]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
fcd51d63e0946b7e8e35ee53a531f69a0d834bf7
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "../include/proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint32_t iso14a_timeout;
24 uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
25 int rsamples = 0;
26 int traceLen = 0;
27 int tracing = TRUE;
28 uint8_t trigger = 0;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum = 0;
31
32 //
33 // ISO14443 timing:
34 //
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
40
41 //
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 //
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 uint32_t NextTransferTime;
107 uint32_t LastTimeProxToAirStart;
108 uint32_t LastProxToAirDuration;
109
110
111
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
120 #define SEC_D 0xf0
121 #define SEC_E 0x0f
122 #define SEC_F 0x00
123 #define SEC_X 0x0c
124 #define SEC_Y 0x00
125 #define SEC_Z 0xc0
126
127 //replaced large parity table with small parity generation function - saves flash code
128 /*
129 const uint8_t OddByteParity[256] = {
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
145 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
146 };
147 */
148
149 void iso14a_set_trigger(bool enable) {
150 trigger = enable;
151 }
152
153 void iso14a_clear_trace() {
154 memset(trace, 0x44, TRACE_SIZE);
155 traceLen = 0;
156 }
157
158 void iso14a_set_tracing(bool enable) {
159 tracing = enable;
160 }
161
162 void iso14a_set_timeout(uint32_t timeout) {
163 iso14a_timeout = timeout;
164 }
165
166 //-----------------------------------------------------------------------------
167 // Generate the parity value for a byte sequence
168 //
169 //-----------------------------------------------------------------------------
170 /*
171 byte_t oddparity (const byte_t bt)
172 {
173 return OddByteParity[bt];
174 }
175 */
176
177 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
178 {
179 int i;
180 uint32_t dwPar = 0;
181
182 // Generate the parity bits
183 for (i = 0; i < iLen; i++) {
184 // and save them to a 32Bit word
185 //dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
186 dwPar |= (oddparity(pbtCmd[i]) << i);
187 }
188 return dwPar;
189 }
190
191 void AppendCrc14443a(uint8_t* data, int len)
192 {
193 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
194 }
195
196 // The function LogTrace() is also used by the iClass implementation in iClass.c
197 bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
198 {
199 if (!tracing) return FALSE;
200 // Return when trace is full
201 if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
202 tracing = FALSE; // don't trace any more
203 return FALSE;
204 }
205
206 // Trace the random, i'm curious
207 trace[traceLen++] = ((timestamp >> 0) & 0xff);
208 trace[traceLen++] = ((timestamp >> 8) & 0xff);
209 trace[traceLen++] = ((timestamp >> 16) & 0xff);
210 trace[traceLen++] = ((timestamp >> 24) & 0xff);
211
212 if (!readerToTag) {
213 trace[traceLen - 1] |= 0x80;
214 }
215 trace[traceLen++] = ((dwParity >> 0) & 0xff);
216 trace[traceLen++] = ((dwParity >> 8) & 0xff);
217 trace[traceLen++] = ((dwParity >> 16) & 0xff);
218 trace[traceLen++] = ((dwParity >> 24) & 0xff);
219 trace[traceLen++] = iLen;
220 if (btBytes != NULL && iLen != 0) {
221 memcpy(trace + traceLen, btBytes, iLen);
222 }
223 traceLen += iLen;
224 return TRUE;
225 }
226
227 //=============================================================================
228 // ISO 14443 Type A - Miller decoder
229 //=============================================================================
230 // Basics:
231 // This decoder is used when the PM3 acts as a tag.
232 // The reader will generate "pauses" by temporarily switching of the field.
233 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
234 // The FPGA does a comparison with a threshold and would deliver e.g.:
235 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
236 // The Miller decoder needs to identify the following sequences:
237 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
238 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
239 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
240 // Note 1: the bitstream may start at any time. We therefore need to sync.
241 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
242 //-----------------------------------------------------------------------------
243 static tUart Uart;
244
245 // Lookup-Table to decide if 4 raw bits are a modulation.
246 // We accept two or three consecutive "0" in any position with the rest "1"
247 const bool Mod_Miller_LUT[] = {
248 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
249 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
250 };
251 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
252 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
253
254 void UartReset()
255 {
256 Uart.state = STATE_UNSYNCD;
257 Uart.bitCount = 0;
258 Uart.len = 0; // number of decoded data bytes
259 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
260 Uart.parityBits = 0; //
261 Uart.twoBits = 0x0000; // buffer for 2 Bits
262 Uart.highCnt = 0;
263 Uart.startTime = 0;
264 Uart.endTime = 0;
265 }
266
267
268 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
269 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
270 {
271
272 Uart.twoBits = (Uart.twoBits << 8) | bit;
273
274 if (Uart.state == STATE_UNSYNCD) { // not yet synced
275 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
276 if (Uart.twoBits == 0xffff) {
277 Uart.highCnt++;
278 } else {
279 Uart.highCnt = 0;
280 }
281 } else {
282 Uart.syncBit = 0xFFFF; // not set
283 // look for 00xx1111 (the start bit)
284 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
285 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
286 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
287 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
288 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
289 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
290 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
291 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
292 if (Uart.syncBit != 0xFFFF) {
293 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
294 Uart.startTime -= Uart.syncBit;
295 Uart.endTime = Uart.startTime;
296 Uart.state = STATE_START_OF_COMMUNICATION;
297 }
298 }
299
300 } else {
301
302 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
303 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
304 UartReset();
305 Uart.highCnt = 6;
306 } else { // Modulation in first half = Sequence Z = logic "0"
307 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
308 UartReset();
309 Uart.highCnt = 6;
310 } else {
311 Uart.bitCount++;
312 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
313 Uart.state = STATE_MILLER_Z;
314 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
315 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
316 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
317 Uart.parityBits <<= 1; // make room for the parity bit
318 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
319 Uart.bitCount = 0;
320 Uart.shiftReg = 0;
321 }
322 }
323 }
324 } else {
325 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
326 Uart.bitCount++;
327 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
328 Uart.state = STATE_MILLER_X;
329 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
330 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
331 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
332 Uart.parityBits <<= 1; // make room for the new parity bit
333 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
334 Uart.bitCount = 0;
335 Uart.shiftReg = 0;
336 }
337 } else { // no modulation in both halves - Sequence Y
338 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
339 Uart.state = STATE_UNSYNCD;
340 if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
341 Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
342 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
343 Uart.parityBits <<= 1; // no parity bit - add "0"
344 Uart.bitCount--; // last "0" was part of the EOC sequence
345 }
346 return TRUE;
347 }
348 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
349 UartReset();
350 Uart.highCnt = 6;
351 } else { // a logic "0"
352 Uart.bitCount++;
353 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
354 Uart.state = STATE_MILLER_Y;
355 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
356 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
357 Uart.parityBits <<= 1; // make room for the parity bit
358 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
359 Uart.bitCount = 0;
360 Uart.shiftReg = 0;
361 }
362 }
363 }
364 }
365
366 }
367
368 return FALSE; // not finished yet, need more data
369 }
370
371
372
373 //=============================================================================
374 // ISO 14443 Type A - Manchester decoder
375 //=============================================================================
376 // Basics:
377 // This decoder is used when the PM3 acts as a reader.
378 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
379 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
380 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
381 // The Manchester decoder needs to identify the following sequences:
382 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
383 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
384 // 8 ticks unmodulated: Sequence F = end of communication
385 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
386 // Note 1: the bitstream may start at any time. We therefore need to sync.
387 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
388 static tDemod Demod;
389
390 // Lookup-Table to decide if 4 raw bits are a modulation.
391 // We accept three or four "1" in any position
392 const bool Mod_Manchester_LUT[] = {
393 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
394 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
395 };
396
397 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
398 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
399
400
401 void DemodReset()
402 {
403 Demod.state = DEMOD_UNSYNCD;
404 Demod.len = 0; // number of decoded data bytes
405 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
406 Demod.parityBits = 0; //
407 Demod.collisionPos = 0; // Position of collision bit
408 Demod.twoBits = 0xffff; // buffer for 2 Bits
409 Demod.highCnt = 0;
410 Demod.startTime = 0;
411 Demod.endTime = 0;
412 }
413
414 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
415 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
416 {
417
418 Demod.twoBits = (Demod.twoBits << 8) | bit;
419
420 if (Demod.state == DEMOD_UNSYNCD) {
421
422 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
423 if (Demod.twoBits == 0x0000) {
424 Demod.highCnt++;
425 } else {
426 Demod.highCnt = 0;
427 }
428 } else {
429 Demod.syncBit = 0xFFFF; // not set
430 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
431 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
432 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
433 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
434 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
435 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
436 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
437 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
438 if (Demod.syncBit != 0xFFFF) {
439 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
440 Demod.startTime -= Demod.syncBit;
441 Demod.bitCount = offset; // number of decoded data bits
442 Demod.state = DEMOD_MANCHESTER_DATA;
443 }
444 }
445
446 } else {
447
448 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
449 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
450 if (!Demod.collisionPos) {
451 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
452 }
453 } // modulation in first half only - Sequence D = 1
454 Demod.bitCount++;
455 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
456 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
457 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
458 Demod.parityBits <<= 1; // make room for the parity bit
459 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
460 Demod.bitCount = 0;
461 Demod.shiftReg = 0;
462 }
463 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
464 } else { // no modulation in first half
465 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
466 Demod.bitCount++;
467 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
468 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
469 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
470 Demod.parityBits <<= 1; // make room for the new parity bit
471 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
472 Demod.bitCount = 0;
473 Demod.shiftReg = 0;
474 }
475 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
476 } else { // no modulation in both halves - End of communication
477 if (Demod.len > 0 || Demod.bitCount > 0) { // received something
478 if(Demod.bitCount > 0) { // if we decoded bits
479 Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
480 Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
481 // No parity bit, so just shift a 0
482 Demod.parityBits <<= 1;
483 }
484 return TRUE; // we are finished with decoding the raw data sequence
485 } else { // nothing received. Start over
486 DemodReset();
487 }
488 }
489 }
490
491 }
492
493 return FALSE; // not finished yet, need more data
494 }
495
496 //=============================================================================
497 // Finally, a `sniffer' for ISO 14443 Type A
498 // Both sides of communication!
