]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Clean up pcf7931
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #include "pcf7931.h"
30 #ifdef WITH_LCD
31 #include "LCD.h"
32 #endif
33
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #endif
38
39 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40
41 //=============================================================================
42 // A buffer where we can queue things up to be sent through the FPGA, for
43 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
44 // is the order in which they go out on the wire.
45 //=============================================================================
46
47 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
48 uint8_t ToSend[TOSEND_BUFFER_SIZE];
49 int ToSendMax;
50 static int ToSendBit;
51 struct common_area common_area __attribute__((section(".commonarea")));
52
53 void ToSendReset(void)
54 {
55 ToSendMax = -1;
56 ToSendBit = 8;
57 }
58
59 void ToSendStuffBit(int b)
60 {
61 if(ToSendBit >= 8) {
62 ToSendMax++;
63 ToSend[ToSendMax] = 0;
64 ToSendBit = 0;
65 }
66
67 if(b) {
68 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
69 }
70
71 ToSendBit++;
72
73 if(ToSendMax >= sizeof(ToSend)) {
74 ToSendBit = 0;
75 DbpString("ToSendStuffBit overflowed!");
76 }
77 }
78
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
82
83 void DbpString(char *str)
84 {
85 byte_t len = strlen(str);
86 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
87 }
88
89 #if 0
90 void DbpIntegers(int x1, int x2, int x3)
91 {
92 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
93 }
94 #endif
95
96 void Dbprintf(const char *fmt, ...) {
97 // should probably limit size here; oh well, let's just use a big buffer
98 char output_string[128];
99 va_list ap;
100
101 va_start(ap, fmt);
102 kvsprintf(fmt, output_string, 10, ap);
103 va_end(ap);
104
105 DbpString(output_string);
106 }
107
108 // prints HEX & ASCII
109 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
110 int l=0,i;
111 char ascii[9];
112
113 while (len>0) {
114 if (len>8) l=8;
115 else l=len;
116
117 memcpy(ascii,d,l);
118 ascii[l]=0;
119
120 // filter safe ascii
121 for (i=0;i<l;i++)
122 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
123
124 if (bAsci) {
125 Dbprintf("%-8s %*D",ascii,l,d," ");
126 } else {
127 Dbprintf("%*D",l,d," ");
128 }
129
130 len-=8;
131 d+=8;
132 }
133 }
134
135 //-----------------------------------------------------------------------------
136 // Read an ADC channel and block till it completes, then return the result
137 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 // return that.
139 //-----------------------------------------------------------------------------
140 static int ReadAdc(int ch)
141 {
142 uint32_t d;
143
144 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
145 AT91C_BASE_ADC->ADC_MR =
146 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
147 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
148 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149
150 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
151 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
152 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
153 //
154 // The maths are:
155 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 //
157 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 //
159 // Note: with the "historic" values in the comments above, the error was 34% !!!
160
161 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
162
163 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
164
165 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
166 ;
167 d = AT91C_BASE_ADC->ADC_CDR[ch];
168
169 return d;
170 }
171
172 int AvgAdc(int ch) // was static - merlok
173 {
174 int i;
175 int a = 0;
176
177 for(i = 0; i < 32; i++) {
178 a += ReadAdc(ch);
179 }
180
181 return (a + 15) >> 5;
182 }
183
184 void MeasureAntennaTuning(void)
185 {
186 uint8_t LF_Results[256];
187 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
188 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
189
190 LED_B_ON();
191
192 /*
193 * Sweeps the useful LF range of the proxmark from
194 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
195 * read the voltage in the antenna, the result left
196 * in the buffer is a graph which should clearly show
197 * the resonating frequency of your LF antenna
198 * ( hopefully around 95 if it is tuned to 125kHz!)
