//----------------------------------------------------------------------------- // ISO14443-A support for the Proxmark III // Gerhard de Koning Gans, April 2008 //----------------------------------------------------------------------------- module hi_iso14443a( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, mod_type ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input [2:0] mod_type; reg ssp_clk; reg ssp_frame; reg fc_div_2; always @(posedge ck_1356meg) fc_div_2 = ~fc_div_2; wire adc_clk; assign adc_clk = ck_1356meg; reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3; reg [11:0] has_been_low_for; reg [8:0] saw_deep_modulation; reg [2:0] deep_counter; reg deep_modulation; always @(negedge adc_clk) begin if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196 else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15 if(~(| adc_d[7:0])) begin if(deep_counter == 3'd7) begin deep_modulation <= 1'b1; saw_deep_modulation <= 8'd0; end else deep_counter <= deep_counter + 1; end else begin deep_counter <= 3'd0; if(saw_deep_modulation == 8'd255) deep_modulation <= 1'b0; else saw_deep_modulation <= saw_deep_modulation + 1; end if(after_hysteresis) begin has_been_low_for <= 7'b0; end else begin if(has_been_low_for == 12'd4095) begin has_been_low_for <= 12'd0; after_hysteresis <= 1'b1; end else has_been_low_for <= has_been_low_for + 1; end end // Report every 4 subcarrier cycles // 64 periods of carrier frequency => 6-bit counter [negedge_cnt] reg [5:0] negedge_cnt; reg bit1, bit2, bit3; reg [3:0] count_ones; reg [3:0] count_zeros; // wire [7:0] avg; // reg [7:0] lavg; // reg signed [12:0] step1; // reg signed [12:0] step2; // reg [7:0] stepsize; reg [7:0] rx_mod_edge_threshold; reg curbit; // reg [12:0] average; // wire signed [9:0] dif; // storage for two previous samples: reg [7:0] adc_d_1; reg [7:0] adc_d_2; reg [7:0] adc_d_3; reg [7:0] adc_d_4; // the filtered signal (filter performs noise reduction and edge detection) // (gaussian derivative) wire signed [10:0] adc_d_filtered; assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1); // Registers to store steepest edges detected: reg [7:0] rx_mod_falling_edge_max; reg [7:0] rx_mod_rising_edge_max; // A register to send the results to the arm reg signed [7:0] to_arm; reg bit_to_arm; reg fdt_indicator, fdt_elapsed; reg [10:0] fdt_counter; reg [47:0] mod_sig_buf; wire mod_sig_buf_empty; reg [5:0] mod_sig_ptr; reg [3:0] mod_sig_flip; reg mod_sig, mod_sig_coil; reg temp_buffer_reset; reg sendbit; assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]); reg [2:0] ssp_frame_counter; // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin // ------------------------------------------------------------------------------------------------------------------------------------------------------------------ // relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader // ISO14443-3 specifies: // fdt = 1172, if last bit was 0. // fdt = 1236, if last bit was 1. // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit). // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay. if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?) // Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits, // i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks) if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below // the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock. begin if(fdt_elapsed) begin if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set) end else begin mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set) fdt_elapsed = 1'b1; fdt_indicator = 1'b0; if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks. else temp_buffer_reset = 1'b1; // else fix the buffer size at current position end end else begin fdt_counter <= fdt_counter + 1; // Count until 1148 end //------------------------------------------------------------------------------------------------------------------------------------------- // Relevant for READER_LISTEN only // look for steepest falling and rising edges: if (adc_d_filtered > 0) begin if (adc_d_filtered > rx_mod_falling_edge_max) rx_mod_falling_edge_max <= adc_d_filtered; end else begin if (-adc_d_filtered > rx_mod_rising_edge_max) rx_mod_rising_edge_max <= -adc_d_filtered; end // store previous samples for filtering and edge detection: adc_d_4 <= adc_d_3; adc_d_3 <= adc_d_2; adc_d_2 <= adc_d_1; adc_d_1 <= adc_d; if(& negedge_cnt[3:0]) // == 0xf == 15 begin // Relevant for TAGSIM_MOD only (timing Tag's answer. See above) // When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD) if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset begin fdt_counter <= 11'd0; fdt_elapsed = 1'b0; fdt_indicator = 1'b0; temp_buffer_reset = 