else {
modulation = bit & Demod.syncBit;
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
- //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ #define ICLASS_BUFFER_SIZE 32
+ uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
// The response (tag -> reader) that we're receiving.
- uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
+ uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // reset traceLen to 0
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
+ // free all BigBuf memory
+ BigBuf_free();
+ // The DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+ set_tracing(TRUE);
+ clear_trace();
iso14a_set_trigger(FALSE);
- // The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
- int lastRxCounter;
- int8_t *upTo;
+ int lastRxCounter;
+ uint8_t *upTo;
int smpl;
int maxBehindBy = 0;
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
uint32_t time_0 = GetCountSspClk();
-
+ uint32_t time_start = 0;
+ uint32_t time_stop = 0;
int div = 0;
//int div2 = 0;
(DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
- if(behindBy > 400) {
+ if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
goto done;
}
smpl = decbyter;
if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
+ time_stop = (GetCountSspClk()-time_0) << 4;
LED_C_ON();
//if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, TRUE);
+ LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
}
Demod.state = DEMOD_UNSYNCD;
LED_B_OFF();
Uart.byteCnt = 0;
+ }else{
+ time_start = (GetCountSspClk()-time_0) << 4;
}
decbyter = 0;
}
if(div > 3) {
smpl = decbyte;
if(ManchesterDecoding(smpl & 0x0F)) {
- rsamples = samples - Demod.samples;
+ time_stop = (GetCountSspClk()-time_0) << 4;
+
+ rsamples = samples - Demod.samples;
LED_B_ON();
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, (GetCountSspClk()-time_0) << 4, (GetCountSspClk()-time_0) << 4, parity, FALSE);
+ LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
}
-
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
Demod.output = tagToReaderResponse;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
+ }else{
+ time_start = (GetCountSspClk()-time_0) << 4;
}
div = 0;
DbpString("COMMAND FINISHED");
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
done:
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- /*if(OutOfNDecoding((b & 0xf0) >> 4)) {
- *len = Uart.byteCnt;
- return TRUE;
- }*/
+
if(OutOfNDecoding(b & 0x0f)) {
*len = Uart.byteCnt;
return TRUE;
}
}
+static uint8_t encode4Bits(const uint8_t b)
+{
+ uint8_t c = b & 0xF;
+ // OTA, the least significant bits first
+ // The columns are
+ // 1 - Bit value to send
+ // 2 - Reversed (big-endian)
+ // 3 - Encoded
+ // 4 - Hex values
+
+ switch(c){
+ // 1 2 3 4
+ case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
+ case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
+ case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
+ case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
+ case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
+ case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
+ case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
+ case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
+ case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
+ case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
+ case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
+ case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
+ case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
+ case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
+ case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
+ default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
+
+ }
+}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
{
- //So far a dummy implementation, not used
- //int lastProxToAirDuration =0;
+
+ /*
+ * SOF comprises 3 parts;
+ * * An unmodulated time of 56.64 us
+ * * 24 pulses of 423.75 KHz (fc/32)
+ * * A logic 1, which starts with an unmodulated time of 18.88us
+ * followed by 8 pulses of 423.75kHz (fc/32)
+ *
+ *
+ * EOF comprises 3 parts:
+ * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
+ * time of 18.88us.
+ * - 24 pulses of fc/32
+ * - An unmodulated time of 56.64 us
+ *
+ *
+ * A logic 0 starts with 8 pulses of fc/32
+ * followed by an unmodulated time of 256/fc (~18,88us).
+ *
+ * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
+ * 8 pulses of fc/32 (also 18.88us)
+ *
+ * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
+ * works like this.
+ * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
+ * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
+ *
+ * In this mode the SOF can be written as 00011101 = 0x1D
+ * The EOF can be written as 10111000 = 0xb8
+ * A logic 1 is 01
+ * A logic 0 is 10
+ *
+ * */
+
int i;
ToSendReset();
// Send SOF
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
+ ToSend[++ToSendMax] = 0x1D;
for(i = 0; i < len; i++) {
- int j;
uint8_t b = cmd[i];
-
- // Data bits
- for(j = 0; j < 8; j++) {
- if(b & 1) {
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- } else {
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- }
- b >>= 1;
- }
+ ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
+ ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
}
// Send EOF
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
-
+ ToSend[++ToSendMax] = 0xB8;
//lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
-
// Convert from last byte pos to length
ToSendMax++;
}
ToSendReset();
// Send SOF
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0xff;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xff;
-
+ ToSend[++ToSendMax] = 0x1D;
// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
-
// Convert from last byte pos to length
ToSendMax++;
}
+
int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
/**
* @brief SimulateIClass simulates an iClass card.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Enable and clear the trace
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
+ set_tracing(TRUE);
+ clear_trace();
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
if(simType == 0) {
else if(simType == 2)
{
- uint8_t mac_responses[64] = { 0 };
+ uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
memcpy(csn_crc, datain+(i*8), 8);
if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
{
+ cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
return; // Button pressed
}
}
int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
{
-
// CSN followed by two CRC bytes
+ uint8_t response1[] = { 0x0F} ;
uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
memcpy(response3,csn,sizeof(response3));
// Reader 81 anticoll. CSN
// Tag CSN
- uint8_t *resp;
- int respLen;
- uint8_t* respdata = NULL;
- int respsize = 0;
- uint8_t sof = 0x0f;
+ uint8_t *modulated_response;
+ int modulated_response_size;
+ uint8_t* trace_data = NULL;
+ int trace_data_size = 0;
+ //uint8_t sof = 0x0f;
- // Respond SOF -- takes 8 bytes
- uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
+ // Respond SOF -- takes 1 bytes
+ uint8_t *resp1 = BigBuf_malloc(2);
int resp1Len;
// Anticollision CSN (rotated CSN)
- // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
- uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10);
+ // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
+ uint8_t *resp2 = BigBuf_malloc(28);
int resp2Len;
// CSN
- // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
- uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190);
+ // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
+ uint8_t *resp3 = BigBuf_malloc(30);
int resp3Len;
// e-Purse
- // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
- uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370);
+ // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
+ uint8_t *resp4 = BigBuf_malloc(20);
int resp4Len;
- // + 1720..
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
int len;
LED_A_ON();
bool buttonPressed = false;
- /** Hack for testing
- memcpy(reader_mac_buf,csn,8);
- exitLoop = true;
- end hack **/
-
while(!exitLoop) {
LED_B_OFF();
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
LED_C_OFF();
+
if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
buttonPressed = true;
break;
// Okay, look at the command now.
if(receivedCmd[0] == 0x0a ) {
// Reader in anticollission phase
- resp = resp1; respLen = resp1Len; //order = 1;
- respdata = &sof;
- respsize = sizeof(sof);
+ modulated_response = resp1; modulated_response_size = resp1Len; //order = 1;
+ trace_data = response1;
+ trace_data_size = sizeof(response1);
} else if(receivedCmd[0] == 0x0c) {
// Reader asks for anticollission CSN
- resp = resp2; respLen = resp2Len; //order = 2;
- respdata = response2;
- respsize = sizeof(response2);
+ modulated_response = resp2; modulated_response_size = resp2Len; //order = 2;
+ trace_data = response2;
+ trace_data_size = sizeof(response2);
//DbpString("Reader requests anticollission CSN:");
} else if(receivedCmd[0] == 0x81) {
// Reader selects anticollission CSN.
// Tag sends the corresponding real CSN
- resp = resp3; respLen = resp3Len; //order = 3;
- respdata = response3;
- respsize = sizeof(response3);
+ modulated_response = resp3; modulated_response_size = resp3Len; //order = 3;
+ trace_data = response3;
+ trace_data_size = sizeof(response3);
//DbpString("Reader selects anticollission CSN:");
} else if(receivedCmd[0] == 0x88) {
// Read e-purse (88 02)
- resp = resp4; respLen = resp4Len; //order = 4;
- respdata = response4;
- respsize = sizeof(response4);
+ modulated_response = resp4; modulated_response_size = resp4Len; //order = 4;
+ trace_data = response4;
+ trace_data_size = sizeof(response4);
LED_B_ON();
} else if(receivedCmd[0] == 0x05) {
// Reader random and reader MAC!!!
// Do not respond
// We do not know what to answer, so lets keep quiet
- resp = resp1; respLen = 0; //order = 5;
- respdata = NULL;
- respsize = 0;
+ modulated_response = resp1; modulated_response_size = 0; //order = 5;
+ trace_data = NULL;
+ trace_data_size = 0;
if (breakAfterMacReceived){
// dbprintf:ing ...