199 */
200
201 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
203 for (i=255; i>=19; i--) {
204 WDT_HIT();
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
206 SpinDelay(20);
207 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
208 if (i==95) vLf125 = adcval; // voltage at 125Khz
209 if (i==89) vLf134 = adcval; // voltage at 134Khz
210
211 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
212 if(LF_Results[i] > peak) {
213 peakv = adcval;
214 peak = LF_Results[i];
215 peakf = i;
216 //ptr = i;
217 }
218 }
219
220 for (i=18; i >= 0; i--) LF_Results[i] = 0;
221
222 LED_A_ON();
223 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
228
229 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
231 LED_A_OFF();
232 LED_B_OFF();
233 return;
234 }
235
236 void MeasureAntennaTuningHf(void)
237 {
238 int vHf = 0; // in mV
239
240 DbpString("Measuring HF antenna, press button to exit");
241
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
245
246 for (;;) {
247 SpinDelay(20);
248 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
249
250 Dbprintf("%d mV",vHf);
251 if (BUTTON_PRESS()) break;
252 }
253 DbpString("cancelled");
254
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256
257 }
258
259
260 void ReadMem(int addr)
261 {
262 const uint8_t *data = ((uint8_t *)addr);
263
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
266 }
267
268 /* osimage version information is linked in */
269 extern struct version_information version_information;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
272 void SendVersion(void)
273 {
274 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
275 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
276
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
280 */
281 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
282 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
283 strcat(VersionString, "bootrom version information appears invalid\n");
284 } else {
285 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
286 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
287 }
288
289 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
290 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
291
292 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
293 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
295 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
296
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
299 uint32_t compressed_data_section_size = common_area.arg1;
300 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
301 }
302
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
306 {
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
309
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data = BigBuf_get_addr();
312 uint32_t end_time;
313
314 uint32_t start_time = end_time = GetTickCount();
315 uint32_t bytes_transferred = 0;
316
317 LED_B_ON();
318 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
320 end_time = GetTickCount();
321 bytes_transferred += USB_CMD_DATA_SIZE;
322 }
323 LED_B_OFF();
324
325 Dbprintf(" Time elapsed: %dms", end_time - start_time);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred / (end_time - start_time));
329
330 }
331
332 /**
333 * Prints runtime information about the PM3.
334 **/
335 void SendStatus(void)
336 {
337 BigBuf_print_status();
338 Fpga_print_status();
339 printConfig(); //LF Sampling config
340 printUSBSpeed();
341 Dbprintf("Various");
342 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
343 Dbprintf(" ToSendMax........%d",ToSendMax);
344 Dbprintf(" ToSendBit........%d",ToSendBit);
345
346 cmd_send(CMD_ACK,1,0,0,0,0);
347 }
348
349 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
350
351 #define OPTS 2
352
353 void StandAloneMode()
354 {
355 DbpString("Stand-alone mode! No PC necessary.");
356 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366
367 }
368
369 #endif
370
371
372
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
375 {
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
388
389 LED(selected + 1, 0);
390
391 for (;;)
392 {
393 usb_poll();
394 WDT_HIT();
395 SpinDelay(300);
396
397 if (iGotoRecord == 1 || cardRead[selected] == 0)
398 {
399 iGotoRecord = 0;
400 LEDsoff();
401 LED(selected + 1, 0);
402 LED(LED_RED2, 0);
403
404 // record
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
