-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 14443 type A.\r
-//\r
-// Gerhard de Koning Gans - May 2008\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "../common/iso14443_crc.c"\r
-\r
-typedef enum {\r
- SEC_D = 1,\r
- SEC_E = 2,\r
- SEC_F = 3,\r
- SEC_X = 4,\r
- SEC_Y = 5,\r
- SEC_Z = 6\r
-} SecType;\r
-\r
-//-----------------------------------------------------------------------------\r
-// The software UART that receives commands from the reader, and its state\r
-// variables.\r
-//-----------------------------------------------------------------------------\r
-static struct {\r
- enum {\r
- STATE_UNSYNCD,\r
- STATE_START_OF_COMMUNICATION,\r
- STATE_MILLER_X,\r
- STATE_MILLER_Y,\r
- STATE_MILLER_Z,\r
- STATE_ERROR_WAIT\r
- } state;\r
- WORD shiftReg;\r
- int bitCnt;\r
- int byteCnt;\r
- int byteCntMax;\r
- int posCnt;\r
- int syncBit;\r
- int parityBits;\r
- int samples;\r
- int highCnt;\r
- int bitBuffer;\r
- enum {\r
- DROP_NONE,\r
- DROP_FIRST_HALF,\r
- DROP_SECOND_HALF\r
- } drop;\r
- BYTE *output;\r
-} Uart;\r
-\r
-static BOOL MillerDecoding(int bit)\r
-{\r
- int error = 0;\r
- int bitright;\r
-\r
- if(!Uart.bitBuffer) {\r
- Uart.bitBuffer = bit ^ 0xFF0;\r
- return FALSE;\r
- }\r
- else {\r
- Uart.bitBuffer <<= 4;\r
- Uart.bitBuffer ^= bit;\r
- }\r
-\r
- BOOL EOC = FALSE;\r
-\r
- if(Uart.state != STATE_UNSYNCD) {\r
- Uart.posCnt++;\r
-\r
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {\r
- bit = 0x00;\r
- }\r
- else {\r
- bit = 0x01;\r
- }\r
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {\r
- bitright = 0x00;\r
- }\r
- else {\r
- bitright = 0x01;\r
- }\r
- if(bit != bitright) { bit = bitright; }\r
-\r
- if(Uart.posCnt == 1) {\r
- // measurement first half bitperiod\r
- if(!bit) {\r
- Uart.drop = DROP_FIRST_HALF;\r
- }\r
- }\r
- else {\r
- // measurement second half bitperiod\r
- if(!bit & (Uart.drop == DROP_NONE)) {\r
- Uart.drop = DROP_SECOND_HALF;\r
- }\r
- else if(!bit) {\r
- // measured a drop in first and second half\r
- // which should not be possible\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x01;\r
- }\r
-\r
- Uart.posCnt = 0;\r
-\r
- switch(Uart.state) {\r
- case STATE_START_OF_COMMUNICATION:\r
- Uart.shiftReg = 0;\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // error, should not happen in SOC\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- else {\r
- // correct SOC\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Z:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- // if(Uart.drop == DROP_FIRST_HALF) {\r
- // Uart.state = STATE_MILLER_Z; stay the same\r
- // we see a logic '0' }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // we see a logic '1'\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_X:\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // sequence Y, we see a '0'\r
- Uart.state = STATE_MILLER_Y;\r
- Uart.bitCnt++;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // Would be STATE_MILLER_Z\r
- // but Z does not follow X, so error\r
- Uart.state = STATE_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and stay in state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.bitCnt++;\r
- }\r
- break;\r
-\r
- case STATE_MILLER_Y:\r
- Uart.bitCnt++;\r
- Uart.shiftReg >>= 1;\r
- if(Uart.drop == DROP_NONE) {\r
- // logic '0' followed by sequence Y\r
