]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/loclass/ikeys.c
Unstable branch: ported iclass research from Pentura_Prox's previous proxmark implent...
[proxmark3-svn] / client / loclass / ikeys.c
diff --git a/client/loclass/ikeys.c b/client/loclass/ikeys.c
new file mode 100644 (file)
index 0000000..18571b0
--- /dev/null
@@ -0,0 +1,469 @@
+/*****************************************************************************
+ * This file is part of iClassCipher. It is a reconstructon of the cipher engine
+ * used in iClass, and RFID techology.
+ *
+ * The implementation is based on the work performed by
+ * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
+ * Milosch Meriac in the paper "Dismantling IClass".
+ *
+ * Copyright (C) 2014 Martin Holst Swende
+ *
+ * This is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with IClassCipher.  If not, see <http://www.gnu.org/licenses/>.
+ ****************************************************************************/
+/**
+From "Dismantling iclass":
+       This section describes in detail the built-in key diversification algorithm of iClass.
+       Besides the obvious purpose of deriving a card key from a master key, this
+       algorithm intends to circumvent weaknesses in the cipher by preventing the
+       usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
+       reader first encrypts the card identity id with the master key K, using single
+       DES. The resulting ciphertext is then input to a function called hash0 which
+       outputs the diversified key k.
+
+       k = hash0(DES enc (id, K))
+
+       Here the DES encryption of id with master key K outputs a cryptogram c
+       of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
+       which is used as input to the hash0 function. This function introduces some
+       obfuscation by performing a number of permutations, complement and modulo
+       operations, see Figure 2.5. Besides that, it checks for and removes patterns like
+       similar key bytes, which could produce a strong bias in the cipher. Finally, the
+       output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
+
+
+**/
+
+
+#include <stdint.h>
+#include <stdbool.h>
+#include <string.h>
+#include "cipherutils.h"
+#include "cipher.h"
+#include "../util.h"
+#include <stdio.h>
+#include "des.h"
+#include <inttypes.h>
+
+uint8_t pi[35] = {0x0F,0x17,0x1B,0x1D,0x1E,0x27,0x2B,0x2D,0x2E,0x33,0x35,0x39,0x36,0x3A,0x3C,0x47,0x4B,0x4D,0x4E,0x53,0x55,0x56,0x59,0x5A,0x5C,0x63,0x65,0x66,0x69,0x6A,0x6C,0x71,0x72,0x74,0x78};
+
+static des_context ctx_enc = {DES_ENCRYPT,{0}};
+static des_context ctx_dec = {DES_DECRYPT,{0}};
+
+static bool debug_print = false;
+
+/**
+ * @brief The key diversification algorithm uses 6-bit bytes.
+ * This implementation uses 64 bit uint to pack seven of them into one
+ * variable. When they are there, they are placed as follows:
+ * XXXX XXXX N0 .... N7, occupying the lsat 48 bits.
+ *
+ * This function picks out one from such a collection
+ * @param all
+ * @param n bitnumber
+ * @return
+ */
+uint8_t getSixBitByte(uint64_t c, int n)
+{
+       return (c >> (42-6*n)) & 0x3F;
+       //return (c >> n*6) & 0x3f;
+}
+
+/**
+ * @brief Puts back a six-bit 'byte' into a uint64_t.
+ * @param c buffer
+ * @param z the value to place there
+ * @param n bitnumber.