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
}
} else if(receivedCmd[0] == 0x00 && len == 1) {
// Reader ends the session
- resp = resp1; respLen = 0; //order = 0;
- respdata = NULL;
- respsize = 0;
+ modulated_response = resp1; modulated_response_size = 0; //order = 0;
+ trace_data = NULL;
+ trace_data_size = 0;
} else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
// Do not respond
- resp = resp1; respLen = 0; //order = 0;
- respdata = NULL;
- respsize = 0;
+ modulated_response = resp1; modulated_response_size = 0; //order = 0;
+ trace_data = NULL;
+ trace_data_size = 0;
}
if(cmdsRecvd > 100) {
else {
cmdsRecvd++;
}
-
- if(respLen > 0) {
- SendIClassAnswer(resp, respLen, 21);
+ /**
+ A legit tag has about 380us delay between reader EOT and tag SOF.
+ **/
+ if(modulated_response_size > 0) {
+ SendIClassAnswer(modulated_response, modulated_response_size, 1);
t2r_time = GetCountSspClk();
}
GetParity(receivedCmd, len, parity);
LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
- if (respdata != NULL) {
- GetParity(respdata, respsize, parity);
- LogTrace(respdata, respsize, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
+ if (trace_data != NULL) {
+ GetParity(trace_data, trace_data_size, parity);
+ LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
}
if(!tracing) {
DbpString("Trace full");
//Dbprintf("%x", cmdsRecvd);
LED_A_OFF();
LED_B_OFF();
+ LED_C_OFF();
+
if(buttonPressed)
{
DbpString("Button pressed");
int i = 0, d=0;//, u = 0, d = 0;
uint8_t b = 0;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
AT91C_BASE_SSC->SSC_THR = b;
}
- if (i > respLen +4) break;
+// if (i > respLen +4) break;
+ if (i > respLen +1) break;
}
return 0;
int samples = 0;
// This is tied to other size changes
- // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIClassCommand(frame,len);
// Select the card
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
skip = !skip;
if(skip) continue;
- /*if(ManchesterDecoding((b>>4) & 0xf)) {
- *samples = ((c - 1) << 3) + 4;
- return TRUE;
- }*/
+
if(ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return TRUE;
{
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Reset trace buffer
- iso14a_set_tracing(TRUE);
- iso14a_clear_trace();
+ set_tracing(TRUE);
+ clear_trace();
// Setup SSC
FpgaSetupSsc();
}
+size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
+{
+ while(retries-- > 0)
+ {
+ ReaderTransmitIClass(command, cmdsize);
+ if(expected_size == ReaderReceiveIClass(resp)){
+ return 0;
+ }
+ }
+ return 1;//Error
+}
+
+/**
+ * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
+ * @param card_data where the CSN and CC are stored for return
+ * @return 0 = fail
+ * 1 = Got CSN
+ * 2 = Got CSN and CC
+ */
+uint8_t handshakeIclassTag(uint8_t *card_data)
+{
+ static uint8_t act_all[] = { 0x0a };
+ static uint8_t identify[] = { 0x0c };
+ static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+ static uint8_t readcheck_cc[]= { 0x88, 0x02 };
+ uint8_t resp[ICLASS_BUFFER_SIZE];
+
+ uint8_t read_status = 0;
+
+ // Send act_all
+ ReaderTransmitIClass(act_all, 1);
+ // Card present?
+ if(!ReaderReceiveIClass(resp)) return read_status;//Fail
+ //Send Identify
+ ReaderTransmitIClass(identify, 1);
+ //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
+ uint8_t len = ReaderReceiveIClass(resp);
+ if(len != 10) return read_status;//Fail
+
+ //Copy the Anti-collision CSN to our select-packet
+ memcpy(&select[1],resp,8);
+ //Select the card
+ ReaderTransmitIClass(select, sizeof(select));
+ //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
+ len = ReaderReceiveIClass(resp);
+ if(len != 10) return read_status;//Fail
+
+ //Success - level 1, we got CSN
+ //Save CSN in response data
+ memcpy(card_data,resp,8);
+
+ //Flag that we got to at least stage 1, read CSN
+ read_status = 1;
+
+ // Card selected, now read e-purse (cc)
+ ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
+ if(ReaderReceiveIClass(resp) == 8) {
+ //Save CC (e-purse) in response data
+ memcpy(card_data+8,resp,8);
+
+ //Got both
+ read_status = 2;
+ }
+
+ return read_status;
+}
+
// Reader iClass Anticollission
void ReaderIClass(uint8_t arg0) {
- uint8_t act_all[] = { 0x0a };
- uint8_t identify[] = { 0x0c };
- uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t readcheck_cc[]= { 0x88, 0x02 };
uint8_t card_data[24]={0};
uint8_t last_csn[8]={0};
-
- uint8_t *resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
int read_status= 0;
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
-
+ bool get_cc = arg0 & FLAG_ICLASS_READER_GET_CC;
+ set_tracing(TRUE);
setupIclassReader();
size_t datasize = 0;
while(!BUTTON_PRESS())
{
- WDT_HIT();
- // Send act_all
- ReaderTransmitIClass(act_all, 1);
- // Card present?