- // end of communication\r
- Uart.state = STATE_UNSYNCD;\r
- EOC = TRUE;\r
- }\r
- if(Uart.drop == DROP_FIRST_HALF) {\r
- // we see a '0'\r
- Uart.state = STATE_MILLER_Z;\r
- }\r
- if(Uart.drop == DROP_SECOND_HALF) {\r
- // We see a '1' and go to state X\r
- Uart.shiftReg |= 0x100;\r
- Uart.state = STATE_MILLER_X;\r
- }\r
- break;\r
-\r
- case STATE_ERROR_WAIT:\r
- // That went wrong. Now wait for at least two bit periods\r
- // and try to sync again\r
- if(Uart.drop == DROP_NONE) {\r
- Uart.highCnt = 6;\r
- Uart.state = STATE_UNSYNCD;\r
- }\r
- break;\r
-\r
- default:\r
- Uart.state = STATE_UNSYNCD;\r
- Uart.highCnt = 0;\r
- break;\r
- }\r
-\r
- Uart.drop = DROP_NONE;\r
-\r
- // should have received at least one whole byte...\r
- if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {\r
- return TRUE;\r
- }\r
-\r
- if(Uart.bitCnt == 9) {\r
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);\r
- Uart.byteCnt++;\r
-\r
- Uart.parityBits <<= 1;\r
- Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);\r
-\r
- if(EOC) {\r
- // when End of Communication received and\r
- // all data bits processed..\r
- return TRUE;\r
- }\r
- Uart.bitCnt = 0;\r
- }\r
-\r
- /*if(error) {\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = error & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;\r
- Uart.byteCnt++;\r
- Uart.output[Uart.byteCnt] = 0xAA;\r
- Uart.byteCnt++;\r
- return TRUE;\r
- }*/\r
- }\r
-\r
- }\r
- else {\r
- bit = Uart.bitBuffer & 0xf0;\r
- bit >>= 4;\r
- bit ^= 0x0F;\r
- if(bit) {\r
- // should have been high or at least (4 * 128) / fc\r
- // according to ISO this should be at least (9 * 128 + 20) / fc\r
- if(Uart.highCnt == 8) {\r
- // we went low, so this could be start of communication\r
- // it turns out to be safer to choose a less significant\r
- // syncbit... so we check whether the neighbour also represents the drop\r
- Uart.posCnt = 1; // apparently we are busy with our first half bit period\r
- Uart.syncBit = bit & 8;\r
- Uart.samples = 3;\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }\r
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }\r
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }\r
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;\r
- if(Uart.syncBit & (Uart.bitBuffer & 8)) {\r
- Uart.syncBit = 8;\r
-\r
- // the first half bit period is expected in next sample\r
- Uart.posCnt = 0;\r
- Uart.samples = 3;\r
- }\r
- }\r
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }\r
-\r
- Uart.syncBit <<= 4;\r
- Uart.state = STATE_START_OF_COMMUNICATION;\r
- Uart.drop = DROP_FIRST_HALF;\r
- Uart.bitCnt = 0;\r
- Uart.byteCnt = 0;\r
- Uart.parityBits = 0;\r
- error = 0;\r
- }\r
- else {\r
- Uart.highCnt = 0;\r
- }\r
- }\r
- else {\r
- if(Uart.highCnt < 8) {\r
- Uart.highCnt++;\r
- }\r
- }\r
- }\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// ISO 14443 Type A - Manchester\r
-//=============================================================================\r
-\r
-static struct {\r
- enum {\r
- DEMOD_UNSYNCD,\r
- DEMOD_START_OF_COMMUNICATION,\r
- DEMOD_MANCHESTER_D,\r
- DEMOD_MANCHESTER_E,\r
- DEMOD_MANCHESTER_F,\r
- DEMOD_ERROR_WAIT\r
- } state;\r
- int bitCount;\r
- int posCount;\r
- int syncBit;\r
- int parityBits;\r
- WORD shiftReg;\r
- int buffer;\r
- int buff;\r
- int samples;\r
- int len;\r
- enum {\r
- SUB_NONE,\r