499 //=============================================================================
500
501 //-----------------------------------------------------------------------------
502 // Record the sequence of commands sent by the reader to the tag, with
503 // triggering so that we start recording at the point that the tag is moved
504 // near the reader.
505 //-----------------------------------------------------------------------------
506 void RAMFUNC SnoopIso14443a(uint8_t param) {
507 // param:
508 // bit 0 - trigger from first card answer
509 // bit 1 - trigger from first reader 7-bit request
510
511 LEDsoff();
512 // init trace buffer
513 iso14a_clear_trace();
514 iso14a_set_tracing(TRUE);
515
516 // We won't start recording the frames that we acquire until we trigger;
517 // a good trigger condition to get started is probably when we see a
518 // response from the tag.
519 // triggered == FALSE -- to wait first for card
520 bool triggered = !(param & 0x03);
521
522 // The command (reader -> tag) that we're receiving.
523 // The length of a received command will in most cases be no more than 18 bytes.
524 // So 32 should be enough!
525 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
526 // The response (tag -> reader) that we're receiving.
527 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
528
529 // As we receive stuff, we copy it from receivedCmd or receivedResponse
530 // into trace, along with its length and other annotations.
531 //uint8_t *trace = (uint8_t *)BigBuf;
532
533 // The DMA buffer, used to stream samples from the FPGA
534 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
535 uint8_t *data = dmaBuf;
536 uint8_t previous_data = 0;
537 int maxDataLen = 0;
538 int dataLen = 0;
539 bool TagIsActive = FALSE;
540 bool ReaderIsActive = FALSE;
541
542 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
543
544 // Set up the demodulator for tag -> reader responses.
545 Demod.output = receivedResponse;
546
547 // Set up the demodulator for the reader -> tag commands
548 Uart.output = receivedCmd;
549
550 // Setup and start DMA.
551 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
552
553 // And now we loop, receiving samples.
554 for(uint32_t rsamples = 0; TRUE; ) {
555
556 if(BUTTON_PRESS()) {
557 DbpString("cancelled by button");
558 break;
559 }
560
561 LED_A_ON();
562 WDT_HIT();
563
564 int register readBufDataP = data - dmaBuf;
565 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
566 if (readBufDataP <= dmaBufDataP){
567 dataLen = dmaBufDataP - readBufDataP;
568 } else {
569 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
570 }
571 // test for length of buffer
572 if(dataLen > maxDataLen) {
573 maxDataLen = dataLen;
574 if(dataLen > 400) {
575 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
576 break;
577 }
578 }
579 if(dataLen < 1) continue;
580
581 // primary buffer was stopped( <-- we lost data!
582 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
583 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
584 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
585 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
586 }
587 // secondary buffer sets as primary, secondary buffer was stopped
588 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
589 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
590 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
591 }
592
593 LED_A_OFF();
594
595 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
596
597 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
598 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
599 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
600 LED_C_ON();
601
602 // check - if there is a short 7bit request from reader
603 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
604
605 if(triggered) {
606 if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
607 if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
608 }
609 /* And ready to receive another command. */
610 UartReset();
611 /* And also reset the demod code, which might have been */
612 /* false-triggered by the commands from the reader. */
613 DemodReset();
614 LED_B_OFF();
615 }
616 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
617 }
618
619 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
620 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
621 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
622 LED_B_ON();
623
624 if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
625 if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
626
627 if ((!triggered) && (param & 0x01)) triggered = TRUE;
628
629 // And ready to receive another response.
630 DemodReset();
631 LED_C_OFF();
632 }
633 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
634 }
635 }
636
637 previous_data = *data;
638 rsamples++;
639 data++;
640 if(data == dmaBuf + DMA_BUFFER_SIZE) {
641 data = dmaBuf;
642 }
643 } // main cycle
644
645 DbpString("COMMAND FINISHED");
646
647 FpgaDisableSscDma();
648 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
649 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
650 LEDsoff();
651 }
652
653 //-----------------------------------------------------------------------------
654 // Prepare tag messages
655 //-----------------------------------------------------------------------------
656 static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
657 {
658 int i;
659
660 ToSendReset();
661
662 // Correction bit, might be removed when not needed
663 ToSendStuffBit(0);
664 ToSendStuffBit(0);
665 ToSendStuffBit(0);
666 ToSendStuffBit(0);
667 ToSendStuffBit(1); // 1
668 ToSendStuffBit(0);
669 ToSendStuffBit(0);
670 ToSendStuffBit(0);
671
672 // Send startbit
673 ToSend[++ToSendMax] = SEC_D;
674 LastProxToAirDuration = 8 * ToSendMax - 4;
675
676 for(i = 0; i < len; i++) {
677 int j;
678 uint8_t b = cmd[i];
679
680 // Data bits
681 for(j = 0; j < 8; j++) {
682 if(b & 1) {
683 ToSend[++ToSendMax] = SEC_D;
684 } else {
685 ToSend[++ToSendMax] = SEC_E;
686 }
687 b >>= 1;
688 }
689
690 // Get the parity bit
691 //if ((dwParity >> i) & 0x01) {
692 if (oddparity(cmd[i]) & 0x01) {
693 ToSend[++ToSendMax] = SEC_D;
694 LastProxToAirDuration = 8 * ToSendMax - 4;
695 } else {
696 ToSend[++ToSendMax] = SEC_E;
697 LastProxToAirDuration = 8 * ToSendMax;
698 }
699 }
700
701 // Send stopbit
702 ToSend[++ToSendMax] = SEC_F;
703
704 // Convert from last byte pos to length
705 ToSendMax++;
706 }
707
708 static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
709 CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
710 }
711
712
713 static void Code4bitAnswerAsTag(uint8_t cmd)
714 {
715 int i;
716
717 ToSendReset();
718
719 // Correction bit, might be removed when not needed
720 ToSendStuffBit(0);
721 ToSendStuffBit(0);
722 ToSendStuffBit(0);
723 ToSendStuffBit(0);
724 ToSendStuffBit(1); // 1
725 ToSendStuffBit(0);
726 ToSendStuffBit(0);
727 ToSendStuffBit(0);
728
729 // Send startbit
730 ToSend[++ToSendMax] = SEC_D;
731
732 uint8_t b = cmd;
733 for(i = 0; i < 4; i++) {
734 if(b & 1) {
735 ToSend[++ToSendMax] = SEC_D;
736 LastProxToAirDuration = 8 * ToSendMax - 4;
737 } else {
738 ToSend[++ToSendMax] = SEC_E;
739 LastProxToAirDuration = 8 * ToSendMax;
740 }
741 b >>= 1;
742 }
743
744 // Send stopbit
745 ToSend[++ToSendMax] = SEC_F;
746
747 // Convert from last byte pos to length
748 ToSendMax++;
749 }
750
751 //-----------------------------------------------------------------------------
752 // Wait for commands from reader
753 // Stop when button is pressed
754 // Or return TRUE when command is captured
755 //-----------------------------------------------------------------------------
756 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
757 {
758 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
759 // only, since we are receiving, not transmitting).
760 // Signal field is off with the appropriate LED
761 LED_D_OFF();
762 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
763
764 // Now run a `software UART' on the stream of incoming samples.