406 /* need this delay to prevent catching some weird data */
407 SpinDelay(500);
408 /* Code for reading from 14a tag */
409 uint8_t uid[10] ={0};
410 uint32_t cuid;
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
412
413 for ( ; ; )
414 {
415 WDT_HIT();
416 if (BUTTON_PRESS()) {
417 if (cardRead[selected]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
419 break;
420 }
421 else if (cardRead[(selected+1)%OPTS]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
423 selected = (selected+1)%OPTS;
424 break; // playing = 1;
425 }
426 else {
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 SpinDelay(300);
429 }
430 }
431 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
432 continue;
433 else
434 {
435 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
436 memcpy(readUID,uid,10*sizeof(uint8_t));
437 uint8_t *dst = (uint8_t *)&uid_tmp1;
438 // Set UID byte order
439 for (int i=0; i<4; i++)
440 dst[i] = uid[3-i];
441 dst = (uint8_t *)&uid_tmp2;
442 for (int i=0; i<4; i++)
443 dst[i] = uid[7-i];
444 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 }
447 else {
448 if (uid_tmp2) {
449 Dbprintf("Bank[%d] received a 7-byte UID",selected);
450 uid_1st[selected] = (uid_tmp1)>>8;
451 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
452 }
453 else {
454 Dbprintf("Bank[%d] received a 4-byte UID",selected);
455 uid_1st[selected] = uid_tmp1;
456 uid_2nd[selected] = uid_tmp2;
457 }
458 break;
459 }
460 }
461 }
462 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
463 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
464 LEDsoff();
465 LED(LED_GREEN, 200);
466 LED(LED_ORANGE, 200);
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469
470 LEDsoff();
471 LED(selected + 1, 0);
472
473 // Next state is replay:
474 playing = 1;
475
476 cardRead[selected] = 1;
477 }
478 /* MF Classic UID clone */
479 else if (iGotoClone==1)
480 {
481 iGotoClone=0;
482 LEDsoff();
483 LED(selected + 1, 0);
484 LED(LED_ORANGE, 250);
485
486
487 // record
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
489
490 // wait for button to be released
491 while(BUTTON_PRESS())
492 {
493 // Delay cloning until card is in place
494 WDT_HIT();
495 }
496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
529 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
545 MifareCSetBlock(0, 0xFF,0, newBlock0);
546 MifareCGetBlock(0x3F, 1, 0, testBlock0);
547 if (memcmp(testBlock0,newBlock0,16)==0)
548 {
549 DbpString("Cloned successfull!");
550 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
551 playing = 0;
552 iGotoRecord = 1;
553 selected = (selected+1) % OPTS;
554 }
555 else {
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
562
563 }
564 // Change where to record (or begin playing)
565 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
566 {
567 LEDsoff();
568 LED(selected + 1, 0);
569
570 // Begin transmitting
571 if (playing)
572 {
573 LED(LED_GREEN, 0);
574 DbpString("Playing");
575 for ( ; ; ) {
576 WDT_HIT();
577 int button_action = BUTTON_HELD(1000);
578 if (button_action == 0) { // No button action, proceed with sim
579 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
581 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
584 }
585 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
588 }
589 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
592 }
593 else {
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
596 }
597 }
598 else if (button_action == BUTTON_SINGLE_CLICK) {
599 selected = (selected + 1) % OPTS;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
601 iGotoRecord = 1;
602 break;
603 }
604 else if (button_action == BUTTON_HOLD) {
605 Dbprintf("Playtime over. Begin cloning...");
606 iGotoClone = 1;
607 break;
608 }
609 WDT_HIT();
610 }
611
612 /* We pressed a button so ignore it here with a delay */
613 SpinDelay(300);
614 LEDsoff();
615 LED(selected + 1, 0);
616 }
617 else
618 while(BUTTON_PRESS())
619 WDT_HIT();
620 }
621 }
622 }
623 #elif WITH_LF
624 // samy's sniff and repeat routine
625 void SamyRun()
626 {
627 StandAloneMode();
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
629
630 int high[OPTS], low[OPTS];
631 int selected = 0;
632 int playing = 0;
633 int cardRead = 0;
634
635 // Turn on selected LED
636 LED(selected + 1, 0);
637
638 for (;;)
639 {
640 usb_poll();
641 WDT_HIT();
642
643 // Was our button held down or pressed?
