]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
em4x05 getting better
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "proxmark3.h"
15 #include "ui.h"
16 #include "util.h"
17 #include "graph.h"
18 #include "cmdparser.h"
19 #include "cmddata.h"
20 #include "cmdlf.h"
21 #include "cmdmain.h"
22 #include "cmdlfem4x.h"
23 #include "lfdemod.h"
24
25 char *global_em410xId;
26
27 static int CmdHelp(const char *Cmd);
28
29 int CmdEMdemodASK(const char *Cmd)
30 {
31 char cmdp = param_getchar(Cmd, 0);
32 int findone = (cmdp == '1') ? 1 : 0;
33 UsbCommand c={CMD_EM410X_DEMOD};
34 c.arg[0]=findone;
35 SendCommand(&c);
36 return 0;
37 }
38
39 /* Read the ID of an EM410x tag.
40 * Format:
41 * 1111 1111 1 <-- standard non-repeatable header
42 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
43 * ....
44 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
45 * 0 <-- stop bit, end of tag
46 */
47 int CmdEM410xRead(const char *Cmd)
48 {
49 uint32_t hi=0;
50 uint64_t lo=0;
51
52 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
53 PrintAndLog("EM410x pattern found: ");
54 printEM410x(hi, lo);
55 if (hi){
56 PrintAndLog ("EM410x XL pattern found");
57 return 0;
58 }
59 char id[12] = {0x00};
60 sprintf(id, "%010"PRIx64,lo);
61
62 global_em410xId = id;
63 return 1;
64 }
65
66 // emulate an EM410X tag
67 int CmdEM410xSim(const char *Cmd)
68 {
69 int i, n, j, binary[4], parity[4];
70
71 char cmdp = param_getchar(Cmd, 0);
72 uint8_t uid[5] = {0x00};
73
74 if (cmdp == 'h' || cmdp == 'H') {
75 PrintAndLog("Usage: lf em4x em410xsim <UID> <clock>");
76 PrintAndLog("");
77 PrintAndLog(" sample: lf em4x em410xsim 0F0368568B");
78 return 0;
79 }
80 /* clock is 64 in EM410x tags */
81 uint8_t clock = 64;
82
83 if (param_gethex(Cmd, 0, uid, 10)) {
84 PrintAndLog("UID must include 10 HEX symbols");
85 return 0;
86 }
87 param_getdec(Cmd,1, &clock);
88
89 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
90 PrintAndLog("Press pm3-button to about simulation");
91
92
93 /* clear our graph */
94 ClearGraph(0);
95
96 /* write 9 start bits */
97 for (i = 0; i < 9; i++)
98 AppendGraph(0, clock, 1);
99
100 /* for each hex char */
101 parity[0] = parity[1] = parity[2] = parity[3] = 0;
102 for (i = 0; i < 10; i++)
103 {
104 /* read each hex char */
105 sscanf(&Cmd[i], "%1x", &n);
106 for (j = 3; j >= 0; j--, n/= 2)
107 binary[j] = n % 2;
108
109 /* append each bit */
110 AppendGraph(0, clock, binary[0]);
111 AppendGraph(0, clock, binary[1]);
112 AppendGraph(0, clock, binary[2]);
113 AppendGraph(0, clock, binary[3]);
114
115 /* append parity bit */
116 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
117
118 /* keep track of column parity */
119 parity[0] ^= binary[0];
120 parity[1] ^= binary[1];
121 parity[2] ^= binary[2];
122 parity[3] ^= binary[3];
123 }
124
125 /* parity columns */
126 AppendGraph(0, clock, parity[0]);
127 AppendGraph(0, clock, parity[1]);
128 AppendGraph(0, clock, parity[2]);
129 AppendGraph(0, clock, parity[3]);
130
131 /* stop bit */
132 AppendGraph(1, clock, 0);
133
134 CmdLFSim("0"); //240 start_gap.
135 return 0;
136 }
137
138 /* Function is equivalent of lf read + data samples + em410xread
139 * looped until an EM410x tag is detected
140 *
141 * Why is CmdSamples("16000")?