765 UartReset();
766 Uart.output = received;
767
768 // clear RXRDY:
769 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
770
771 for(;;) {
772 WDT_HIT();
773
774 if(BUTTON_PRESS()) return FALSE;
775
776 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
777 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
778 if(MillerDecoding(b, 0)) {
779 *len = Uart.len;
780 return TRUE;
781 }
782 }
783 }
784 }
785
786 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
787 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
788 int EmSend4bit(uint8_t resp);
789 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
790 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
791 int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
792 int EmSendCmd(uint8_t *resp, int respLen);
793 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
794 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
795 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
796
797 static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
798
799 typedef struct {
800 uint8_t* response;
801 size_t response_n;
802 uint8_t* modulation;
803 size_t modulation_n;
804 uint32_t ProxToAirDuration;
805 } tag_response_info_t;
806
807 void reset_free_buffer() {
808 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
809 }
810
811 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
812 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
813 // This will need the following byte array for a modulation sequence
814 // 144 data bits (18 * 8)
815 // 18 parity bits
816 // 2 Start and stop
817 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
818 // 1 just for the case
819 // ----------- +
820 // 166 bytes, since every bit that needs to be send costs us a byte
821 //
822
823 // Prepare the tag modulation bits from the message
824 CodeIso14443aAsTag(response_info->response,response_info->response_n);
825
826 // Make sure we do not exceed the free buffer space
827 if (ToSendMax > max_buffer_size) {
828 Dbprintf("Out of memory, when modulating bits for tag answer:");
829 Dbhexdump(response_info->response_n,response_info->response,false);
830 return false;
831 }
832
833 // Copy the byte array, used for this modulation to the buffer position
834 memcpy(response_info->modulation,ToSend,ToSendMax);
835
836 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
837 response_info->modulation_n = ToSendMax;
838 response_info->ProxToAirDuration = LastProxToAirDuration;
839
840 return true;
841 }
842
843 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
844 // Retrieve and store the current buffer index
845 response_info->modulation = free_buffer_pointer;
846
847 // Determine the maximum size we can use from our buffer
848 size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
849
850 // Forward the prepare tag modulation function to the inner function
851 if (prepare_tag_modulation(response_info,max_buffer_size)) {
852 // Update the free buffer offset
853 free_buffer_pointer += ToSendMax;
854 return true;
855 } else {
856 return false;
857 }
858 }
859
860 //-----------------------------------------------------------------------------
861 // Main loop of simulated tag: receive commands from reader, decide what
862 // response to send, and send it.
863 //-----------------------------------------------------------------------------
864 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
865 {
866 // Enable and clear the trace
867 iso14a_clear_trace();
868 iso14a_set_tracing(TRUE);
869
870 uint8_t sak;
871
872 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
873 uint8_t response1[2];
874
875 switch (tagType) {
876 case 1: { // MIFARE Classic
877 // Says: I am Mifare 1k - original line
878 response1[0] = 0x04;
879 response1[1] = 0x00;
880 sak = 0x08;
881 } break;
882 case 2: { // MIFARE Ultralight
883 // Says: I am a stupid memory tag, no crypto
884 response1[0] = 0x04;
885 response1[1] = 0x00;
886 sak = 0x00;
887 } break;
888 case 3: { // MIFARE DESFire
889 // Says: I am a DESFire tag, ph33r me
890 response1[0] = 0x04;
891 response1[1] = 0x03;
892 sak = 0x20;
893 } break;
894 case 4: { // ISO/IEC 14443-4
895 // Says: I am a javacard (JCOP)
896 response1[0] = 0x04;
897 response1[1] = 0x00;
898 sak = 0x28;
899 } break;
900 case 5: { // MIFARE TNP3XXX
901 // Says: I am a toy
902 response1[0] = 0x01;
903 response1[1] = 0x0f;
904 sak = 0x01;
905 } break;
906 default: {
907 Dbprintf("Error: unkown tagtype (%d)",tagType);
908 return;
909 } break;
910 }
911
912 // The second response contains the (mandatory) first 24 bits of the UID
913 uint8_t response2[5];
914
915 // Check if the uid uses the (optional) part
916 uint8_t response2a[5];
917 if (uid_2nd) {
918 response2[0] = 0x88;
919 num_to_bytes(uid_1st,3,response2+1);
920 num_to_bytes(uid_2nd,4,response2a);
921 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
922
923 // Configure the ATQA and SAK accordingly
924 response1[0] |= 0x40;
925 sak |= 0x04;
926 } else {
927 num_to_bytes(uid_1st,4,response2);
928 // Configure the ATQA and SAK accordingly
929 response1[0] &= 0xBF;
930 sak &= 0xFB;
931 }
932
933 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
934 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
935
936 // Prepare the mandatory SAK (for 4 and 7 byte UID)
937 uint8_t response3[3];
938 response3[0] = sak;
939 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
940
941 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
942 uint8_t response3a[3];
943 response3a[0] = sak & 0xFB;
944 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
945
946 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
947 uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
948 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
949
950 #define TAG_RESPONSE_COUNT 7
951 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
952 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
953 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
954 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
955 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
956 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
957 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
958 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
959 };
960
961 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
962 // Such a response is less time critical, so we can prepare them on the fly
963 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
964 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
965 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
966 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
967 tag_response_info_t dynamic_response_info = {
968 .response = dynamic_response_buffer,
969 .response_n = 0,
970 .modulation = dynamic_modulation_buffer,
971 .modulation_n = 0
972 };
973
974 // Reset the offset pointer of the free buffer
975 reset_free_buffer();
976
977 // Prepare the responses of the anticollision phase
978 // there will be not enough time to do this at the moment the reader sends it REQA
979 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
980 prepare_allocated_tag_modulation(&responses[i]);
981 }
982
983 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
984 int len = 0;
985
986 // To control where we are in the protocol
987 int order = 0;
988 int lastorder;
989
990 // Just to allow some checks
991 int happened = 0;
992 int happened2 = 0;
993 int cmdsRecvd = 0;
994
995 // We need to listen to the high-frequency, peak-detected path.
996 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
997
998 cmdsRecvd = 0;
999 tag_response_info_t* p_response;
1000
1001 LED_A_ON();
1002 for(;;) {
1003 // Clean receive command buffer
1004
1005 if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
1006 DbpString("Button press");
1007 break;
1008 }
1009
1010 p_response = NULL;
1011
1012 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1013 // Okay, look at the command now.
1014 lastorder = order;
1015 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1016 p_response = &responses[0]; order = 1;
1017 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1018 p_response = &responses[0]; order = 6;
1019 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1020 p_response = &responses[1]; order = 2;
1021 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1022 p_response = &responses[2]; order = 20;
1023 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1024 p_response = &responses[3]; order = 3;
1025 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1026 p_response = &responses[4]; order = 30;
1027 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1028 EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
1029 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1030 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1031 p_response = NULL;
1032 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1033 // DbpString("Reader requested we HALT!:");
1034 if (tracing) {
1035 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1036 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1037 }
1038 p_response = NULL;
1039 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1040 p_response = &responses[5]; order = 7;
1041 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1042 if (tagType == 1 || tagType == 2) { // RATS not supported
1043 EmSend4bit(CARD_NACK_NA);
1044 p_response = NULL;
1045 } else {
1046 p_response = &responses[6]; order = 70;
1047 }
1048 } else if (order == 7 && len == 8) { // Received authentication request
1049 if (tracing) {
1050 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1051 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1052 }
1053 uint32_t nr = bytes_to_num(receivedCmd,4);
1054 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1055 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1056 } else {
1057 // Check for ISO 14443A-4 compliant commands, look at left nibble
1058 switch (receivedCmd[0]) {
1059
1060 case 0x0B:
1061 case 0x0A: { // IBlock (command)
1062 dynamic_response_info.response[0] = receivedCmd[0];
1063 dynamic_response_info.response[1] = 0x00;
1064 dynamic_response_info.response[2] = 0x90;
1065 dynamic_response_info.response[3] = 0x00;
1066 dynamic_response_info.response_n = 4;
1067 } break;
1068
1069 case 0x1A:
1070 case 0x1B: { // Chaining command
1071 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1072 dynamic_response_info.response_n = 2;
1073 } break;
1074
1075 case 0xaa:
1076 case 0xbb: {
1077 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1078 dynamic_response_info.response_n = 2;
1079 } break;
1080
1081 case 0xBA: { //
1082 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1083 dynamic_response_info.response_n = 2;
1084 } break;
1085
1086 case 0xCA:
1087 case 0xC2: { // Readers sends deselect command
1088 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1089 dynamic_response_info.response_n = 2;
1090 } break;
1091
1092 default: {
1093 // Never seen this command before
1094 if (tracing) {
1095 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1096 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1097 }
1098 Dbprintf("Received unknown command (len=%d):",len);
1099 Dbhexdump(len,receivedCmd,false);
1100 // Do not respond
1101 dynamic_response_info.response_n = 0;
1102 } break;
1103 }
1104
1105 if (dynamic_response_info.response_n > 0) {
1106 // Copy the CID from the reader query
1107 dynamic_response_info.response[1] = receivedCmd[1];
1108
1109 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1110 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1111 dynamic_response_info.response_n += 2;
1112
1113 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1114 Dbprintf("Error preparing tag response");
1115 if (tracing) {
1116 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1117 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1118 }
1119 break;
1120 }
1121 p_response = &dynamic_response_info;
1122 }
1123 }
1124
1125 // Count number of wakeups received after a halt
1126 if(order == 6 && lastorder == 5) { happened++; }
1127
1128 // Count number of other messages after a halt
1129 if(order != 6 && lastorder == 5) { happened2++; }
1130
1131 if(cmdsRecvd > 999) {
1132 DbpString("1000 commands later...");
1133 break;
1134 }
1135 cmdsRecvd++;
1136
1137 if (p_response != NULL) {
1138 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1139 // do the tracing for the previous reader request and this tag answer:
1140 EmLogTrace(Uart.output,
1141 Uart.len,
1142 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1143 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1144 Uart.parityBits,
1145 p_response->response,
1146 p_response->response_n,
1147 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1148 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1149 SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
1150 }
1151
1152 if (!tracing) {
1153 Dbprintf("Trace Full. Simulation stopped.");
1154 break;
1155 }
1156 }
1157
1158 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1159 LED_A_OFF();
1160 }
1161
1162
1163 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1164 // of bits specified in the delay parameter.