- if(ReaderReceiveIClass(resp)) {
-
- ReaderTransmitIClass(identify, 1);
-
- if(ReaderReceiveIClass(resp) == 10) {
- //Copy the Anti-collision CSN to our select-packet
- memcpy(&select[1],resp,8);
- //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2],
- // resp[3], resp[4], resp[5],
- // resp[6], resp[7]);
- //Select the card
- ReaderTransmitIClass(select, sizeof(select));
-
- if(ReaderReceiveIClass(resp) == 10) {
- //Save CSN in response data
- memcpy(card_data,resp,8);
- datasize += 8;
- //Flag that we got to at least stage 1, read CSN
- read_status = 1;
-
- // Card selected
- //Dbprintf("Readcheck on Sector 2");
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
- //Save CC (e-purse) in response data
- memcpy(card_data+8,resp,8);
- datasize += 8;
- //Got both
- read_status = 2;
- }
-
- LED_B_ON();
- //Send back to client, but don't bother if we already sent this
- if(memcmp(last_csn, card_data, 8) != 0)
- cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
-
- //Save that we already sent this....
- if(read_status == 2)
- memcpy(last_csn, card_data, 8);
-
- LED_B_OFF();
-
- if(abort_after_read) break;
- }
- }
- }
+ if(!tracing) {
+ DbpString("Trace full");
+ break;
+ }
+ WDT_HIT();
- if(traceLen > TRACE_SIZE) {
- DbpString("Trace full");
- break;
- }
- }
+ read_status = handshakeIclassTag(card_data);
- cmd_send(CMD_ACK,0,0,0,card_data, 0);
+ if(read_status == 0) continue;
+ if(read_status == 1) datasize = 8;
+ if(read_status == 2) datasize = 16;
+ LED_B_ON();
+ //Send back to client, but don't bother if we already sent this
+ if(memcmp(last_csn, card_data, 8) != 0)
+ {
+
+ if(!get_cc || (get_cc && read_status == 2))
+ {
+ cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
+ if(abort_after_read) {
+ LED_A_OFF();
+ return;
+ }
+ //Save that we already sent this....
+ memcpy(last_csn, card_data, 8);
+ }
+ //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
+ }
+ LED_B_OFF();
+ }
+ cmd_send(CMD_ACK,0,0,0,card_data, 0);
LED_A_OFF();
}
void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
- uint8_t act_all[] = { 0x0a };
- uint8_t identify[] = { 0x0c };
- uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t readcheck_cc[]= { 0x88, 0x02 };
+
+ uint8_t card_data[USB_CMD_DATA_SIZE]={0};
+ uint16_t block_crc_LUT[255] = {0};
+
+ {//Generate a lookup table for block crc
+ for(int block = 0; block < 255; block++){
+ char bl = block;
+ block_crc_LUT[block] = iclass_crc16(&bl ,1);
+ }
+ }
+ //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
+
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
uint16_t crc = 0;
uint8_t cardsize=0;
- bool read_success=false;
uint8_t mem=0;
static struct memory_t{
int keyaccess;
} memory;
- uint8_t* resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
+ uint8_t resp[ICLASS_BUFFER_SIZE];
setupIclassReader();
+ set_tracing(TRUE);
-
- for(int i=0;i<1;i++) {
+ while(!BUTTON_PRESS()) {
- if(traceLen > TRACE_SIZE) {
+ WDT_HIT();
+
+ if(!tracing) {
DbpString("Trace full");
break;
}
- if (BUTTON_PRESS()) break;
+ uint8_t read_status = handshakeIclassTag(card_data);
+ if(read_status < 2) continue;
- // Send act_all
- ReaderTransmitIClass(act_all, 1);
- // Card present?
