//-----------------------------------------------------------------------------
byte_t oddparity (const byte_t bt)
{
- return OddByteParity[bt];
+ return OddByteParity[bt];
}
uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
{
- int i;
- uint32_t dwPar = 0;
+ int i;
+ uint32_t dwPar = 0;
- // Generate the encrypted data
- for (i = 0; i < iLen; i++) {
- // Save the encrypted parity bit
- dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
- }
- return dwPar;
+ // Generate the encrypted data
+ for (i = 0; i < iLen; i++) {
+ // Save the encrypted parity bit
+ dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+ }
+ return dwPar;
}
void AppendCrc14443a(uint8_t* data, int len)
{
- ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+ ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
// The function LogTrace() is also used by the iClass implementation in iClass.c
LEDsoff();
// init trace buffer
- iso14a_clear_trace();
+ iso14a_clear_trace();
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
{
int i;
- ToSendReset();
+ ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
// 1
ToSend[++ToSendMax] = SEC_D;
- // Send stopbit
+ // Send stopbit
ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
ToSend[++ToSendMax] = SEC_F;
}
- // Convert from last byte pos to length
- ToSendMax++;
+ // Convert from last byte pos to length
+ ToSendMax++;
}
static void Code4bitAnswerAsTag(uint8_t cmd)
{
int i;
- ToSendReset();
+ ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSend[++ToSendMax] = SEC_F;
}
- // Convert from last byte pos to length
- ToSendMax++;
+ // Convert from last byte pos to length
+ ToSendMax++;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
{
- // Enable and clear the trace
+ // Enable and clear the trace
tracing = TRUE;
- iso14a_clear_trace();
+ iso14a_clear_trace();
// This function contains the tag emulation
uint8_t sak;
uint8_t *resp = NULL;
int respLen;
- // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
+ // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
// This will need
// 144 data bits (18 * 8)
// 18 parity bits
break;
}
- if (tracing) {
+ if (tracing) {
LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
- }
+ }
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
// resp = resp4; respLen = resp4Len; order = 4; // Do nothing
// respdata = &nack;
// respsize = sizeof(nack); // 4-bit answer
- EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+ EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
- // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
- respLen = 0;
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ respLen = 0;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
// DbpString("Reader requested we HALT!:");
// Do not respond
LED_A_OFF();
}
+
+// prepare a delayed transfer. This simply shifts ToSend[] by a number
+// of bits specified in the delay parameter.
+void PrepareDelayedTransfer(uint16_t delay)
+{
+ uint8_t bitmask = 0;
+ uint8_t bits_to_shift = 0;
+ uint8_t bits_shifted = 0;
+
+ delay &= 0x07;
+ if (delay) {
+ for (uint16_t i = 0; i < delay; i++) {
+ bitmask |= (0x01 << i);
+ }
+ ToSend[++ToSendMax] = 0x00;
+ for (uint16_t i = 0; i < ToSendMax; i++) {
+ bits_to_shift = ToSend[i] & bitmask;
+ ToSend[i] = ToSend[i] >> delay;
+ ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
+ bits_shifted = bits_to_shift;
+ }
+ }
+}
+
+
+
+
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
+// Parameter timing:
+// if NULL: ignored
+// if == 0: return time of transfer
+// if != 0: delay transfer until time specified
//-----------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
+static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
{
- int c;
+ int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- if (wait)
- if(*wait < 10)
- *wait = 10;
- for(c = 0; c < *wait;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
+ if (timing) {
+ if(*timing == 0) { // Measure time
+ *timing = (GetCountMifare() + 8) & 0xfffffff8;
+ } else {
+ PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
+ }
+ if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+ while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
+ }
+
+ for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ c++;
+ }
+ }
+
+ c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = cmd[c];
+ c++;
+ if(c >= len) {
+ break;
+ }
+ }
+ }
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = cmd[c];
- c++;
- if(c >= len) {
- break;
- }
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples) *samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
for(;;) {
WDT_HIT();
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
+ // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
+ // if (elapsed) (*elapsed)++;
+ // }
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < iso14a_timeout) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
}
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
+void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
{
- int wait = 0;
- int samples = 0;
-
- // This is tied to other size changes
- // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
+
CodeIso14443aBitsAsReaderPar(frame,bits,par);
// Select the card
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+ TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger)
LED_A_ON();
if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
}
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
{
- ReaderTransmitBitsPar(frame,len*8,par);
+ ReaderTransmitBitsPar(frame,len*8,par, timing);
}
-void ReaderTransmit(uint8_t* frame, int len)
+void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
{
// Generate parity and redirect
- ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len));
+ ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
}
int ReaderReceive(uint8_t* receivedAnswer)
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0);
+ ReaderTransmitBitsPar(wupa,7,0, NULL);
// Receive the ATQA
if(!ReaderReceive(resp)) return 0;
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
p_hi14a_card->uidlen = 0;
memset(p_hi14a_card->uid,0,10);
}
-
+
// clear uid
if (uid_ptr) {
memset(uid_ptr,0,10);
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
// SELECT_ALL
- ReaderTransmit(sel_all,sizeof(sel_all));
+ ReaderTransmit(sel_all,sizeof(sel_all), NULL);
if (!ReaderReceive(resp)) return 0;
-
+
// First backup the current uid
memcpy(uid_resp,resp,4);
uid_resp_len = 4;
// Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
-
- // calculate crypto UID
- if(cuid_ptr) {
- *cuid_ptr = bytes_to_num(uid_resp, 4);
+
+ // calculate crypto UID. Always use last 4 Bytes.