1165 void PrepareDelayedTransfer(uint16_t delay)
1166 {
1167 uint8_t bitmask = 0;
1168 uint8_t bits_to_shift = 0;
1169 uint8_t bits_shifted = 0;
1170
1171 delay &= 0x07;
1172 if (delay) {
1173 for (uint16_t i = 0; i < delay; i++) {
1174 bitmask |= (0x01 << i);
1175 }
1176 ToSend[ToSendMax++] = 0x00;
1177 for (uint16_t i = 0; i < ToSendMax; i++) {
1178 bits_to_shift = ToSend[i] & bitmask;
1179 ToSend[i] = ToSend[i] >> delay;
1180 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1181 bits_shifted = bits_to_shift;
1182 }
1183 }
1184 }
1185
1186
1187 //-------------------------------------------------------------------------------------
1188 // Transmit the command (to the tag) that was placed in ToSend[].
1189 // Parameter timing:
1190 // if NULL: transfer at next possible time, taking into account
1191 // request guard time and frame delay time
1192 // if == 0: transfer immediately and return time of transfer
1193 // if != 0: delay transfer until time specified
1194 //-------------------------------------------------------------------------------------
1195 static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
1196 {
1197
1198 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1199
1200 uint32_t ThisTransferTime = 0;
1201
1202 if (timing) {
1203 if(*timing == 0) { // Measure time
1204 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1205 } else {
1206 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1207 }
1208 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1209 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1210 LastTimeProxToAirStart = *timing;
1211 } else {
1212 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1213 while(GetCountSspClk() < ThisTransferTime);
1214 LastTimeProxToAirStart = ThisTransferTime;
1215 }
1216
1217 // clear TXRDY
1218 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1219
1220 uint16_t c = 0;
1221 for(;;) {
1222 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1223 AT91C_BASE_SSC->SSC_THR = cmd[c];
1224 c++;
1225 if(c >= len) {
1226 break;
1227 }
1228 }
1229 }
1230
1231 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1232 }
1233
1234
1235 //-----------------------------------------------------------------------------
1236 // Prepare reader command (in bits, support short frames) to send to FPGA
1237 //-----------------------------------------------------------------------------
1238 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
1239 {
1240 int i, j;
1241 int last;
1242 uint8_t b;
1243
1244 ToSendReset();
1245
1246 // Start of Communication (Seq. Z)
1247 ToSend[++ToSendMax] = SEC_Z;
1248 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1249 last = 0;
1250
1251 size_t bytecount = nbytes(bits);
1252 // Generate send structure for the data bits
1253 for (i = 0; i < bytecount; i++) {
1254 // Get the current byte to send
1255 b = cmd[i];
1256 size_t bitsleft = MIN((bits-(i*8)),8);
1257
1258 for (j = 0; j < bitsleft; j++) {
1259 if (b & 1) {
1260 // Sequence X
1261 ToSend[++ToSendMax] = SEC_X;
1262 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1263 last = 1;
1264 } else {
1265 if (last == 0) {
1266 // Sequence Z
1267 ToSend[++ToSendMax] = SEC_Z;
1268 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1269 } else {
1270 // Sequence Y
1271 ToSend[++ToSendMax] = SEC_Y;
1272 last = 0;
1273 }
1274 }
1275 b >>= 1;
1276 }
1277
1278 // Only transmit (last) parity bit if we transmitted a complete byte
1279 if (j == 8) {
1280 // Get the parity bit
1281 if ((dwParity >> i) & 0x01) {
1282 // Sequence X
1283 ToSend[++ToSendMax] = SEC_X;
1284 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1285 last = 1;
1286 } else {
1287 if (last == 0) {
1288 // Sequence Z
1289 ToSend[++ToSendMax] = SEC_Z;
1290 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1291 } else {
1292 // Sequence Y
1293 ToSend[++ToSendMax] = SEC_Y;
1294 last = 0;
1295 }
1296 }
1297 }
1298 }
1299
1300 // End of Communication: Logic 0 followed by Sequence Y
1301 if (last == 0) {
1302 // Sequence Z
1303 ToSend[++ToSendMax] = SEC_Z;
1304 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1305 } else {
1306 // Sequence Y
1307 ToSend[++ToSendMax] = SEC_Y;
1308 last = 0;
1309 }
1310 ToSend[++ToSendMax] = SEC_Y;
1311
1312 // Convert to length of command:
1313 ToSendMax++;
1314 }
1315
1316 //-----------------------------------------------------------------------------
1317 // Prepare reader command to send to FPGA
1318 //-----------------------------------------------------------------------------
1319 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1320 {
1321 CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
1322 }
1323
1324 //-----------------------------------------------------------------------------
1325 // Wait for commands from reader
1326 // Stop when button is pressed (return 1) or field was gone (return 2)
1327 // Or return 0 when command is captured
1328 //-----------------------------------------------------------------------------
1329 static int EmGetCmd(uint8_t *received, int *len)
1330 {
1331 *len = 0;
1332
1333 uint32_t timer = 0, vtime = 0;
1334 int analogCnt = 0;
1335 int analogAVG = 0;
1336
1337 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1338 // only, since we are receiving, not transmitting).
1339 // Signal field is off with the appropriate LED
1340 LED_D_OFF();
1341 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1342
1343 // Set ADC to read field strength
1344 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1345 AT91C_BASE_ADC->ADC_MR =
1346 ADC_MODE_PRESCALE(32) |
1347 ADC_MODE_STARTUP_TIME(16) |
1348 ADC_MODE_SAMPLE_HOLD_TIME(8);
1349 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1350 // start ADC
1351 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1352
1353 // Now run a 'software UART' on the stream of incoming samples.
1354 UartReset();
1355 Uart.output = received;
1356
1357 // Clear RXRDY:
1358 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1359
1360 for(;;) {
1361 WDT_HIT();
1362
1363 if (BUTTON_PRESS()) return 1;
1364
1365 // test if the field exists
1366 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1367 analogCnt++;
1368 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1369 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1370 if (analogCnt >= 32) {
1371 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1372 vtime = GetTickCount();
1373 if (!timer) timer = vtime;
1374 // 50ms no field --> card to idle state
1375 if (vtime - timer > 50) return 2;
1376 } else
1377 if (timer) timer = 0;
1378 analogCnt = 0;
1379 analogAVG = 0;
1380 }
1381 }
1382
1383 // receive and test the miller decoding
1384 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1385 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1386 if(MillerDecoding(b, 0)) {
1387 *len = Uart.len;
1388 return 0;
1389 }
1390 }
1391
1392 }
1393 }
1394
1395
1396 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
1397 {
1398 uint8_t b;
1399 uint16_t i = 0;
1400 uint32_t ThisTransferTime;
1401
1402 // Modulate Manchester
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1404
1405 // include correction bit if necessary
1406 if (Uart.parityBits & 0x01) {
1407 correctionNeeded = TRUE;
1408 }
1409 if(correctionNeeded) {
1410 // 1236, so correction bit needed
1411 i = 0;
1412 } else {
1413 i = 1;
1414 }
1415
1416 // clear receiving shift register and holding register
1417 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1418 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1419 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1420 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1421
1422 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1423 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1424 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1425 if (AT91C_BASE_SSC->SSC_RHR) break;
1426 }
1427
1428 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1429
1430 // Clear TXRDY:
1431 AT91C_BASE_SSC->SSC_THR = SEC_F;
1432
1433 // send cycle
1434 for(; i <= respLen; ) {
1435 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1436 AT91C_BASE_SSC->SSC_THR = resp[i++];
1437 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1438 }
1439
1440 if(BUTTON_PRESS()) {
1441 break;
1442 }
1443 }
1444
1445 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1446 for (i = 0; i < 2 ; ) {
1447 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1448 AT91C_BASE_SSC->SSC_THR = SEC_F;
1449 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1450 i++;
1451 }
1452 }
1453
1454 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1455
1456 return 0;
1457 }
1458
1459 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1460 Code4bitAnswerAsTag(resp);
1461 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1462 // do the tracing for the previous reader request and this tag answer:
1463 EmLogTrace(Uart.output,
1464 Uart.len,
1465 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1466 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1467 Uart.parityBits,
1468 &resp,
1469 1,
1470 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1471 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1472 SwapBits(GetParity(&resp, 1), 1));
1473 return res;
1474 }
1475
1476 int EmSend4bit(uint8_t resp){
1477 return EmSend4bitEx(resp, false);
1478 }
1479
1480 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
1481 CodeIso14443aAsTagPar(resp, respLen, par);
1482 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1483 // do the tracing for the previous reader request and this tag answer:
1484 EmLogTrace(Uart.output,
1485 Uart.len,
1486 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1487 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1488 Uart.parityBits,
1489 resp,
1490 respLen,
1491 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1492 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1493 SwapBits(GetParity(resp, respLen), respLen));
1494 return res;
1495 }
1496
1497 int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
1498 return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
1499 }
1500
1501 int EmSendCmd(uint8_t *resp, int respLen){
1502 return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
1503 }
1504
1505 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
1506 return EmSendCmdExPar(resp, respLen, false, par);
1507 }
1508
1509 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
1510 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
1511 {
1512 if (tracing) {
1513 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1514 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1515 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1516 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1517 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1518 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1519 reader_EndTime = tag_StartTime - exact_fdt;
1520 reader_StartTime = reader_EndTime - reader_modlen;
1521 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
1522 return FALSE;
1523 } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
1524 return FALSE;
1525 } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
1526 return FALSE;
1527 } else {
1528 return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
1529 }
1530 } else {
1531 return TRUE;
1532 }
1533 }
1534
1535 //-----------------------------------------------------------------------------
1536 // Wait a certain time for tag response
1537 // If a response is captured return TRUE
1538 // If it takes too long return FALSE
1539 //-----------------------------------------------------------------------------
1540 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
1541 {
1542 uint16_t c;
1543
1544 // Set FPGA mode to "reader listen mode", no modulation (listen
1545 // only, since we are receiving, not transmitting).
