 {
1456 int samples = 0;
1457 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1458 rsamples += samples;
1459 if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE);
1460 if(samples == 0) return FALSE;
1461 return Demod.len;
1462 }
1463
1464 // Reader iClass Anticollission
1465 void ReaderIClass(uint8_t arg0) {
1466 uint8_t act_all[] = { 0x0a };
1467 uint8_t identify[] = { 0x0c };
1468 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1469
1470 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1471
1472 // Reset trace buffer
1473 memset(trace, 0x44, RECV_CMD_OFFSET);
1474 traceLen = 0;
1475
1476 // Setup SSC
1477 FpgaSetupSsc();
1478 // Start from off (no field generated)
1479 // Signal field is off with the appropriate LED
1480 LED_D_OFF();
1481 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1482 SpinDelay(200);
1483
1484 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1485
1486 // Now give it time to spin up.
1487 // Signal field is on with the appropriate LED
1488 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1489 SpinDelay(200);
1490
1491 LED_A_ON();
1492
1493 for(;;) {
1494
1495 if(traceLen > TRACE_SIZE) {
1496 DbpString("Trace full");
1497 break;
1498 }
1499
1500 if (BUTTON_PRESS()) break;
1501
1502 // Send act_all
1503 ReaderTransmitIClass(act_all, 1);
1504 // Card present?
1505 if(ReaderReceiveIClass(resp)) {
1506 ReaderTransmitIClass(identify, 1);
1507 if(ReaderReceiveIClass(resp) == 10) {
1508 // Select card
1509 memcpy(&select[1],resp,8);
1510 ReaderTransmitIClass(select, sizeof(select));
1511
1512 if(ReaderReceiveIClass(resp) == 10) {
1513 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1514 resp[0], resp[1], resp[2],
1515 resp[3], resp[4], resp[5],
1516 resp[6], resp[7]);
1517 }
1518 // Card selected, whats next... ;-)
1519 }
1520 }
1521 WDT_HIT();
1522 }
1523
1524 LED_A_OFF();
1525 }
1526
1527
Impressum, Datenschutz