644 int button_pressed = BUTTON_HELD(1000);
645 SpinDelay(300);
646
647 // Button was held for a second, begin recording
648 if (button_pressed > 0 && cardRead == 0)
649 {
650 LEDsoff();
651 LED(selected + 1, 0);
652 LED(LED_RED2, 0);
653
654 // record
655 DbpString("Starting recording");
656
657 // wait for button to be released
658 while(BUTTON_PRESS())
659 WDT_HIT();
660
661 /* need this delay to prevent catching some weird data */
662 SpinDelay(500);
663
664 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
665 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
666
667 LEDsoff();
668 LED(selected + 1, 0);
669 // Finished recording
670
671 // If we were previously playing, set playing off
672 // so next button push begins playing what we recorded
673 playing = 0;
674
675 cardRead = 1;
676
677 }
678
679 else if (button_pressed > 0 && cardRead == 1)
680 {
681 LEDsoff();
682 LED(selected + 1, 0);
683 LED(LED_ORANGE, 0);
684
685 // record
686 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
687
688 // wait for button to be released
689 while(BUTTON_PRESS())
690 WDT_HIT();
691
692 /* need this delay to prevent catching some weird data */
693 SpinDelay(500);
694
695 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
696 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
697
698 LEDsoff();
699 LED(selected + 1, 0);
700 // Finished recording
701
702 // If we were previously playing, set playing off
703 // so next button push begins playing what we recorded
704 playing = 0;
705
706 cardRead = 0;
707
708 }
709
710 // Change where to record (or begin playing)
711 else if (button_pressed)
712 {
713 // Next option if we were previously playing
714 if (playing)
715 selected = (selected + 1) % OPTS;
716 playing = !playing;
717
718 LEDsoff();
719 LED(selected + 1, 0);
720
721 // Begin transmitting
722 if (playing)
723 {
724 LED(LED_GREEN, 0);
725 DbpString("Playing");
726 // wait for button to be released
727 while(BUTTON_PRESS())
728 WDT_HIT();
729 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
730 CmdHIDsimTAG(high[selected], low[selected], 0);
731 DbpString("Done playing");
732 if (BUTTON_HELD(1000) > 0)
733 {
734 DbpString("Exiting");
735 LEDsoff();
736 return;
737 }
738
739 /* We pressed a button so ignore it here with a delay */
740 SpinDelay(300);
741
742 // when done, we're done playing, move to next option
743 selected = (selected + 1) % OPTS;
744 playing = !playing;
745 LEDsoff();
746 LED(selected + 1, 0);
747 }
748 else
749 while(BUTTON_PRESS())
750 WDT_HIT();
751 }
752 }
753 }
754
755 #endif
756 /*
757 OBJECTIVE
758 Listen and detect an external reader. Determine the best location
759 for the antenna.
760
761 INSTRUCTIONS:
762 Inside the ListenReaderField() function, there is two mode.
763 By default, when you call the function, you will enter mode 1.
764 If you press the PM3 button one time, you will enter mode 2.
765 If you press the PM3 button a second time, you will exit the function.
766
767 DESCRIPTION OF MODE 1:
768 This mode just listens for an external reader field and lights up green
769 for HF and/or red for LF. This is the original mode of the detectreader
770 function.