1546 // Signal field is on with the appropriate LED
1547 LED_D_ON();
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1549
1550 // Now get the answer from the card
1551 DemodReset();
1552 Demod.output = receivedResponse;
1553
1554 // clear RXRDY:
1555 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1556
1557 c = 0;
1558 for(;;) {
1559 WDT_HIT();
1560
1561 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1562 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1563 if(ManchesterDecoding(b, offset, 0)) {
1564 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1565 return TRUE;
1566 } else if(c++ > iso14a_timeout) {
1567 return FALSE;
1568 }
1569 }
1570 }
1571 }
1572
1573 void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
1574 {
1575
1576 CodeIso14443aBitsAsReaderPar(frame,bits,par);
1577
1578 // Send command to tag
1579 TransmitFor14443a(ToSend, ToSendMax, timing);
1580 if(trigger)
1581 LED_A_ON();
1582
1583 // Log reader command in trace buffer
1584 if (tracing) {
1585 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1586 LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
1587 }
1588 }
1589
1590 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
1591 {
1592 ReaderTransmitBitsPar(frame,len*8,par, timing);
1593 }
1594
1595 void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
1596 {
1597 // Generate parity and redirect
1598 ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
1599 }
1600
1601 void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
1602 {
1603 // Generate parity and redirect
1604 ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
1605 }
1606
1607 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
1608 {
1609 if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
1610 if (tracing) {
1611 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1612 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1613 }
1614 return Demod.len;
1615 }
1616
1617 int ReaderReceive(uint8_t* receivedAnswer)
1618 {
1619 return ReaderReceiveOffset(receivedAnswer, 0);
1620 }
1621
1622 int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
1623 {
1624 if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
1625 if (tracing) {
1626 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1627 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1628 }
1629 *parptr = Demod.parityBits;
1630 return Demod.len;
1631 }
1632
1633 /* performs iso14443a anticollision procedure
1634 * fills the uid pointer unless NULL
1635 * fills resp_data unless NULL */
1636 int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
1637 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1638 uint8_t sel_all[] = { 0x93,0x20 };
1639 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1640 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1641 uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
1642 byte_t uid_resp[4];
1643 size_t uid_resp_len;
1644
1645 uint8_t sak = 0x04; // cascade uid
1646 int cascade_level = 0;
1647 int len;
1648
1649 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1650 ReaderTransmitBitsPar(wupa,7,0, NULL);
1651
1652 // Receive the ATQA
1653 if(!ReaderReceive(resp)) return 0;
1654 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1655
1656 if(p_hi14a_card) {
1657 memcpy(p_hi14a_card->atqa, resp, 2);
1658 p_hi14a_card->uidlen = 0;
1659 memset(p_hi14a_card->uid,0,10);
1660 }
1661
1662 // clear uid
1663 if (uid_ptr) {
1664 memset(uid_ptr,0,10);
1665 }
1666
1667 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1668 // which case we need to make a cascade 2 request and select - this is a long UID
1669 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1670 for(; sak & 0x04; cascade_level++) {
1671 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1672 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1673
1674 // SELECT_ALL
1675 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
1676 if (!ReaderReceive(resp)) return 0;
1677
1678 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1679 memset(uid_resp, 0, 4);
1680 uint16_t uid_resp_bits = 0;
1681 uint16_t collision_answer_offset = 0;
1682 // anti-collision-loop:
1683 while (Demod.collisionPos) {
1684 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1685 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1686 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1687 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1688 }
1689 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1690 uid_resp_bits++;
1691 // construct anticollosion command:
1692 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1693 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1694 sel_uid[2+i] = uid_resp[i];
1695 }
1696 collision_answer_offset = uid_resp_bits%8;
1697 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1698 if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
1699 }
1700 // finally, add the last bits and BCC of the UID
1701 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1702 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1703 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1704 }
1705
1706 } else { // no collision, use the response to SELECT_ALL as current uid
1707 memcpy(uid_resp,resp,4);
1708 }
1709 uid_resp_len = 4;
1710
1711
1712 // calculate crypto UID. Always use last 4 Bytes.
1713 if(cuid_ptr) {
1714 *cuid_ptr = bytes_to_num(uid_resp, 4);
1715 }
1716
1717 // Construct SELECT UID command
1718 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1719 memcpy(sel_uid+2,uid_resp,4); // the UID
1720 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1721 AppendCrc14443a(sel_uid,7); // calculate and add CRC
1722 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
1723
1724 // Receive the SAK
1725 if (!ReaderReceive(resp)) return 0;
1726 sak = resp[0];
1727
1728 //Dbprintf("SAK: %02x",resp[0]);
1729
1730 // Test if more parts of the uid are comming
1731 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1732 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1733 // http://www.nxp.com/documents/application_note/AN10927.pdf
1734 // This was earlier:
1735 //memcpy(uid_resp, uid_resp + 1, 3);
1736 // But memcpy should not be used for overlapping arrays,
1737 // and memmove appears to not be available in the arm build.
1738 // So this has been replaced with a for-loop:
1739 for(int xx = 0; xx < 3; xx++)
1740 uid_resp[xx] = uid_resp[xx+1];
1741 uid_resp_len = 3;
1742 }
1743
1744 if(uid_ptr) {
1745 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1746 }
1747
1748 if(p_hi14a_card) {
1749 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1750 p_hi14a_card->uidlen += uid_resp_len;
1751 }
1752 }
1753
1754 if(p_hi14a_card) {
1755 p_hi14a_card->sak = sak;
1756 p_hi14a_card->ats_len = 0;
1757 }
1758
1759 if( (sak & 0x20) == 0) {
1760 return 2; // non iso14443a compliant tag
1761 }
1762
1763 // Request for answer to select
1764 AppendCrc14443a(rats, 2);
1765 ReaderTransmit(rats, sizeof(rats), NULL);
1766
1767 if (!(len = ReaderReceive(resp))) return 0;
1768
1769 if(p_hi14a_card) {
1770 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1771 p_hi14a_card->ats_len = len;
1772 }
1773
1774 // reset the PCB block number
1775 iso14_pcb_blocknum = 0;
1776 return 1;
1777 }
1778
1779 void iso14443a_setup(uint8_t fpga_minor_mode) {
1780 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1781 // Set up the synchronous serial port
1782 FpgaSetupSsc();
1783 // connect Demodulated Signal to ADC:
1784 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1785
1786 // Signal field is on with the appropriate LED
1787 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1788 LED_D_ON();
1789 } else {
1790 LED_D_OFF();
1791 }
1792 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1793
1794 // Start the timer
1795 StartCountSspClk();
1796
1797 DemodReset();
1798 UartReset();
1799 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1800 iso14a_set_timeout(1050); // 10ms default 10*105 =
1801 }
1802
1803 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1804 uint8_t real_cmd[cmd_len+4];
1805 real_cmd[0] = 0x0a; //I-Block
1806 // put block number into the PCB
1807 real_cmd[0] |= iso14_pcb_blocknum;
1808 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1809 memcpy(real_cmd+2, cmd, cmd_len);
1810 AppendCrc14443a(real_cmd,cmd_len+2);
1811
1812 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1813 size_t len = ReaderReceive(data);
1814 uint8_t * data_bytes = (uint8_t *) data;
1815 if (!len)
1816 return 0; //DATA LINK ERROR
1817 // if we received an I- or R(ACK)-Block with a block number equal to the
1818 // current block number, toggle the current block number
1819 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1820 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1821 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1822 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1823 {
1824 iso14_pcb_blocknum ^= 1;
1825 }
1826
1827 return len;
1828 }
1829
1830 //-----------------------------------------------------------------------------
1831 // Read an ISO 14443a tag. Send out commands and store answers.