+ if(cuid_ptr) {
+ *cuid_ptr = bytes_to_num(uid_resp, 4);
}
// Construct SELECT UID command
- memcpy(sel_uid+2,resp,5);
+ memcpy(sel_uid+2,resp,5);
AppendCrc14443a(sel_uid,7);
- ReaderTransmit(sel_uid,sizeof(sel_uid));
+ ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp)) return 0;
memcpy(uid_resp, uid_resp + 1, 3);
uid_resp_len = 3;
}
-
+
if(uid_ptr) {
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
}
-
+
if(p_hi14a_card) {
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
p_hi14a_card->uidlen += uid_resp_len;
// Request for answer to select
AppendCrc14443a(rats, 2);
- ReaderTransmit(rats, sizeof(rats));
+ ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp))) return 0;
memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
p_hi14a_card->ats_len = len;
}
-
+
// reset the PCB block number
iso14_pcb_blocknum = 0;
return 1;
}
void iso14443a_setup() {
- // Set up the synchronous serial port
- FpgaSetupSsc();
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
// Start from off (no field generated)
// Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(50);
+// LED_D_OFF();
+// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ // SpinDelay(50);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(50);
+ SpinDelay(7); // iso14443-3 specifies 5ms max.
iso14a_timeout = 2048; //default
}
memcpy(real_cmd+2, cmd, cmd_len);
AppendCrc14443a(real_cmd,cmd_len+2);
- ReaderTransmit(real_cmd, cmd_len+4);
+ ReaderTransmit(real_cmd, cmd_len+4, NULL);
size_t len = ReaderReceive(data);
uint8_t * data_bytes = (uint8_t *) data;
if (!len)
iso14a_command_t param = c->arg[0];
uint8_t * cmd = c->d.asBytes;
size_t len = c->arg[1];
- uint32_t arg0 = 0;
- byte_t buf[USB_CMD_DATA_SIZE];
+ size_t lenbits = c->arg[2];
+ uint32_t arg0 = 0;
+ byte_t buf[USB_CMD_DATA_SIZE];
- iso14a_clear_trace();
- iso14a_set_tracing(true);
+ if(param & ISO14A_CONNECT) {
+ iso14a_clear_trace();
+ }
+ iso14a_set_tracing(true);
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(1);
- }
+ iso14a_set_trigger(1);
+ }
if(param & ISO14A_CONNECT) {
iso14443a_setup();
- arg0 = iso14443a_select_card(NULL,(iso14a_card_select_t*)buf,NULL);
- cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
-// UsbSendPacket((void *)ack, sizeof(UsbCommand));
+ if(!(param & ISO14A_NO_SELECT)) {
+ iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
+ arg0 = iso14443a_select_card(NULL,card,NULL);
+ cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+ }
}
if(param & ISO14A_SET_TIMEOUT) {
if(param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
-// UsbSendPacket((void *)ack, sizeof(UsbCommand));
}
if(param & ISO14A_RAW) {
AppendCrc14443a(cmd,len);
len += 2;
}
- ReaderTransmit(cmd,len);
+ if(lenbits>0) {
+ ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
+ } else {
+ ReaderTransmit(cmd,len, NULL);
+ }
arg0 = ReaderReceive(buf);
-// UsbSendPacket((void *)ack, sizeof(UsbCommand));
- cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(0);
- }
+ iso14a_set_trigger(0);
+ }
if(param & ISO14A_NO_DISCONNECT) {
return;
- }
+ }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
-// prepare the Mifare AUTH transfer with an added necessary delay.
-void PrepareDelayedAuthTransfer(uint8_t* frame, int len, uint16_t delay)
-{
- CodeIso14443aBitsAsReaderPar(frame, len*8, GetParity(frame,len));
-
- uint8_t bitmask = 0;
- uint8_t bits_to_shift = 0;
- uint8_t bits_shifted = 0;
-
- if (delay) {
- for (uint16_t i = 0; i < delay; i++) {
- bitmask |= (0x01 << i);
- }
- ToSend[++ToSendMax] = 0x00;
- for (uint16_t i = 0; i < ToSendMax; i++) {
- bits_to_shift = ToSend[i] & bitmask;
- ToSend[i] = ToSend[i] >> delay;
- ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
- bits_shifted = bits_to_shift;
- }
- }
-}
-
-
-
// Determine the distance between two nonces.
// Assume that the difference is small, but we don't know which is first.
// Therefore try in alternating directions.
StartCountMifare();
mf_nr_ar3 = 0;
iso14443a_setup();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // resets some FPGA internal registers
while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up"
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // sync on rising edge of ssp_frame
- sync_time = GetCountMifare();
+ sync_time = GetCountMifare() & 0xfffffff8;
sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
nt = 0;
LED_C_ON();
if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
//keep the card active
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- PrepareDelayedAuthTransfer(mf_auth, sizeof(mf_auth), (sync_cycles + catch_up_cycles) & 0x00000007);
+ // CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
- sync_time = sync_time + ((sync_cycles + catch_up_cycles) & 0xfffffff8);
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
// if we missed the sync time already, advance to the next nonce repeat
while(GetCountMifare() > sync_time) {
- sync_time = sync_time + (sync_cycles & 0xfffffff8);
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
}
- // now sync. After syncing, the following Classic Auth will return the same tag nonce (mostly)
- while(GetCountMifare() < sync_time);
-
- // Transmit MIFARE_CLASSIC_AUTH
- int samples = 0;
- int wait = 0;
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
-
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
// Transmit reader nonce with fake par
- ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par);
+ ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt);
continue;
}
sync_cycles = (sync_cycles - nt_distance);
-// Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+ if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
}
}
consecutive_resyncs = 0;
}
if (consecutive_resyncs < 3) {
- Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
- Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
}
continue;
}
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer))
{
- catch_up_cycles = 8; // the PRNG doesn't run during data transfers. 4 Bit = 8 cycles
+ catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
{