142 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
143 * rate gets lower, then grow the number of samples
144 * Changed by martin, 4000 x 4 = 16000,
145 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
146 */
147 int CmdEM410xWatch(const char *Cmd)
148 {
149 do {
150 if (ukbhit()) {
151 printf("\naborted via keyboard!\n");
152 break;
153 }
154
155 CmdLFRead("s");
156 getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
157 } while (!CmdEM410xRead(""));
158
159 return 0;
160 }
161
162 //currently only supports manchester modulations
163 int CmdEM410xWatchnSpoof(const char *Cmd)
164 {
165 CmdEM410xWatch(Cmd);
166 PrintAndLog("# Replaying captured ID: %s",global_em410xId);
167 CmdLFaskSim("");
168 return 0;
169 }
170
171 int CmdEM410xWrite(const char *Cmd)
172 {
173 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
174 int card = 0xFF; // invalid card value
175 unsigned int clock = 0; // invalid clock value
176
177 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
178
179 // Check ID
180 if (id == 0xFFFFFFFFFFFFFFFF) {
181 PrintAndLog("Error! ID is required.\n");
182 return 0;
183 }
184 if (id >= 0x10000000000) {
185 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
186 return 0;
187 }
188
189 // Check Card
190 if (card == 0xFF) {
191 PrintAndLog("Error! Card type required.\n");
192 return 0;
193 }
194 if (card < 0) {
195 PrintAndLog("Error! Bad card type selected.\n");
196 return 0;
197 }
198
199 // Check Clock
200 // Default: 64
201 if (clock == 0)
202 clock = 64;
203
204 // Allowed clock rates: 16, 32, 40 and 64
205 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
206 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
207 return 0;
208 }
209
210 if (card == 1) {
211 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
212 // NOTE: We really should pass the clock in as a separate argument, but to
213 // provide for backwards-compatibility for older firmware, and to avoid
214 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
215 // the clock rate in bits 8-15 of the card value
216 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
217 } else if (card == 0) {
218 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
219 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
220 } else {
221 PrintAndLog("Error! Bad card type selected.\n");
222 return 0;
223 }
224
225 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
226 SendCommand(&c);
227
228 return 0;
229 }
230
231 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
232 {
233 if (rows*cols>size) return false;
234 uint8_t colP=0;
235 //assume last col is a parity and do not test
236 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
237 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
238 colP ^= BitStream[(rowNum*cols)+colNum];
239 }
240 if (colP != pType) return false;
241 }
242 return true;
243 }
244
245 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
246 {
247 if (rows*cols>size) return false;
248 uint8_t rowP=0;
249 //assume last row is a parity row and do not test
250 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
251 for (uint8_t colNum = 0; colNum < cols; colNum++) {
252 rowP ^= BitStream[(rowNum*cols)+colNum];
253 }
254 if (rowP != pType) return false;
255 }
256 return true;
257 }
258
259 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
260 {
261 if (size<45) return 0;
262 uint32_t code = bytebits_to_byte(BitStream,8);
263 code = code<<8 | bytebits_to_byte(BitStream+9,8);
264 code = code<<8 | bytebits_to_byte(BitStream+18,8);
265 code = code<<8 | bytebits_to_byte(BitStream+27,8);
266 if (verbose || g_debugMode){
267 for (uint8_t i = 0; i<5; i++){
268 if (i == 4) PrintAndLog(""); //parity byte spacer
269 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
270 BitStream[i*9],
271 BitStream[i*9+1],
272 BitStream[i*9+2],
273 BitStream[i*9+3],
274 BitStream[i*9+4],
275 BitStream[i*9+5],
276 BitStream[i*9+6],
277 BitStream[i*9+7],
278 BitStream[i*9+8],
279 bytebits_to_byte(BitStream+i*9,8)
280 );
281 }
282 if (pTest)
283 PrintAndLog("Parity Passed");
284 else
285 PrintAndLog("Parity Failed");
286 }
287 return code;
288 }
289 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
290 * Format:
291 *
292 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
293 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
294 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
295 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
296 * CCCCCCCC <- column parity bits
297 * 0 <- stop bit
298 * LW <- Listen Window
299 *
300 * This pattern repeats for every block of data being transmitted.
301 * Transmission starts with two Listen Windows (LW - a modulated
302 * pattern of 320 cycles each (32/32/128/64/64)).