1832 //
1833 //-----------------------------------------------------------------------------
1834 void ReaderIso14443a(UsbCommand *c)
1835 {
1836 iso14a_command_t param = c->arg[0];
1837 uint8_t *cmd = c->d.asBytes;
1838 size_t len = c->arg[1] & 0xFFFF;
1839 size_t lenbits = c->arg[1] >> 16;
1840 uint32_t arg0 = 0;
1841 byte_t buf[USB_CMD_DATA_SIZE];
1842
1843 if(param & ISO14A_CONNECT) {
1844 iso14a_clear_trace();
1845 }
1846
1847 iso14a_set_tracing(TRUE);
1848
1849 if(param & ISO14A_REQUEST_TRIGGER) {
1850 iso14a_set_trigger(TRUE);
1851 }
1852
1853 if(param & ISO14A_CONNECT) {
1854 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1855 if(!(param & ISO14A_NO_SELECT)) {
1856 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1857 arg0 = iso14443a_select_card(NULL,card,NULL);
1858 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1859 }
1860 }
1861
1862 if(param & ISO14A_SET_TIMEOUT) {
1863 iso14a_set_timeout(c->arg[2]);
1864 }
1865
1866 if(param & ISO14A_APDU) {
1867 arg0 = iso14_apdu(cmd, len, buf);
1868 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1869 }
1870
1871 if(param & ISO14A_RAW) {
1872 if(param & ISO14A_APPEND_CRC) {
1873 AppendCrc14443a(cmd,len);
1874 len += 2;
1875 if(lenbits>0)
1876 lenbits += 16;
1877 }
1878 if(lenbits>0) {
1879 ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
1880 } else {
1881 ReaderTransmit(cmd,len, NULL);
1882 }
1883 arg0 = ReaderReceive(buf);
1884 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1885 }
1886
1887 if(param & ISO14A_REQUEST_TRIGGER) {
1888 iso14a_set_trigger(FALSE);
1889 }
1890
1891 if(param & ISO14A_NO_DISCONNECT) {
1892 return;
1893 }
1894
1895 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1896 LEDsoff();
1897 }
1898
1899
1900 // Determine the distance between two nonces.
1901 // Assume that the difference is small, but we don't know which is first.
1902 // Therefore try in alternating directions.
1903 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1904
1905 uint16_t i;
1906 uint32_t nttmp1, nttmp2;
1907
1908 if (nt1 == nt2) return 0;
1909
1910 nttmp1 = nt1;
1911 nttmp2 = nt2;
1912
1913 for (i = 1; i < 32768; i++) {
1914 nttmp1 = prng_successor(nttmp1, 1);
1915 if (nttmp1 == nt2) return i;
1916 nttmp2 = prng_successor(nttmp2, 1);
1917 if (nttmp2 == nt1) return -i;
1918 }
1919
1920 return(-99999); // either nt1 or nt2 are invalid nonces
1921 }
1922
1923
1924 //-----------------------------------------------------------------------------
1925 // Recover several bits of the cypher stream. This implements (first stages of)
1926 // the algorithm described in "The Dark Side of Security by Obscurity and
1927 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1928 // (article by Nicolas T. Courtois, 2009)
1929 //-----------------------------------------------------------------------------
1930 void ReaderMifare(bool first_try)
1931 {
1932 // Mifare AUTH
1933 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1934 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1935 static uint8_t mf_nr_ar3;
1936
1937 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1938
1939 iso14a_clear_trace();
1940 iso14a_set_tracing(TRUE);
1941
1942 byte_t nt_diff = 0;
1943 byte_t par = 0;
1944 //byte_t par_mask = 0xff;
1945 static byte_t par_low = 0;
1946 bool led_on = TRUE;
1947 uint8_t uid[10];
1948 uint32_t cuid;
1949
1950 uint32_t nt = 0;
1951 uint32_t previous_nt = 0;
1952 static uint32_t nt_attacked = 0;
1953 byte_t par_list[8] = {0x00};
1954 byte_t ks_list[8] = {0x00};
1955
1956 static uint32_t sync_time;
1957 static uint32_t sync_cycles;
1958 int catch_up_cycles = 0;
1959 int last_catch_up = 0;
1960 uint16_t consecutive_resyncs = 0;
1961 int isOK = 0;
1962
1963 if (first_try) {
1964 mf_nr_ar3 = 0;
1965 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
1966 sync_time = GetCountSspClk() & 0xfffffff8;
1967 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1968 nt_attacked = 0;
1969 nt = 0;
1970 par = 0;
1971 }
1972 else {
1973 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1974 // nt_attacked = prng_successor(nt_attacked, 1);
1975 mf_nr_ar3++;
1976 mf_nr_ar[3] = mf_nr_ar3;
1977 par = par_low;
1978 }
1979
1980 LED_A_ON();
1981 LED_B_OFF();
1982 LED_C_OFF();
1983
1984
1985 Dbprintf("Mifare: Before loopen");
1986 for(uint16_t i = 0; TRUE; i++) {
1987
1988 WDT_HIT();
1989
1990 // Test if the action was cancelled
1991 if(BUTTON_PRESS()) {
1992 break;
1993 }
1994
1995 LED_C_ON();
1996
1997 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1998 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1999 continue;
2000 }
2001
2002 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2003 catch_up_cycles = 0;
2004
2005 // if we missed the sync time already, advance to the next nonce repeat
2006 while(GetCountSspClk() > sync_time) {
2007 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2008 }
2009
2010 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2011 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2012
2013 // Receive the (4 Byte) "random" nonce
2014 if (!ReaderReceive(receivedAnswer)) {
2015 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2016 continue;
2017 }
2018
2019 previous_nt = nt;
2020 nt = bytes_to_num(receivedAnswer, 4);
2021
2022 // Transmit reader nonce with fake par
2023 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2024
2025 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2026 int nt_distance = dist_nt(previous_nt, nt);
2027 if (nt_distance == 0) {
2028 nt_attacked = nt;
2029 }
2030 else {
2031 if (nt_distance == -99999) { // invalid nonce received, try again
2032 continue;
2033 }
2034 sync_cycles = (sync_cycles - nt_distance);
2035 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2036 continue;
2037 }
2038 }
2039
2040 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2041 catch_up_cycles = -dist_nt(nt_attacked, nt);
2042 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2043 catch_up_cycles = 0;
2044 continue;
2045 }
2046 if (catch_up_cycles == last_catch_up) {
2047 consecutive_resyncs++;
2048 }
2049 else {
2050 last_catch_up = catch_up_cycles;
2051 consecutive_resyncs = 0;
2052 }
2053 if (consecutive_resyncs < 3) {
2054 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2055 }
2056 else {
2057 sync_cycles = sync_cycles + catch_up_cycles;
2058 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2059 }
2060 continue;
2061 }
2062
2063 consecutive_resyncs = 0;
2064
2065 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2066 if (ReaderReceive(receivedAnswer))
2067 {
2068 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2069
2070 if (nt_diff == 0)
2071 {
2072 par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2073 }
2074
2075 led_on = !led_on;
2076 if(led_on) LED_B_ON(); else LED_B_OFF();
2077
2078 par_list[nt_diff] = par;
2079 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2080
2081 // Test if the information is complete
2082 if (nt_diff == 0x07) {
2083 isOK = 1;
2084 break;
2085 }
2086
2087 nt_diff = (nt_diff + 1) & 0x07;
2088 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2089 par = par_low;
2090 } else {
2091 if (nt_diff == 0 && first_try)
2092 {
2093 par++;
2094 } else {
2095 par = (((par >> 3) + 1) << 3) | par_low;
2096 }
2097 }
2098 }
2099
2100
2101 mf_nr_ar[3] &= 0x1F;
2102
2103 byte_t buf[28];
2104 memcpy(buf + 0, uid, 4);
2105 num_to_bytes(nt, 4, buf + 4);
2106 memcpy(buf + 8, par_list, 8);
2107 memcpy(buf + 16, ks_list, 8);
2108 memcpy(buf + 24, mf_nr_ar, 4);
2109
2110 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2111
2112 // Thats it...
2113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2114 LEDsoff();
2115
2116 iso14a_set_tracing(FALSE);
2117 }
2118
2119 /**
2120 *MIFARE 1K simulate.