+ */
+void pushbackSixBitByte(uint64_t *c, uint8_t z, int n)
+{
+       //0x XXXX YYYY ZZZZ ZZZZ ZZZZ
+       //             ^z0         ^z7
+       //z0:  1111 1100 0000 0000
+
+       uint64_t masked = z & 0x3F;
+       uint64_t eraser = 0x3F;
+       masked <<= 42-6*n;
+       eraser <<= 42-6*n;
+
+       //masked <<= 6*n;
+       //eraser <<= 6*n;
+
+       eraser = ~eraser;
+       (*c) &= eraser;
+       (*c) |= masked;
+
+}
+
+uint64_t swapZvalues(uint64_t c)
+{
+       uint64_t newz = 0;
+       pushbackSixBitByte(&newz, getSixBitByte(c,0),7);
+       pushbackSixBitByte(&newz, getSixBitByte(c,1),6);
+       pushbackSixBitByte(&newz, getSixBitByte(c,2),5);
+       pushbackSixBitByte(&newz, getSixBitByte(c,3),4);
+       pushbackSixBitByte(&newz, getSixBitByte(c,4),3);
+       pushbackSixBitByte(&newz, getSixBitByte(c,5),2);
+       pushbackSixBitByte(&newz, getSixBitByte(c,6),1);
+       pushbackSixBitByte(&newz, getSixBitByte(c,7),0);
+       newz |= (c & 0xFFFF000000000000);
+       return newz;
+}
+
+/**
+* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
+*/
+uint64_t ck(int i, int j, uint64_t z)
+{
+
+//     printf("ck( i=%d, j=%d), zi=[%d],zj=[%d] \n",i,j,getSixBitByte(z,i),getSixBitByte(z,j) );
+
+       if(i == 1 && j == -1)
+       {
+               // ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
+               return z;
+
+       }else if( j == -1)
+       {
+               // ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
+               return ck(i-1,i-2, z);
+       }
+
+       if(getSixBitByte(z,i) == getSixBitByte(z,j))
+       {
+               // TODO, I dont know what they mean here in the paper
+               //ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
+               uint64_t newz = 0;
+               int c;
+               //printf("z[i]=z[i] (0x%02x), i=%d, j=%d\n",getSixBitByte(z,i),i,j );
+               for(c = 0; c < 4 ;c++)
+               {
+                       uint8_t val = getSixBitByte(z,c);
+                       if(c == i)
+                       {
+                               //printf("oops\n");
+                               pushbackSixBitByte(&newz, j, c);
+                       }else
+                       {
+                               pushbackSixBitByte(&newz, val, c);
+                       }
+               }
+               return ck(i,j-1,newz);
+       }else
+       {
+               return ck(i,j-1,z);
+       }
+
+}
+/**
+
+       Definition 8.
+       Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
+       check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
+
+       where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
+
+               ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
+               ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
+               ck(i, j, z [0] . . . z [3] ) =
+               ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ),  if z [i] = z [j] ;
+               ck(i, j − 1, z [0] . . . z [3] ), otherwise
+
+       otherwise.
+**/
+
+uint64_t check(uint64_t z)
+{
+       //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
+
+       // ck(3, 2, z [0] . . . z [3] )
+       uint64_t ck1 = ck(3,2, z );
+
+       // ck(3, 2, z [4] . . . z [7] )
+       uint64_t ck2 = ck(3,2, z << 24);
+       ck1 &= 0x00000000FFFFFF000000;
+       ck2 &= 0x00000000FFFFFF000000;
+
+       return ck1 | ck2 >> 24;
+
+}
+
+void permute(BitstreamIn *p_in, uint64_t z,int l,int r, BitstreamOut* out)
+{
+       if(bitsLeft(p_in) == 0)
+       {
+               return;
+       }
+       bool pn = tailBit(p_in);
+       if( pn ) // pn = 1
+       {
+               uint8_t zl = getSixBitByte(z,l);
+               //printf("permute pushing, zl=0x%02x, zl+1=0x%02x\n", zl, zl+1);
+               push6bits(out, zl+1);
+               permute(p_in, z, l+1,r, out);
+       }else // otherwise
+       {
+               uint8_t zr = getSixBitByte(z,r);
+               //printf("permute pushing, zr=0x%02x\n", zr);
+               push6bits(out, zr);