303 *
304 * Note that this data may or may not be the UID. It is whatever data
305 * is stored in the blocks defined in the control word First and Last
306 * Word Read values. UID is stored in block 32.
307 */
308 //completed by Marshmellow
309 int EM4x50Read(const char *Cmd, bool verbose)
310 {
311 uint8_t fndClk[] = {8,16,32,40,50,64,128};
312 int clk = 0;
313 int invert = 0;
314 int tol = 0;
315 int i, j, startblock, skip, block, start, end, low, high, minClk;
316 bool complete = false;
317 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
318 uint32_t Code[6];
319 char tmp[6];
320 char tmp2[20];
321 int phaseoff;
322 high = low = 0;
323 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
324
325 // get user entry if any
326 sscanf(Cmd, "%i %i", &clk, &invert);
327
328 // save GraphBuffer - to restore it later
329 save_restoreGB(1);
330
331 // first get high and low values
332 for (i = 0; i < GraphTraceLen; i++) {
333 if (GraphBuffer[i] > high)
334 high = GraphBuffer[i];
335 else if (GraphBuffer[i] < low)
336 low = GraphBuffer[i];
337 }
338
339 i = 0;
340 j = 0;
341 minClk = 255;
342 // get to first full low to prime loop and skip incomplete first pulse
343 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
344 ++i;
345 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
346 ++i;
347 skip = i;
348
349 // populate tmpbuff buffer with pulse lengths
350 while (i < GraphTraceLen) {
351 // measure from low to low
352 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
353 ++i;
354 start= i;
355 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
356 ++i;
357 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
358 ++i;
359 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
360 break;
361 }
362 tmpbuff[j++]= i - start;
363 if (i-start < minClk && i < GraphTraceLen) {
364 minClk = i - start;
365 }
366 }
367 // set clock
368 if (!clk) {
369 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
370 tol = fndClk[clkCnt]/8;
371 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
372 clk=fndClk[clkCnt];
373 break;
374 }
375 }
376 if (!clk) return 0;
377 } else tol = clk/8;
378
379 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
380 start = -1;
381 for (i= 0; i < j - 4 ; ++i) {
382 skip += tmpbuff[i];
383 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
384 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
385 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
386 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
387 {
388 start= i + 4;
389 break;
390 }
391 }
392 startblock = i + 4;
393
394 // skip over the remainder of LW
395 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
396 if (tmpbuff[i+3]>clk)
397 phaseoff = tmpbuff[i+3]-clk;
398 else
399 phaseoff = 0;
400 // now do it again to find the end
401 end = skip;
402 for (i += 3; i < j - 4 ; ++i) {
403 end += tmpbuff[i];
404 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
405 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
406 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
407 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
408 {
409 complete= true;
410 break;
411 }
412 }
413 end = i;
414 // report back
415 if (verbose || g_debugMode) {
416 if (start >= 0) {
417 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
418 } else {
419 PrintAndLog("No data found!, clock tried:%d",clk);
420 PrintAndLog("Try again with more samples.");
421 PrintAndLog(" or after a 'data askedge' command to clean up the read");
422 return 0;
423 }
424 } else if (start < 0) return 0;
425 start = skip;
426 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
427 // get rid of leading crap
428 snprintf(tmp, sizeof(tmp), "%i", skip);
429 CmdLtrim(tmp);
430 bool pTest;
431 bool AllPTest = true;
432 // now work through remaining buffer printing out data blocks
433 block = 0;
434 i = startblock;
435 while (block < 6) {
436 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
437 skip = phaseoff;
438
439 // look for LW before start of next block
440 for ( ; i < j - 4 ; ++i) {
441 skip += tmpbuff[i];
442 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
443 if (tmpbuff[i+1] >= clk-tol)
444 break;
445 }
446 if (i >= j-4) break; //next LW not found
447 skip += clk;
448 if (tmpbuff[i+1]>clk)
449 phaseoff = tmpbuff[i+1]-clk;
450 else
451 phaseoff = 0;