771
772 DESCRIPTION OF MODE 2:
773 This mode will visually represent, using the LEDs, the actual strength of the
774 current compared to the maximum current detected. Basically, once you know
775 what kind of external reader is present, it will help you spot the best location to place
776 your antenna. You will probably not get some good results if there is a LF and a HF reader
777 at the same place! :-)
778
779 LIGHT SCHEME USED:
780 */
781 static const char LIGHT_SCHEME[] = {
782 0x0, /* ---- | No field detected */
783 0x1, /* X--- | 14% of maximum current detected */
784 0x2, /* -X-- | 29% of maximum current detected */
785 0x4, /* --X- | 43% of maximum current detected */
786 0x8, /* ---X | 57% of maximum current detected */
787 0xC, /* --XX | 71% of maximum current detected */
788 0xE, /* -XXX | 86% of maximum current detected */
789 0xF, /* XXXX | 100% of maximum current detected */
790 };
791 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
792
793 void ListenReaderField(int limit)
794 {
795 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
796 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
797 int mode=1, display_val, display_max, i;
798
799 #define LF_ONLY 1
800 #define HF_ONLY 2
801 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
802
803
804 // switch off FPGA - we don't want to measure our own signal
805 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
806 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
807
808 LEDsoff();
809
810 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
811
812 if(limit != HF_ONLY) {
813 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
814 lf_baseline = lf_av;
815 }
816
817 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
818
819 if (limit != LF_ONLY) {
820 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
821 hf_baseline = hf_av;
822 }
823
824 for(;;) {
825 if (BUTTON_PRESS()) {
826 SpinDelay(500);
827 switch (mode) {
828 case 1:
829 mode=2;
830 DbpString("Signal Strength Mode");
831 break;
832 case 2:
833 default:
834 DbpString("Stopped");
835 LEDsoff();
836 return;
837 break;
838 }
839 }
840 WDT_HIT();
841
842 if (limit != HF_ONLY) {
843 if(mode == 1) {
844 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
845 LED_D_ON();
846 else
847 LED_D_OFF();
848 }
849
850 lf_av_new = AvgAdc(ADC_CHAN_LF);
851 // see if there's a significant change
852 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
853 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
854 lf_av = lf_av_new;
855 if (lf_av > lf_max)
856 lf_max = lf_av;
857 }
858 }
859
860 if (limit != LF_ONLY) {
861 if (mode == 1){
862 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
863 LED_B_ON();
864 else
865 LED_B_OFF();
866 }
867
868 hf_av_new = AvgAdc(ADC_CHAN_HF);
869 // see if there's a significant change
870 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
871 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
872 hf_av = hf_av_new;
873 if (hf_av > hf_max)
874 hf_max = hf_av;
875 }
876 }
877
878 if(mode == 2) {
879 if (limit == LF_ONLY) {
880 display_val = lf_av;
881 display_max = lf_max;
882 } else if (limit == HF_ONLY) {
883 display_val = hf_av;
884 display_max = hf_max;
885 } else { /* Pick one at random */
886 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
887 display_val = hf_av;
888 display_max = hf_max;
889 } else {
890 display_val = lf_av;
891 display_max = lf_max;
892 }
893 }
894 for (i=0; i<LIGHT_LEN; i++) {
895 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
896 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
897 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
898 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
899 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
900 break;
901 }
902 }
903 }
904 }
905 }
906
907 void UsbPacketReceived(uint8_t *packet, int len)
908 {
909 UsbCommand *c = (UsbCommand *)packet;
910
911 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
912
913 switch(c->cmd) {
914 #ifdef WITH_LF
915 case CMD_SET_LF_SAMPLING_CONFIG:
916 setSamplingConfig((sample_config *) c->d.asBytes);
917 break;
918 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
919 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
920 break;
921 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
922 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