+               permute(p_in,z,l,r+1,out);
+       }
+}
+void testPermute()
+{
+
+       uint64_t x = 0;
+       pushbackSixBitByte(&x,0x00,0);
+       pushbackSixBitByte(&x,0x01,1);
+       pushbackSixBitByte(&x,0x02,2);
+       pushbackSixBitByte(&x,0x03,3);
+       pushbackSixBitByte(&x,0x04,4);
+       pushbackSixBitByte(&x,0x05,5);
+       pushbackSixBitByte(&x,0x06,6);
+       pushbackSixBitByte(&x,0x07,7);
+
+       uint8_t mres[8] = { getSixBitByte(x, 0),
+                                               getSixBitByte(x, 1),
+                                               getSixBitByte(x, 2),
+                                               getSixBitByte(x, 3),
+                                               getSixBitByte(x, 4),
+                                               getSixBitByte(x, 5),
+                                               getSixBitByte(x, 6),
+                                               getSixBitByte(x, 7)};
+       printarr("input_perm", mres,8);
+
+       uint8_t p = ~pi[0];
+       BitstreamIn p_in = { &p, 8,0 };
+       uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
+       BitstreamOut out = {outbuffer,0,0};
+
+       permute(&p_in, x,0,4, &out);
+
+       uint64_t permuted = bytes_to_num(outbuffer,8);
+       //printf("zTilde 0x%"PRIX64"\n", zTilde);
+       permuted >>= 16;
+
+       uint8_t res[8] = { getSixBitByte(permuted, 0),
+                                               getSixBitByte(permuted, 1),
+                                               getSixBitByte(permuted, 2),
+                                               getSixBitByte(permuted, 3),
+                                               getSixBitByte(permuted, 4),
+                                               getSixBitByte(permuted, 5),
+                                               getSixBitByte(permuted, 6),
+                                               getSixBitByte(permuted, 7)};
+       printarr("permuted", res, 8);
+}
+void printbegin()
+{
+       if(! debug_print)
+               return;
+
+       printf("          | x| y|z0|z1|z2|z3|z4|z5|z6|z7|\n");
+}
+
+void printState(char* desc, int x,int y, uint64_t c)
+{
+       if(! debug_print)
+               return;
+
+       printf("%s : ", desc);
+       //uint8_t x =   (c & 0xFF00000000000000 ) >> 56;
+       //uint8_t y =   (c & 0x00FF000000000000 ) >> 48;
+       printf("  %02x %02x", x,y);
+       int i ;
+       for(i =0 ; i < 8 ; i++)
+       {
+               printf(" %02x", getSixBitByte(c,i));
+       }
+       printf("\n");
+}
+
+/**
+ * @brief
+ *Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
+ *     hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
+ * z'[i] = (z[i] mod (63-i)) + i       i =  0...3
+ * z'[i+4] = (z[i+4] mod (64-i)) + i   i =  0...3
+ * ẑ = check(z');
+ * @param c
+ * @param k this is where the diversified key is put (should be 8 bytes)
+ * @return
+ */
+void hash0(uint64_t c, uint8_t *k)
+{
+       printbegin();
+       //These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
+       // x = 8 bits
+       // y = 8 bits
+       // z0-z7 6 bits each : 48 bits
+       uint8_t x =     (c & 0xFF00000000000000 ) >> 56;
+       uint8_t y =     (c & 0x00FF000000000000 ) >> 48;
+       printState("origin",x,y,c);
+       int n;
+       uint8_t zn, zn4, _zn, _zn4;
+       uint64_t zP = 0;
+
+       for(n = 0;  n < 4 ; n++)
+       {
+               zn = getSixBitByte(c,n);
+               zn4 = getSixBitByte(c,n+4);
+
+               _zn = (zn % (63-n)) + n;
+               _zn4 = (zn4 % (64-n)) + n;
+
+               pushbackSixBitByte(&zP, _zn,n);
+               pushbackSixBitByte(&zP, _zn4,n+4);
+
+       }
+       printState("x|y|z'",x,y,zP);
+
+       uint64_t zCaret = check(zP);
+       printState("x|y|z^",x,y,zP);
+
+
+       uint8_t p = pi[x % 35];
+
+       if(x & 1) //Check if x7 is 1
+       {
+               p = ~p;
+       }
+    printState("p|y|z^",p,y,zP);
+       //if(debug_print) printf("p:%02x\n", p);
+
+       BitstreamIn p_in = { &p, 8,0 };
+       uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
