// Jonathan Westhues, October 2006
//-----------------------------------------------------------------------------
+// possible mod_types:
+`define NO_MODULATION 3'b000
+`define MODULATE_BPSK 3'b001
+`define MODULATE_212K 3'b010
+`define MODULATE_424K 3'b100
+`define MODULATE_424K_8BIT 3'b101
+
module hi_simulate(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
output dbg;
input [2:0] mod_type;
-// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can
-// always be low.
-assign pwr_hi = 1'b0;
-assign pwr_lo = 1'b0;
// The comparator with hysteresis on the output from the peak detector.
reg after_hysteresis;
end
-// Divide 13.56 MHz by 32 to produce the SSP_CLK
-// The register is bigger to allow higher division factors of up to /128
-reg [10:0] ssp_clk_divider;
+// Divide 13.56 MHz to produce various frequencies for SSP_CLK
+// and modulation.
+reg [7:0] ssp_clk_divider;
always @(posedge adc_clk)
ssp_clk_divider <= (ssp_clk_divider + 1);
reg ssp_clk;
-reg ssp_frame;
+
always @(negedge adc_clk)
begin
- //If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
- if(mod_type == 3'b101)
- begin
- if(ssp_clk_divider[7:0] == 8'b00000000)
- ssp_clk <= 1'b0;
- if(ssp_clk_divider[7:0] == 8'b10000000)
- ssp_clk <= 1'b1;
-
- end
+ if(mod_type == `MODULATE_424K_8BIT)
+ // Get bit every at 53KHz (every 8th carrier bit of 424kHz)
+ ssp_clk <= ssp_clk_divider[7];
+ else if(mod_type == `MODULATE_212K)
+ // Get next bit at 212kHz
+ ssp_clk <= ssp_clk_divider[5];
else
- begin
- if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
- ssp_clk <= 1'b1;
- if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
- ssp_clk <= 1'b0;
- end
+ // Get next bit at 424Khz
+ ssp_clk <= ssp_clk_divider[4];
end
-//assign ssp_clk = ssp_clk_divider[4];
-
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
// this is arbitrary, because it's just a bitstream.
// One nasty issue, though: I can't make it work with both rx and tx at
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
-
+reg ssp_frame;
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
- if(mod_type == 3'b000) // not modulating, so listening, to ARM
+ if(mod_type == `NO_MODULATION) // not modulating, so listening, to ARM
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
else
- ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
+ ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
// Synchronize up the after-hysteresis signal, to produce DIN.
reg ssp_din;
always @(posedge ssp_clk)
ssp_din = after_hysteresis;
-// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
+// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
reg modulating_carrier;
always @(mod_type or ssp_clk or ssp_dout)
- if(mod_type == 3'b000)
+ if (mod_type == `NO_MODULATION)
modulating_carrier <= 1'b0; // no modulation
- else if(mod_type == 3'b001)
+ else if (mod_type == `MODULATE_BPSK)
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
- else if(mod_type == 3'b010)
- modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
- else if(mod_type == 3'b100 || mod_type == 3'b101)
- modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
+ else if (mod_type == `MODULATE_212K)
+ modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
+ else if (mod_type == `MODULATE_424K || mod_type == `MODULATE_424K_8BIT)
+ modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
else
modulating_carrier <= 1'b0; // yet unused
-// This one is all LF, so doesn't matter
-assign pwr_oe2 = modulating_carrier;
-// Toggle only one of these, since we are already producing much deeper
+// Load modulation. Toggle only one of these, since we are already producing much deeper
// modulation than a real tag would.
-assign pwr_oe1 = modulating_carrier;
-assign pwr_oe4 = modulating_carrier;
+assign pwr_hi = 1'b0; // HF antenna connected to GND
+assign pwr_oe3 = 1'b0; // 10k Load
+assign pwr_oe1 = modulating_carrier; // 33 Ohms Load
+assign pwr_oe4 = modulating_carrier; // 33 Ohms Load
+
+// This is all LF and doesn't matter
+assign pwr_lo = 1'b0;
+assign pwr_oe2 = 1'b0;
-// This one is always on, so that we can watch the carrier.
-assign pwr_oe3 = 1'b0;
-assign dbg = modulating_carrier;
-//reg dbg;
-//always @(ssp_dout)
-// dbg <= ssp_dout;
+assign dbg = ssp_din;
endmodule