923 break;
924 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
925 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
926 break;
927 case CMD_HID_DEMOD_FSK:
928 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
929 break;
930 case CMD_HID_SIM_TAG:
931 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
932 break;
933 case CMD_FSK_SIM_TAG:
934 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
935 break;
936 case CMD_ASK_SIM_TAG:
937 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
938 break;
939 case CMD_PSK_SIM_TAG:
940 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
941 break;
942 case CMD_HID_CLONE_TAG:
943 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
944 break;
945 case CMD_IO_DEMOD_FSK:
946 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
947 break;
948 case CMD_IO_CLONE_TAG:
949 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
950 break;
951 case CMD_EM410X_DEMOD:
952 CmdEM410xdemod(c->arg[0], 0, 0, 1);
953 break;
954 case CMD_EM410X_WRITE_TAG:
955 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
956 break;
957 case CMD_READ_TI_TYPE:
958 ReadTItag();
959 break;
960 case CMD_WRITE_TI_TYPE:
961 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
962 break;
963 case CMD_SIMULATE_TAG_125K:
964 LED_A_ON();
965 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
966 LED_A_OFF();
967 break;
968 case CMD_LF_SIMULATE_BIDIR:
969 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
970 break;
971 case CMD_INDALA_CLONE_TAG:
972 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
973 break;
974 case CMD_INDALA_CLONE_TAG_L:
975 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
976 break;
977 case CMD_T55XX_READ_BLOCK:
978 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
979 break;
980 case CMD_T55XX_WRITE_BLOCK:
981 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
982 cmd_send(CMD_ACK,0,0,0,0,0);
983 break;
984 case CMD_T55XX_READ_TRACE:
985 T55xxReadTrace();
986 break;
987 case CMD_PCF7931_READ:
988 ReadPCF7931();
989 cmd_send(CMD_ACK,0,0,0,0,0);
990 break;
991 case CMD_PCF7931_WRITE:
992 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
993 break;
994 case CMD_EM4X_READ_WORD:
995 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
996 break;
997 case CMD_EM4X_WRITE_WORD:
998 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
999 break;
1000 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1001 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1002 break;
1003 #endif
1004
1005 #ifdef WITH_HITAG
1006 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1007 SnoopHitag(c->arg[0]);
1008 break;
1009 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1010 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1011 break;
1012 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1013 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1014 break;
1015 #endif
1016
1017 #ifdef WITH_ISO15693
1018 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1019 AcquireRawAdcSamplesIso15693();
1020 break;
1021 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1022 RecordRawAdcSamplesIso15693();
1023 break;
1024
1025 case CMD_ISO_15693_COMMAND:
1026 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1027 break;
1028
1029 case CMD_ISO_15693_FIND_AFI:
1030 BruteforceIso15693Afi(c->arg[0]);
1031 break;
1032
1033 case CMD_ISO_15693_DEBUG:
1034 SetDebugIso15693(c->arg[0]);
1035 break;
1036
1037 case CMD_READER_ISO_15693:
1038 ReaderIso15693(c->arg[0]);
1039 break;
1040 case CMD_SIMTAG_ISO_15693:
1041 SimTagIso15693(c->arg[0], c->d.asBytes);
1042 break;
1043 #endif
1044
1045 #ifdef WITH_LEGICRF
1046 case CMD_SIMULATE_TAG_LEGIC_RF:
1047 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1048 break;
1049
1050 case CMD_WRITER_LEGIC_RF:
1051 LegicRfWriter(c->arg[1], c->arg[0]);
1052 break;
1053
1054 case CMD_READER_LEGIC_RF:
1055 LegicRfReader(c->arg[0], c->arg[1]);
1056 break;
1057 #endif
1058
1059 #ifdef WITH_ISO14443b
1060 case CMD_READ_SRI512_TAG:
1061 ReadSTMemoryIso14443b(0x0F);
1062 break;
1063 case CMD_READ_SRIX4K_TAG:
1064 ReadSTMemoryIso14443b(0x7F);
1065 break;
1066 case CMD_SNOOP_ISO_14443B:
1067 SnoopIso14443b();
1068 break;
1069 case CMD_SIMULATE_TAG_ISO_14443B:
1070 SimulateIso14443bTag();
1071 break;
1072 case CMD_ISO_14443B_COMMAND:
1073 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1074 break;
1075 #endif
1076
1077 #ifdef WITH_ISO14443a
1078 case CMD_SNOOP_ISO_14443a:
1079 SnoopIso14443a(c->arg[0]);
1080 break;
1081 case CMD_READER_ISO_14443a:
1082 ReaderIso14443a(c);
1083 break;
1084 case CMD_SIMULATE_TAG_ISO_14443a:
1085 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1086 break;
1087
1088 case CMD_EPA_PACE_COLLECT_NONCE:
1089 EPA_PACE_Collect_Nonce(c);
1090 break;
1091 case CMD_EPA_PACE_REPLAY:
1092 EPA_PACE_Replay(c);
1093 break;
1094
1095 case CMD_READER_MIFARE:
1096 ReaderMifare(c->arg[0]);
1097 break;
1098 case CMD_MIFARE_READBL:
1099 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1100 break;
1101 case CMD_MIFAREU_READBL:
1102 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1103 break;
1104 case CMD_MIFAREUC_AUTH:
1105 MifareUC_Auth(c->arg[0],c->d.asBytes);
1106 break;
1107 case CMD_MIFAREU_READCARD:
1108 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1109 break;
1110 case CMD_MIFAREUC_SETPWD:
1111 MifareUSetPwd(c->arg[0], c->d.asBytes);
1112 break;
1113 case CMD_MIFARE_READSC:
1114 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1115 break;
1116 case CMD_MIFARE_WRITEBL:
1117 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1118 break;
1119 //case CMD_MIFAREU_WRITEBL_COMPAT:
1120 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1121 //break;
1122 case CMD_MIFAREU_WRITEBL:
1123 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1124 break;
1125 case CMD_MIFARE_NESTED:
1126 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1127 break;
1128 case CMD_MIFARE_CHKKEYS:
1129 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1130 break;
1131 case CMD_SIMULATE_MIFARE_CARD:
1132 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1133 break;
1134
1135 // emulator
1136 case CMD_MIFARE_SET_DBGMODE:
1137 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1138 break;
1139 case CMD_MIFARE_EML_MEMCLR:
1140 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1141 break;
1142 case CMD_MIFARE_EML_MEMSET:
1143 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
1145 case CMD_MIFARE_EML_MEMGET:
1146 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1147 break;
1148 case CMD_MIFARE_EML_CARDLOAD:
1149 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151
1152 // Work with "magic Chinese" card
1153 case CMD_MIFARE_CSETBLOCK:
1154 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1155 break;
1156 case CMD_MIFARE_CGETBLOCK:
1157 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_CIDENT:
1160 MifareCIdent();
1161 break;
1162
1163 // mifare sniffer
1164 case CMD_MIFARE_SNIFFER:
1165 SniffMifare(c->arg[0]);
1166 break;
1167
1168 #endif
1169
1170 #ifdef WITH_ICLASS
1171 // Makes use of ISO14443a FPGA Firmware
1172 case CMD_SNOOP_ICLASS:
1173 SnoopIClass();
1174 break;
1175 case CMD_SIMULATE_TAG_ICLASS:
1176 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1177 break;
1178 case CMD_READER_ICLASS:
1179 ReaderIClass(c->arg[0]);
1180 break;
1181 case CMD_READER_ICLASS_REPLAY:
1182 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1183 break;
1184 case CMD_ICLASS_EML_MEMSET:
1185 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1186 break;
1187 case CMD_ICLASS_WRITEBLOCK:
1188 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1189 break;
1190 case CMD_ICLASS_READCHECK: // auth step 1
1191 iClass_ReadCheck(c->arg[0], c->arg[1]);
1192 break;
1193 case CMD_ICLASS_READBLOCK:
1194 iClass_ReadBlk(c->arg[0]);
1195 break;
1196 case CMD_ICLASS_AUTHENTICATION: //check
1197 iClass_Authentication(c->d.asBytes);
1198 break;
1199 case CMD_ICLASS_DUMP:
1200 iClass_Dump(c->arg[0], c->arg[1]);
1201 break;
1202 case CMD_ICLASS_CLONE:
1203 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1204 break;
1205 #endif
1206
1207 case CMD_BUFF_CLEAR:
1208 BigBuf_Clear();
1209 break;
1210
1211 case CMD_MEASURE_ANTENNA_TUNING:
1212 MeasureAntennaTuning();
1213 break;
1214
1215 case CMD_MEASURE_ANTENNA_TUNING_HF:
1216 MeasureAntennaTuningHf();
1217 break;
1218
1219 case CMD_LISTEN_READER_FIELD:
1220 ListenReaderField(c->arg[0]);
1221 break;
1222
1223 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1224 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1225 SpinDelay(200);
1226 LED_D_OFF(); // LED D indicates field ON or OFF