+       BitstreamOut out = {outbuffer,0,0};
+       permute(&p_in,zCaret,0,4,&out);//returns 48 bits? or 6 8-bytes
+
+       //Out is now a buffer containing six-bit bytes, should be 48 bits
+       // if all went well
+       //printf("Permute output is %d num bits (48?)\n", out.numbits);
+       //Shift z-values down onto the lower segment
+
+       uint64_t zTilde = bytes_to_num(outbuffer,8);
+
+       //printf("zTilde 0x%"PRIX64"\n", zTilde);
+       zTilde >>= 16;
+       //printf("z~ 0x%"PRIX64"\n", zTilde);
+       printState("p|y|z~", p,y,zTilde);
+
+       int i;
+       int zerocounter =0 ;
+       for(i =0 ; i < 8  ; i++)
+       {
+
+               // the key on index i is first a bit from y
+               // then six bits from z,
+               // then a bit from p
+
+               // Init with zeroes
+               k[i] = 0;
+               // First, place yi leftmost in k
+               //k[i] |= (y  << i) & 0x80 ;
+
+               // First, place y(7-i) leftmost in k
+               k[i] |= (y  << (7-i)) & 0x80 ;
+
+               //printf("y%d = %d\n",i,(y  << i) & 0x80);
+
+               uint8_t zTilde_i = getSixBitByte(zTilde, i);
+               //printf("zTilde_%d 0x%02x (should be <= 0x3F)\n",i, zTilde_i);
+               // zTildeI is now on the form 00XXXXXX
+               // with one leftshift, it'll be
+               // 0XXXXXX0
+               // So after leftshift, we can OR it into k
+               // However, when doing complement, we need to
+               // again MASK 0XXXXXX0 (0x7E)
+               zTilde_i <<= 1;
+
+               //Finally, add bit from p or p-mod
+               //Shift bit i into rightmost location (mask only after complement)
+               uint8_t p_i = p >> i & 0x1;
+
+               if( k[i] )// yi = 1
+               {
+                       //printf("k[%d] +1\n", i);
+                       k[i] |= ~zTilde_i & 0x7E;
+                       k[i] |= p_i & 1;
+                       k[i] += 1;
+
+               }else // otherwise
+               {
+                       k[i] |= zTilde_i & 0x7E;
+                       k[i] |= (~p_i) & 1;
+               }
+               if((k[i]  & 1 )== 0)
+               {
+                       zerocounter ++;
+               }
+       }
+       //printf("zerocounter=%d (should be 4)\n",zerocounter);
+       //printf("permute fin, y:0x%02x, x: 0x%02x\n", y, x);
+
+       //return k;
+}
+
+void reorder(uint8_t arr[8])
+{
+       uint8_t tmp[4] = {arr[3],arr[2],arr[1], arr[0]};
+       arr[0] = arr[7];
+       arr[1] = arr[6];
+       arr[2] = arr[5];
+       arr[3] = arr[4];
+       arr[4] = tmp[0];//arr[3];
+       arr[5] = tmp[1];//arr[2];
+       arr[6] = tmp[2];//arr[3];
+       arr[7] = tmp[3];//arr[1]
+}
+
+//extern void printarr(char * name, uint8_t* arr, int len);
+
+bool des_getParityBitFromKey(uint8_t key)
+{//The top 7 bits is used
+       bool parity = ((key & 0x80) >> 7)
+                       ^ ((key & 0x40) >> 6) ^ ((key & 0x20) >> 5)
+                       ^ ((key & 0x10) >> 4) ^ ((key & 0x08) >> 3)
+                       ^ ((key & 0x04) >> 2) ^ ((key & 0x02) >> 1);
+       return !parity;
+}
+void des_checkParity(uint8_t* key)
+{
+       int i;
+       int fails =0;
+       for(i =0 ; i < 8 ; i++)
+       {
+               bool parity = des_getParityBitFromKey(key[i]);
+               if(parity != (key[i] & 0x1))
+               {
+                       fails++;
+                       printf("parity1 fail, byte %d [%02x] was %d, should be %d\n",i,key[i],(key[i] & 0x1),parity);
+               }
+       }
+       if(fails)
+       {
+               printf("parity fails: %d\n", fails);
+       }else
+       {
+               printf("Key syntax is with parity bits inside each byte\n");
+       }
+}
+
+void printarr2(char * name, uint8_t* arr, int len)
+{
+       int i ;
+       printf("%s :", name);
+       for(i =0 ;  i< len ; i++)
+       {
+               printf("%02x",*(arr+i));
+       }
+       printf("\n");
+}
Impressum, Datenschutz