1'b0; mod_sig_ptr <= 6'b000000; end // Relevant for READER_LISTEN only // detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6) curbit = 1'b1; // modulation else curbit = 1'b0; // no modulation // prepare next edge detection: rx_mod_rising_edge_max <= 0; rx_mod_falling_edge_max <= 0; // What do we communicate to the ARM if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN else if(mod_type == 3'b010) // TAGSIM_MOD begin if(fdt_counter > 11'd772) sendbit = mod_sig_coil; else sendbit = fdt_indicator; end else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN else sendbit = 1'b0; // READER_MOD, SNIFFER end //------------------------------------------------------------------------------------------------------------------------------------------ // Relevant for SNIFFER mode only. Prepare communication to ARM. if(negedge_cnt == 7'd63) begin if(deep_modulation) begin to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0}; end else begin to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit}; end negedge_cnt <= 0; end else begin negedge_cnt <= negedge_cnt + 1; end if(negedge_cnt == 6'd15) begin after_hysteresis_prev1 <= after_hysteresis; bit1 <= curbit; end if(negedge_cnt == 6'd31) begin after_hysteresis_prev2 <= after_hysteresis; bit2 <= curbit; end if(negedge_cnt == 6'd47) begin after_hysteresis_prev3 <= after_hysteresis; bit3 <= curbit; end //-------------------------------------------------------------------------------------------------------------------------------------------------------------- // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time // Note: Data in READER_MOD is fed through this delay line as well. if(mod_type != 3'b000) // != SNIFFER begin if(negedge_cnt[3:0] == 4'b1000) // == 0x8 begin // The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well. // Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and // content of the next bit to be transmitted. mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always. if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks. if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss begin mod_sig_ptr <= 6'b000000; end else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1. else if(fdt_elapsed && ~temp_buffer_reset) // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already. begin // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3) if(ssp_dout) temp_buffer_reset = 1'b1; if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. end else // mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER // mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested. begin // don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s) // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed. if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0; // finally, do the modulation: else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; end end end //----------------------------------------------------------------------------------------------------------------------------------------------------------------------- // Communication to ARM (SSP Clock and data) // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)): if(mod_type == 3'b000) begin if(negedge_cnt[2:0] == 3'b100) ssp_clk <= 1'b0; if(negedge_cnt[2:0] == 3'b000) begin ssp_clk <= 1'b1; // Don't shift if we just loaded new data, obviously. if(negedge_cnt != 7'd0) begin to_arm[7:1] <= to_arm[6:0]; end end if(negedge_cnt[5:4] == 2'b00) ssp_frame = 1'b1; else ssp_frame = 1'b0; bit_to_arm = to_arm[7]; end else //----------------------------------------------------------------------------------------------------------------------------------------------------------------------- // Communication to ARM (SSP Clock and data) // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128): begin if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0; if(negedge_cnt[3:0] == 4'b0111) begin if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0; else ssp_frame_counter <= ssp_frame_counter + 1; end if(negedge_cnt[3:0] == 4'b0000) begin ssp_clk <= 1'b1; end ssp_frame = (ssp_frame_counter == 3'd7); bit_to_arm = sendbit; end end assign ssp_din = bit_to_arm; // Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes. wire modulating_carrier; assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0. // for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011))); // Enable HF antenna drivers: assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; // TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier) // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms assign pwr_oe4 = modulating_carrier; // This is all LF, so doesn't matter. assign pwr_oe2 = 1'b0; assign pwr_lo = 1'b0; assign dbg = negedge_cnt[3]; endmodule