452 i += 2;
453 if (ASKDemod(tmp2, false, false, 1) < 1) {
454 save_restoreGB(0);
455 return 0;
456 }
457 //set DemodBufferLen to just one block
458 DemodBufferLen = skip/clk;
459 //test parities
460 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
461 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
462 AllPTest &= pTest;
463 //get output
464 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
465 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
466 //skip to start of next block
467 snprintf(tmp,sizeof(tmp),"%i",skip);
468 CmdLtrim(tmp);
469 block++;
470 if (i >= end) break; //in case chip doesn't output 6 blocks
471 }
472 //print full code:
473 if (verbose || g_debugMode || AllPTest){
474 if (!complete) {
475 PrintAndLog("*** Warning!");
476 PrintAndLog("Partial data - no end found!");
477 PrintAndLog("Try again with more samples.");
478 }
479 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
480 end = block;
481 for (block=0; block < end; block++){
482 PrintAndLog("Block %d: %08x",block,Code[block]);
483 }
484 if (AllPTest) {
485 PrintAndLog("Parities Passed");
486 } else {
487 PrintAndLog("Parities Failed");
488 PrintAndLog("Try cleaning the read samples with 'data askedge'");
489 }
490 }
491
492 //restore GraphBuffer
493 save_restoreGB(0);
494 return (int)AllPTest;
495 }
496
497 int CmdEM4x50Read(const char *Cmd)
498 {
499 return EM4x50Read(Cmd, true);
500 }
501
502 int usage_lf_em_read(void) {
503 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
504 PrintAndLog("");
505 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
506 PrintAndLog("Options:");
507 PrintAndLog(" h - this help");
508 PrintAndLog(" address - memory address to read. (0-15)");
509 PrintAndLog(" pwd - password (hex) (optional)");
510 PrintAndLog("samples:");
511 PrintAndLog(" lf em 4x05readword 1");
512 PrintAndLog(" lf em 4x05readword 1 11223344");
513 return 0;
514 }
515
516 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex
517 bool EMpreambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t size, size_t *startIdx) {
518 // Sanity check. If preamble length is bigger than bitstream length.
519 if ( size <= pLen ) return false;
520 // em only sends preamble once, so look for it once in the first x bits
521 uint8_t foundCnt = 0;
522 for (size_t idx = 0; idx < size - pLen; idx++){
523 if (memcmp(BitStream+idx, preamble, pLen) == 0){
524 //first index found
525 foundCnt++;
526 if (foundCnt == 1) {
527 if (g_debugMode) PrintAndLog("DEBUG: preamble found at %u", idx);
528 *startIdx = idx;
529
530 return true;
531 }
532 }
533 }
534 return false;
535 }
536
537 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
538 // skip first two 0 bits as they might have been missed in the demod
539 uint8_t preamble[6] = {0,0,1,0,1,0};
540 size_t startIdx = 0;
541 // set size to 10 to only test first 4 positions for the preamble
542 size_t size = (10 > DemodBufferLen) ? DemodBufferLen : 10;
543 startIdx = 0;
544
545 //test preamble
546 bool errChk = EMpreambleSearch(DemodBuffer, preamble, sizeof(preamble), size, &startIdx);
547 if ( !errChk ) {
548 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
549 return false;
550 }
551 if (readCmd) {
552 //test for even parity bits.
553 size = removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,44);
554 if (size == 0) {
555 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
556 return false;
557 }
558
559 //todo test last 8 bits for even parity || (xor)
560
561 setDemodBuf(DemodBuffer, 40, 0);
562
563 *word = bytebits_to_byteLSBF(DemodBuffer , 32);
564
565 uint8_t lo = (uint8_t) bytebits_to_byteLSBF(DemodBuffer , 8);
566 uint8_t lo2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 8, 8);
567 uint8_t hi = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 16, 8);
568 uint8_t hi2 = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 24, 8);
569 uint8_t cs = (uint8_t) bytebits_to_byteLSBF(DemodBuffer + 32, 8);
570 uint8_t cs2 = lo ^ lo2 ^ hi ^ hi2;
571 if (g_debugMode) PrintAndLog("EM4x05/4x69 : %08X CS: %02X %s",*word,cs, (cs2==cs) ? "Passed" : "Failed");
572
573 return (cs2==cs) ? true : false;
574 }
575 return true;
576 }
577
578 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
579 // should cover 90% of known used configs
580 // the rest will need to be manually demoded for now...