2121 *
2122 *@param flags :
2123 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2124 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2125 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2126 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2127 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2128 */
2129 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2130 {
2131 int cardSTATE = MFEMUL_NOFIELD;
2132 int _7BUID = 0;
2133 int vHf = 0; // in mV
2134 int res;
2135 uint32_t selTimer = 0;
2136 uint32_t authTimer = 0;
2137 uint32_t par = 0;
2138 int len = 0;
2139 uint8_t cardWRBL = 0;
2140 uint8_t cardAUTHSC = 0;
2141 uint8_t cardAUTHKEY = 0xff; // no authentication
2142 uint32_t cardRr = 0;
2143 uint32_t cuid = 0;
2144 //uint32_t rn_enc = 0;
2145 uint32_t ans = 0;
2146 uint32_t cardINTREG = 0;
2147 uint8_t cardINTBLOCK = 0;
2148 struct Crypto1State mpcs = {0, 0};
2149 struct Crypto1State *pcs;
2150 pcs = &mpcs;
2151 uint32_t numReads = 0;//Counts numer of times reader read a block
2152 uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
2153 uint8_t *response = eml_get_bigbufptr_sendbuf();
2154
2155 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2156 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2157 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2158 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2159 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2160
2161 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2162 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2163
2164 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2165 // This can be used in a reader-only attack.
2166 // (it can also be retrieved via 'hf 14a list', but hey...
2167 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2168 uint8_t ar_nr_collected = 0;
2169
2170 // clear trace
2171 iso14a_clear_trace();
2172 iso14a_set_tracing(TRUE);
2173
2174 // Authenticate response - nonce
2175 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2176
2177 //-- Determine the UID
2178 // Can be set from emulator memory, incoming data
2179 // and can be 7 or 4 bytes long
2180 if (flags & FLAG_4B_UID_IN_DATA)
2181 {
2182 // 4B uid comes from data-portion of packet
2183 memcpy(rUIDBCC1,datain,4);
2184 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2185
2186 } else if (flags & FLAG_7B_UID_IN_DATA) {
2187 // 7B uid comes from data-portion of packet
2188 memcpy(&rUIDBCC1[1],datain,3);
2189 memcpy(rUIDBCC2, datain+3, 4);
2190 _7BUID = true;
2191 } else {
2192 // get UID from emul memory
2193 emlGetMemBt(receivedCmd, 7, 1);
2194 _7BUID = !(receivedCmd[0] == 0x00);
2195 if (!_7BUID) { // ---------- 4BUID
2196 emlGetMemBt(rUIDBCC1, 0, 4);
2197 } else { // ---------- 7BUID
2198 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2199 emlGetMemBt(rUIDBCC2, 3, 4);
2200 }
2201 }
2202
2203 /*
2204 * Regardless of what method was used to set the UID, set fifth byte and modify
2205 * the ATQA for 4 or 7-byte UID
2206 */
2207 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2208 if (_7BUID) {
2209 rATQA[0] = 0x44;
2210 rUIDBCC1[0] = 0x88;
2211 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2212 }
2213
2214 // We need to listen to the high-frequency, peak-detected path.
2215 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2216
2217
2218 if (MF_DBGLEVEL >= 1) {
2219 if (!_7BUID) {
2220 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
2221 } else {
2222 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
2223 }
2224 }
2225
2226 bool finished = FALSE;
2227 while (!BUTTON_PRESS() && !finished) {
2228 WDT_HIT();
2229
2230 // find reader field
2231 // Vref = 3300mV, and an 10:1 voltage divider on the input
2232 // can measure voltages up to 33000 mV
2233 if (cardSTATE == MFEMUL_NOFIELD) {
2234 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2235 if (vHf > MF_MINFIELDV) {
2236 cardSTATE_TO_IDLE();
2237 LED_A_ON();
2238 }
2239 }
2240 if(cardSTATE == MFEMUL_NOFIELD) continue;
2241
2242 //Now, get data
2243
2244 res = EmGetCmd(receivedCmd, &len);
2245 if (res == 2) { //Field is off!
2246 cardSTATE = MFEMUL_NOFIELD;
2247 LEDsoff();
2248 continue;
2249 } else if (res == 1) {
2250 break; //return value 1 means button press
2251 }
2252
2253 // REQ or WUP request in ANY state and WUP in HALTED state
2254 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2255 selTimer = GetTickCount();
2256 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2257 cardSTATE = MFEMUL_SELECT1;
2258
2259 // init crypto block
2260 LED_B_OFF();
2261 LED_C_OFF();
2262 crypto1_destroy(pcs);
2263 cardAUTHKEY = 0xff;
2264 continue;
2265 }
2266
2267 switch (cardSTATE) {
2268 case MFEMUL_NOFIELD:
2269 case MFEMUL_HALTED:
2270 case MFEMUL_IDLE:{
2271 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2272 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2273 break;
2274 }
2275 case MFEMUL_SELECT1:{
2276 // select all
2277 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2278 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2279 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2280 break;
2281 }
2282
2283 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2284 {
2285 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2286 }
2287 // select card
2288 if (len == 9 &&
2289 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2290 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2291 cuid = bytes_to_num(rUIDBCC1, 4);
2292 if (!_7BUID) {
2293 cardSTATE = MFEMUL_WORK;
2294 LED_B_ON();
2295 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2296 break;
2297 } else {
2298 cardSTATE = MFEMUL_SELECT2;
2299 }
2300 }
2301 break;
2302 }
2303 case MFEMUL_AUTH1:{
2304 if( len != 8)
2305 {
2306 cardSTATE_TO_IDLE();
2307 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2308 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2309 break;
2310 }
2311 uint32_t ar = bytes_to_num(receivedCmd, 4);
2312 uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
2313
2314 //Collect AR/NR
2315 if(ar_nr_collected < 2){
2316 if(ar_nr_responses[2] != ar)
2317 {// Avoid duplicates... probably not necessary, ar should vary.
2318 ar_nr_responses[ar_nr_collected*4] = cuid;
2319 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2320 ar_nr_responses[ar_nr_collected*4+2] = ar;
2321 ar_nr_responses[ar_nr_collected*4+3] = nr;
2322 ar_nr_collected++;
2323 }
2324 }
2325
2326 // --- crypto
2327 crypto1_word(pcs, ar , 1);
2328 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2329
2330 // test if auth OK
2331 if (cardRr != prng_successor(nonce, 64)){
2332 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
2333 // Shouldn't we respond anything here?
2334 // Right now, we don't nack or anything, which causes the
2335 // reader to do a WUPA after a while. /Martin
2336 // -- which is the correct response. /piwi
2337 cardSTATE_TO_IDLE();
2338 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2339 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2340 break;
2341 }
2342
2343 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2344
2345 num_to_bytes(ans, 4, rAUTH_AT);
2346 // --- crypto
2347 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2348 LED_C_ON();
2349 cardSTATE = MFEMUL_WORK;
2350 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2351 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2352 GetTickCount() - authTimer);
2353 break;
2354 }
2355 case MFEMUL_SELECT2:{
2356 if (!len) {
2357 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2358 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2359 break;
2360 }
2361 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2362 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2363 break;
2364 }
2365
2366 // select 2 card
2367 if (len == 9 &&
2368 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2369 EmSendCmd(rSAK, sizeof(rSAK));
2370 cuid = bytes_to_num(rUIDBCC2, 4);
2371 cardSTATE = MFEMUL_WORK;
2372 LED_B_ON();
2373 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2374 break;
2375 }
2376
2377 // i guess there is a command). go into the work state.