- if(ReaderReceiveIClass(resp)) {
- ReaderTransmitIClass(identify, 1);
- if(ReaderReceiveIClass(resp) == 10) {
- // Select card
- memcpy(&select[1],resp,8);
- ReaderTransmitIClass(select, sizeof(select));
+ //for now replay captured auth (as cc not updated)
+ memcpy(check+5,MAC,4);
- if(ReaderReceiveIClass(resp) == 10) {
- Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
- }
- // Card selected
- Dbprintf("Readcheck on Sector 2");
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
- Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
- }else return;
- Dbprintf("Authenticate");
- //for now replay captured auth (as cc not updated)
- memcpy(check+5,MAC,4);
- //Dbprintf(" AA: %02x %02x %02x %02x",
- // check[5], check[6], check[7],check[8]);
- ReaderTransmitIClass(check, sizeof(check));
- if(ReaderReceiveIClass(resp) == 4) {
- Dbprintf(" AR: %02x %02x %02x %02x",
- resp[0], resp[1], resp[2],resp[3]);
- }else {
- Dbprintf("Error: Authentication Fail!");
- return;
- }
- Dbprintf("Dump Contents");
- //first get configuration block
- read_success=false;
- read[1]=1;
- uint8_t *blockno=&read[1];
- crc = iclass_crc16((char *)blockno,1);
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
- while(!read_success){
- ReaderTransmitIClass(read, sizeof(read));
- if(ReaderReceiveIClass(resp) == 10) {
- read_success=true;
- mem=resp[5];
- memory.k16= (mem & 0x80);
- memory.book= (mem & 0x20);
- memory.k2= (mem & 0x8);
- memory.lockauth= (mem & 0x2);
- memory.keyaccess= (mem & 0x1);
+ if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
+ {
+ Dbprintf("Error: Authentication Fail!");
+ continue;
+ }
- }
- }
- if (memory.k16){
- cardsize=255;
- }else cardsize=32;
- //then loop around remaining blocks
- for(uint8_t j=0; j<cardsize; j++){
- read_success=false;
- uint8_t *blockno=&j;
- //crc_data[0]=j;
- read[1]=j;
- crc = iclass_crc16((char *)blockno,1);
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
- while(!read_success){
- ReaderTransmitIClass(read, sizeof(read));
- if(ReaderReceiveIClass(resp) == 10) {
- read_success=true;
- Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
- j, resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
- }
- }
+ //first get configuration block (block 1)
+ crc = block_crc_LUT[1];
+ read[1]=1;
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+
+ if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
+ {
+ Dbprintf("Dump config (block 1) failed");
+ continue;
+ }
+
+ mem=resp[5];
+ memory.k16= (mem & 0x80);
+ memory.book= (mem & 0x20);
+ memory.k2= (mem & 0x8);
+ memory.lockauth= (mem & 0x2);
+ memory.keyaccess= (mem & 0x1);
+
+ cardsize = memory.k16 ? 255 : 32;
+ WDT_HIT();
+ //Set card_data to all zeroes, we'll fill it with data
+ memset(card_data,0x0,USB_CMD_DATA_SIZE);
+ uint8_t failedRead =0;
+ uint32_t stored_data_length =0;
+ //then loop around remaining blocks
+ for(int block=0; block < cardsize; block++){
+
+ read[1]= block;
+ crc = block_crc_LUT[block];
+ read[2] = crc >> 8;
+ read[3] = crc & 0xff;
+
+ if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
+ {
+ Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
+ block, resp[0], resp[1], resp[2],
+ resp[3], resp[4], resp[5],
+ resp[6], resp[7]);
+
+ //Fill up the buffer
+ memcpy(card_data+stored_data_length,resp,8);
+ stored_data_length += 8;
+ if(stored_data_length +8 > USB_CMD_DATA_SIZE)
+ {//Time to send this off and start afresh
+ cmd_send(CMD_ACK,
+ stored_data_length,//data length
+ failedRead,//Failed blocks?
+ 0,//Not used ATM
+ card_data, stored_data_length);
+ //reset
+ stored_data_length = 0;
+ failedRead = 0;
}
+
+ }else{
+ failedRead = 1;
+ stored_data_length +=8;//Otherwise, data becomes misaligned
+ Dbprintf("Failed to dump block %d", block);
}
}
- WDT_HIT();
+
+ //Send off any remaining data
+ if(stored_data_length > 0)
+ {
+ cmd_send(CMD_ACK,
+ stored_data_length,//data length
+ failedRead,//Failed blocks?
+ 0,//Not used ATM
+ card_data, stored_data_length);
+ }
+ //If we got here, let's break
+ break;
}
-
+ //Signal end of transmission
+ cmd_send(CMD_ACK,
+ 0,//data length
+ 0,//Failed blocks?
+ 0,//Not used ATM
+ card_data, 0);
+
LED_A_OFF();
}