581 int demodEM4x05resp(uint32_t *word, bool readCmd) {
582 int ans = 0;
583 bool demodFound = false;
584 DemodBufferLen = 0x00;
585
586 // test for FSK wave (easiest to 99% ID)
587 if (GetFskClock("", FALSE, FALSE)) {
588 //valid fsk clocks found
589 ans = FSKrawDemod("0 0", false);
590 if (!ans) {
591 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed");
592 } else {
593 if (EM4x05testDemodReadData(word, readCmd)) {
594 return 1;
595 }
596 }
597 }
598 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
599 if (!demodFound) {
600 ans = GetPskClock("", FALSE, FALSE);
601 if (ans>0) {
602 PrintAndLog("PSK response possibly found, run `data rawd p1` to attempt to demod");
603 }
604 }
605
606 // more common than biphase
607 if (!demodFound) {
608 DemodBufferLen = 0x00;
609 bool stcheck = false;
610 // try manchester - NOTE: ST only applies to T55x7 tags.
611 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
612 if (!ans) {
613 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed");
614 } else {
615 if (EM4x05testDemodReadData(word, readCmd)) {
616 return 1;
617 }
618 }
619 }
620
621 if (!demodFound) {
622 DemodBufferLen = 0x00;
623 //try biphase
624 ans = ASKbiphaseDemod("0 0 1", FALSE);
625 if (!ans) {
626 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed");
627 } else {
628 if (EM4x05testDemodReadData(word, readCmd)) {
629 return 1;
630 }
631 }
632 }
633
634 if (!demodFound) {
635 DemodBufferLen = 0x00;
636 //try diphase (differential biphase or inverted)
637 ans = ASKbiphaseDemod("0 1 1", FALSE);
638 if (!ans) {
639 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed");
640 } else {
641 if (EM4x05testDemodReadData(word, readCmd)) {
642 return 1;
643 }
644 }
645 }
646
647 /*if (demodFound && bitsNeeded < DemodBufferLen) {
648 if (bitsNeeded > 0) {
649 setDemodBuf(DemodBuffer + startIdx + sizeof(preamble), bitsNeeded, 0);
650 CmdPrintDemodBuff("x");
651 }
652 return 1;
653 }*/
654 return -1;
655 }
656
657 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
658 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
659 clearCommandBuffer();
660 SendCommand(&c);
661 UsbCommand resp;
662 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
663 PrintAndLog("Command timed out");
664 return -1;
665 }
666
667 uint8_t got[6000];
668 GetFromBigBuf(got, sizeof(got), 0);
669 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
670 PrintAndLog("command execution time out");
671 return -1;
672 }
673 setGraphBuf(got, sizeof(got));
674 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
675 if (graphJustNoise(GraphBuffer, testLen)) {
676 PrintAndLog("no tag not found");
677 return -1;
678 }
679 //attempt demod:
680 uint32_t wordData = 0;
681 int success = demodEM4x05resp(&wordData, true);
682 if (success == 1) PrintAndLog("Got Address %02d | %08X",addr,wordData);
683 return success;
684 }
685
686 int CmdEM4x05ReadWord(const char *Cmd) {
687 uint8_t addr;
688 uint32_t pwd;
689 bool usePwd = false;
690 uint8_t ctmp = param_getchar(Cmd, 0);
691 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
692
693 addr = param_get8ex(Cmd, 0, 50, 10);
694 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
695 pwd = param_get32ex(Cmd, 1, 1, 16);
696
697 if ( (addr > 15) ) {
698 PrintAndLog("Address must be between 0 and 15");
699 return 1;
700 }
701 if ( pwd == 1 )
702 PrintAndLog("Reading address %02u", addr);
703 else {
704 usePwd = true;
705 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
706 }
707 return EM4x05ReadWord(addr, pwd, usePwd);
708 }
709
710 int usage_lf_em_dump(void) {
711 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
712 PrintAndLog("");
713 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
714 PrintAndLog("Options:");
715 PrintAndLog(" h - this help");
716 PrintAndLog(" pwd - password (hex) (optional)");
717 PrintAndLog("samples:");
718 PrintAndLog(" lf em 4x05dump");
719 PrintAndLog(" lf em 4x05dump 11223344");
720 return 0;