1227 break;
1228
1229 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1230
1231 LED_B_ON();
1232 uint8_t *BigBuf = BigBuf_get_addr();
1233 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1234 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1235 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1236 }
1237 // Trigger a finish downloading signal with an ACK frame
1238 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1239 LED_B_OFF();
1240 break;
1241
1242 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1243 uint8_t *b = BigBuf_get_addr();
1244 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1245 cmd_send(CMD_ACK,0,0,0,0,0);
1246 break;
1247 }
1248 case CMD_READ_MEM:
1249 ReadMem(c->arg[0]);
1250 break;
1251
1252 case CMD_SET_LF_DIVISOR:
1253 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1254 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1255 break;
1256
1257 case CMD_SET_ADC_MUX:
1258 switch(c->arg[0]) {
1259 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1260 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1261 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1262 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1263 }
1264 break;
1265
1266 case CMD_VERSION:
1267 SendVersion();
1268 break;
1269 case CMD_STATUS:
1270 SendStatus();
1271 break;
1272 case CMD_PING:
1273 cmd_send(CMD_ACK,0,0,0,0,0);
1274 break;
1275 #ifdef WITH_LCD
1276 case CMD_LCD_RESET:
1277 LCDReset();
1278 break;
1279 case CMD_LCD:
1280 LCDSend(c->arg[0]);
1281 break;
1282 #endif
1283 case CMD_SETUP_WRITE:
1284 case CMD_FINISH_WRITE:
1285 case CMD_HARDWARE_RESET:
1286 usb_disable();
1287 SpinDelay(1000);
1288 SpinDelay(1000);
1289 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1290 for(;;) {
1291 // We're going to reset, and the bootrom will take control.
1292 }
1293 break;
1294
1295 case CMD_START_FLASH:
1296 if(common_area.flags.bootrom_present) {
1297 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1298 }
1299 usb_disable();
1300 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1301 for(;;);
1302 break;
1303
1304 case CMD_DEVICE_INFO: {
1305 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1306 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1307 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1308 break;
1309 }
1310 default:
1311 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1312 break;
1313 }
1314 }
1315
1316 void __attribute__((noreturn)) AppMain(void)
1317 {
1318 SpinDelay(100);
1319 clear_trace();
1320 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1321 /* Initialize common area */
1322 memset(&common_area, 0, sizeof(common_area));
1323 common_area.magic = COMMON_AREA_MAGIC;
1324 common_area.version = 1;
1325 }
1326 common_area.flags.osimage_present = 1;
1327
1328 LED_D_OFF();
1329 LED_C_OFF();
1330 LED_B_OFF();
1331 LED_A_OFF();
1332
1333 // Init USB device
1334 usb_enable();
1335
1336 // The FPGA gets its clock from us from PCK0 output, so set that up.
1337 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1338 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1339 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1340 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1341 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1342 AT91C_PMC_PRES_CLK_4;
1343 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1344
1345 // Reset SPI
1346 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1347 // Reset SSC
1348 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1349
1350 // Load the FPGA image, which we have stored in our flash.
1351 // (the HF version by default)
1352 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1353
1354 StartTickCount();
1355
1356 #ifdef WITH_LCD
1357 LCDInit();
1358 #endif
1359
1360 byte_t rx[sizeof(UsbCommand)];
1361 size_t rx_len;
1362
1363 for(;;) {
1364 if (usb_poll()) {
1365 rx_len = usb_read(rx,sizeof(UsbCommand));
1366 if (rx_len) {
1367 UsbPacketReceived(rx,rx_len);
1368 }
1369 }
1370 WDT_HIT();
1371
1372 #ifdef WITH_LF
1373 #ifndef WITH_ISO14443a_StandAlone
1374 if (BUTTON_HELD(1000) > 0)
1375 SamyRun();
1376 #endif
1377 #endif
1378 #ifdef WITH_ISO14443a
1379 #ifdef WITH_ISO14443a_StandAlone
1380 if (BUTTON_HELD(1000) > 0)
1381 StandAloneMode14a();
1382 #endif
1383 #endif
1384 }
1385 }
Impressum, Datenschutz