2378 if (len != 4) {
2379 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2380 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2381 break;
2382 }
2383 cardSTATE = MFEMUL_WORK;
2384 //goto lbWORK;
2385 //intentional fall-through to the next case-stmt
2386 }
2387
2388 case MFEMUL_WORK:{
2389 if (len == 0) {
2390 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2391 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2392 break;
2393 }
2394
2395 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2396
2397 if(encrypted_data) {
2398 // decrypt seqence
2399 mf_crypto1_decrypt(pcs, receivedCmd, len);
2400 }
2401
2402 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2403 authTimer = GetTickCount();
2404 cardAUTHSC = receivedCmd[1] / 4; // received block num
2405 cardAUTHKEY = receivedCmd[0] - 0x60;
2406 crypto1_destroy(pcs);//Added by martin
2407 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2408
2409 if (!encrypted_data) { // first authentication
2410 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2411
2412 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2413 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2414 } else { // nested authentication
2415 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2416 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2417 num_to_bytes(ans, 4, rAUTH_AT);
2418 }
2419 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2420 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2421 cardSTATE = MFEMUL_AUTH1;
2422 break;
2423 }
2424
2425 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2426 // BUT... ACK --> NACK
2427 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2428 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2429 break;
2430 }
2431
2432 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2433 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2434 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2435 break;
2436 }
2437
2438 if(len != 4) {
2439 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2440 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2441 break;
2442 }
2443
2444 if(receivedCmd[0] == 0x30 // read block
2445 || receivedCmd[0] == 0xA0 // write block
2446 || receivedCmd[0] == 0xC0 // inc
2447 || receivedCmd[0] == 0xC1 // dec
2448 || receivedCmd[0] == 0xC2 // restore
2449 || receivedCmd[0] == 0xB0) { // transfer
2450 if (receivedCmd[1] >= 16 * 4) {
2451 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2452 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2453 break;
2454 }
2455
2456 if (receivedCmd[1] / 4 != cardAUTHSC) {
2457 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2458 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2459 break;
2460 }
2461 }
2462 // read block
2463 if (receivedCmd[0] == 0x30) {
2464 if (MF_DBGLEVEL >= 4) {
2465 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2466 }
2467 emlGetMem(response, receivedCmd[1], 1);
2468 AppendCrc14443a(response, 16);
2469 mf_crypto1_encrypt(pcs, response, 18, &par);
2470 EmSendCmdPar(response, 18, par);
2471 numReads++;
2472 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2473 Dbprintf("%d reads done, exiting", numReads);
2474 finished = true;
2475 }
2476 break;
2477 }
2478 // write block
2479 if (receivedCmd[0] == 0xA0) {
2480 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2481 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2482 cardSTATE = MFEMUL_WRITEBL2;
2483 cardWRBL = receivedCmd[1];
2484 break;
2485 }
2486 // increment, decrement, restore
2487 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2488 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2489 if (emlCheckValBl(receivedCmd[1])) {
2490 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2491 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2492 break;
2493 }
2494 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2495 if (receivedCmd[0] == 0xC1)
2496 cardSTATE = MFEMUL_INTREG_INC;
2497 if (receivedCmd[0] == 0xC0)
2498 cardSTATE = MFEMUL_INTREG_DEC;
2499 if (receivedCmd[0] == 0xC2)
2500 cardSTATE = MFEMUL_INTREG_REST;
2501 cardWRBL = receivedCmd[1];
2502 break;
2503 }
2504 // transfer
2505 if (receivedCmd[0] == 0xB0) {
2506 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2507 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2508 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2509 else
2510 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2511 break;
2512 }
2513 // halt
2514 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2515 LED_B_OFF();
2516 LED_C_OFF();
2517 cardSTATE = MFEMUL_HALTED;
2518 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2519 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2520 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2521 break;
2522 }
2523 // RATS
2524 if (receivedCmd[0] == 0xe0) {//RATS
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2526 break;
2527 }
2528 // command not allowed
2529 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2530 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2531 break;
2532 }
2533 case MFEMUL_WRITEBL2:{
2534 if (len == 18){
2535 mf_crypto1_decrypt(pcs, receivedCmd, len);
2536 emlSetMem(receivedCmd, cardWRBL, 1);
2537 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2538 cardSTATE = MFEMUL_WORK;
2539 } else {
2540 cardSTATE_TO_IDLE();
2541 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2542 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2543 }
2544 break;
2545 }
2546
2547 case MFEMUL_INTREG_INC:{
2548 mf_crypto1_decrypt(pcs, receivedCmd, len);
2549 memcpy(&ans, receivedCmd, 4);
2550 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2551 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2552 cardSTATE_TO_IDLE();
2553 break;
2554 }
2555 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2556 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2557 cardINTREG = cardINTREG + ans;
2558 cardSTATE = MFEMUL_WORK;
2559 break;
2560 }
2561 case MFEMUL_INTREG_DEC:{
2562 mf_crypto1_decrypt(pcs, receivedCmd, len);
2563 memcpy(&ans, receivedCmd, 4);
2564 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2565 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2566 cardSTATE_TO_IDLE();
2567 break;
2568 }
2569 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2570 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2571 cardINTREG = cardINTREG - ans;
2572 cardSTATE = MFEMUL_WORK;
2573 break;
2574 }
2575 case MFEMUL_INTREG_REST:{
2576 mf_crypto1_decrypt(pcs, receivedCmd, len);
2577 memcpy(&ans, receivedCmd, 4);
2578 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2579 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2580 cardSTATE_TO_IDLE();
2581 break;
2582 }
2583 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2584 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2585 cardSTATE = MFEMUL_WORK;
2586 break;
2587 }
2588 }
2589 }
2590
2591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2592 LEDsoff();
2593
2594 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2595 {
2596 //May just aswell send the collected ar_nr in the response aswell
2597 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2598 }
2599
2600 if(flags & FLAG_NR_AR_ATTACK)
2601 {
2602 if(ar_nr_collected > 1) {
2603 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2604 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2605 ar_nr_responses[0], // UID
2606 ar_nr_responses[1], //NT
2607 ar_nr_responses[2], //AR1
2608 ar_nr_responses[3], //NR1
2609 ar_nr_responses[6], //AR2
2610 ar_nr_responses[7] //NR2
2611 );
2612 } else {
2613 Dbprintf("Failed to obtain two AR/NR pairs!");
2614 if(ar_nr_collected >0) {
2615 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2616 ar_nr_responses[0], // UID
2617 ar_nr_responses[1], //NT
2618 ar_nr_responses[2], //AR1
2619 ar_nr_responses[3] //NR1
2620 );
2621 }
2622 }
2623 }
2624 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
2625 }
2626
2627
2628
2629 //-----------------------------------------------------------------------------
2630 // MIFARE sniffer.
2631 //
2632 //-----------------------------------------------------------------------------
2633 void RAMFUNC SniffMifare(uint8_t param) {
2634 // param:
2635 // bit 0 - trigger from first card answer
2636 // bit 1 - trigger from first reader 7-bit request
2637
2638 // C(red) A(yellow) B(green)
2639 LEDsoff();
2640 // init trace buffer
2641 iso14a_clear_trace();
2642 iso14a_set_tracing(TRUE);
2643
2644 // The command (reader -> tag) that we're receiving.
2645 // The length of a received command will in most cases be no more than 18 bytes.
2646 // So 32 should be enough!
2647 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2648 // The response (tag -> reader) that we're receiving.
2649 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
2650
2651 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2652 // into trace, along with its length and other annotations.
2653 //uint8_t *trace = (uint8_t *)BigBuf;
2654
2655 // The DMA buffer, used to stream samples from the FPGA
2656 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2657 uint8_t *data = dmaBuf;
2658 uint8_t previous_data = 0;
2659 int maxDataLen = 0;
2660 int dataLen = 0;
2661 bool ReaderIsActive = FALSE;
2662 bool TagIsActive = FALSE;
2663
2664 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2665
2666 // Set up the demodulator for tag -> reader responses.
2667 Demod.output = receivedResponse;
2668
2669 // Set up the demodulator for the reader -> tag commands
2670 Uart.output = receivedCmd;
2671
2672 // Setup for the DMA.
2673 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2674
2675 LED_D_OFF();
2676
2677 // init sniffer
2678 MfSniffInit();
2679
2680 // And now we loop, receiving samples.
2681 for(uint32_t sniffCounter = 0; TRUE; ) {
2682
2683 if(BUTTON_PRESS()) {
2684 DbpString("cancelled by button");
2685 break;
2686 }
2687
2688 LED_A_ON();
2689 WDT_HIT();
2690
2691 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2692 // check if a transaction is completed (timeout after 2000ms).
2693 // if yes, stop the DMA transfer and send what we have so far to the client
2694 if (MfSniffSend(2000)) {
2695 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2696 sniffCounter = 0;
2697 data = dmaBuf;
2698 maxDataLen = 0;
2699 ReaderIsActive = FALSE;
2700 TagIsActive = FALSE;
2701 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2702 }
2703 }
2704
2705 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2706 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2707 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2708 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2709 } else {
2710 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2711 }
2712 // test for length of buffer
2713 if(dataLen > maxDataLen) { // we are more behind than ever...
2714 maxDataLen = dataLen;
2715 if(dataLen > 400) {
2716 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2717 break;
2718 }
2719 }
2720 if(dataLen < 1) continue;
2721
2722 // primary buffer was stopped ( <-- we lost data!
2723 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2724 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2725 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2726 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2727 }
2728 // secondary buffer sets as primary, secondary buffer was stopped
2729 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2730 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2731 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2732 }
2733
2734 LED_A_OFF();
2735
2736 if (sniffCounter & 0x01) {
2737
2738 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2739 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2740 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2741 LED_C_INV();
2742 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
2743
2744 /* And ready to receive another command. */
2745 UartReset();
2746
2747 /* And also reset the demod code */
2748 DemodReset();
2749 }
2750 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2751 }
2752
2753 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2754 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2755 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2756 LED_C_INV();
2757
2758 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
2759
2760 // And ready to receive another response.
2761 DemodReset();
2762 }
2763 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2764 }
2765 }
2766
2767 previous_data = *data;
2768 sniffCounter++;
2769 data++;
2770 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2771 data = dmaBuf;
2772 }
2773
2774 } // main cycle
2775
2776 DbpString("COMMAND FINISHED");
2777
2778 FpgaDisableSscDma();
2779 MfSniffEnd();
2780
2781 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2782 LEDsoff();
2783 }
Impressum, Datenschutz