721 }
722
723 int CmdEM4x05dump(const char *Cmd) {
724 uint8_t addr = 0;
725 uint32_t pwd;
726 bool usePwd = false;
727 uint8_t ctmp = param_getchar(Cmd, 0);
728 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
729
730 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
731 pwd = param_get32ex(Cmd, 0, 1, 16);
732
733 if ( pwd != 1 ) {
734 usePwd = true;
735 }
736 int success = 1;
737 for (; addr < 16; addr++) {
738 if (addr == 2) {
739 if (usePwd) {
740 PrintAndLog("PWD Address %02u | %08X",addr,pwd);
741 } else {
742 PrintAndLog("PWD Address 02 | cannot read");
743 }
744 } else {
745 success &= EM4x05ReadWord(addr, pwd, usePwd);
746 }
747 }
748
749 return success;
750 }
751
752
753 int usage_lf_em_write(void) {
754 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
755 PrintAndLog("");
756 PrintAndLog("Usage: lf em 4x05writeword [h] <address> <data> <pwd>");
757 PrintAndLog("Options:");
758 PrintAndLog(" h - this help");
759 PrintAndLog(" address - memory address to write to. (0-15)");
760 PrintAndLog(" data - data to write (hex)");
761 PrintAndLog(" pwd - password (hex) (optional)");
762 PrintAndLog("samples:");
763 PrintAndLog(" lf em 4x05writeword 1");
764 PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
765 return 0;
766 }
767
768 int CmdEM4x05WriteWord(const char *Cmd) {
769 uint8_t ctmp = param_getchar(Cmd, 0);
770 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
771
772 bool usePwd = false;
773
774 uint8_t addr = 16; // default to invalid address
775 uint32_t data = 0xFFFFFFFF; // default to blank data
776 uint32_t pwd = 0xFFFFFFFF; // default to blank password
777
778 addr = param_get8ex(Cmd, 0, 16, 10);
779 data = param_get32ex(Cmd, 1, 0, 16);
780 pwd = param_get32ex(Cmd, 2, 1, 16);
781
782
783 if ( (addr > 15) ) {
784 PrintAndLog("Address must be between 0 and 15");
785 return 1;
786 }
787 if ( pwd == 1 )
788 PrintAndLog("Writing address %d data %08X", addr, data);
789 else {
790 usePwd = true;
791 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
792 }
793
794 uint16_t flag = (addr << 8 ) | usePwd;
795
796 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
797 clearCommandBuffer();
798 SendCommand(&c);
799 UsbCommand resp;
800 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
801 PrintAndLog("Error occurred, device did not respond during write operation.");
802 return -1;
803 }
804 //get response if there is one
805 uint8_t got[6000]; // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
806 GetFromBigBuf(got, sizeof(got), 0);
807 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
808 PrintAndLog("command execution time out");
809 return 0;
810 }
811 setGraphBuf(got, sizeof(got));
812 //check response for 00001010 for write confirmation!
813 //attempt demod:
814 uint32_t dummy = 0;
815 int result = demodEM4x05resp(&dummy,false);
816 if (result == 1) {
817 PrintAndLog("Write Verified");
818 }
819 return result;
820 }
821
822 static command_t CommandTable[] =
823 {
824 {"help", CmdHelp, 1, "This help"},
825 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
826 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
827 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
828 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
829 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
830 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
831 {"4x05dump", CmdEM4x05dump, 1, "(pwd) -- Read EM4x05/EM4x69 all word data"},
832 {"4x05readword", CmdEM4x05ReadWord, 1, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
833 {"4x05writeword", CmdEM4x05WriteWord, 1, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
834 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
835 {NULL, NULL, 0, NULL}
836 };
837
838 int CmdLFEM4X(const char *Cmd)
839 {
840 CmdsParse(CommandTable, Cmd);
841 return 0;
842 }
843
844 int CmdHelp(const char *Cmd)
845 {
846 CmdsHelp(CommandTable);
847 return 0;
848 }
Impressum, Datenschutz