- SUB_FIRST_HALF,\r
- SUB_SECOND_HALF\r
- } sub;\r
- BYTE *output;\r
-} Demod;\r
-\r
-static BOOL ManchesterDecoding(int v)\r
-{\r
- int bit;\r
- int modulation;\r
- int error = 0;\r
-\r
- if(!Demod.buff) {\r
- Demod.buff = 1;\r
- Demod.buffer = v;\r
- return FALSE;\r
- }\r
- else {\r
- bit = Demod.buffer;\r
- Demod.buffer = v;\r
- }\r
-\r
- if(Demod.state==DEMOD_UNSYNCD) {\r
- Demod.output[Demod.len] = 0xfa;\r
- Demod.syncBit = 0;\r
- //Demod.samples = 0;\r
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part\r
- if(bit & 0x08) { Demod.syncBit = 0x08; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x04) { Demod.syncBit = 0x04; }\r
- }\r
- else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x02) { Demod.syncBit = 0x02; }\r
- }\r
- else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }\r
- if(!Demod.syncBit) {\r
- if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit & (Demod.buffer & 0x08)) {\r
- Demod.syncBit = 0x08;\r
-\r
- // The first half bitperiod is expected in next sample\r
- Demod.posCount = 0;\r
- Demod.output[Demod.len] = 0xfb;\r
- }\r
- }\r
- else if(bit & 0x01) { Demod.syncBit = 0x01; }\r
-\r
- if(Demod.syncBit) {\r
- Demod.len = 0;\r
- Demod.state = DEMOD_START_OF_COMMUNICATION;\r
- Demod.sub = SUB_FIRST_HALF;\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- Demod.parityBits = 0;\r
- Demod.samples = 0;\r
- if(Demod.posCount) {\r
- switch(Demod.syncBit) {\r
- case 0x08: Demod.samples = 3; break;\r
- case 0x04: Demod.samples = 2; break;\r
- case 0x02: Demod.samples = 1; break;\r
- case 0x01: Demod.samples = 0; break;\r
- }\r
- }\r
- error = 0;\r
- }\r
- }\r
- else {\r
- //modulation = bit & Demod.syncBit;\r
- modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;\r
-\r
- Demod.samples += 4;\r
-\r
- if(Demod.posCount==0) {\r
- Demod.posCount = 1;\r
- if(modulation) {\r
- Demod.sub = SUB_FIRST_HALF;\r
- }\r
- else {\r
- Demod.sub = SUB_NONE;\r
- }\r
- }\r
- else {\r
- Demod.posCount = 0;\r
- if(modulation && (Demod.sub == SUB_FIRST_HALF)) {\r
- if(Demod.state!=DEMOD_ERROR_WAIT) {\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- Demod.output[Demod.len] = 0xaa;\r
- error = 0x01;\r
- }\r
- }\r
- else if(modulation) {\r
- Demod.sub = SUB_SECOND_HALF;\r
- }\r
-\r
- switch(Demod.state) {\r
- case DEMOD_START_OF_COMMUNICATION:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xab;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x02;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_D:\r
- case DEMOD_MANCHESTER_E:\r
- if(Demod.sub == SUB_FIRST_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;\r
- Demod.state = DEMOD_MANCHESTER_D;\r
- }\r
- else if(Demod.sub == SUB_SECOND_HALF) {\r
- Demod.bitCount++;\r
- Demod.shiftReg >>= 1;\r
- Demod.state = DEMOD_MANCHESTER_E;\r
- }\r
- else {\r
- Demod.state = DEMOD_MANCHESTER_F;\r
- }\r
- break;\r
-\r
- case DEMOD_MANCHESTER_F:\r
- // Tag response does not need to be a complete byte!\r
- if(Demod.len > 0 || Demod.bitCount > 0) {\r
- if(Demod.bitCount > 0) {\r
- Demod.shiftReg >>= (9 - Demod.bitCount);\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
- // No parity bit, so just shift a 0\r
- Demod.parityBits <<= 1;\r
- }\r
-\r
- Demod.state = DEMOD_UNSYNCD;\r
- return TRUE;\r
- }\r
- else {\r
- Demod.output[Demod.len] = 0xad;\r
- Demod.state = DEMOD_ERROR_WAIT;\r
- error = 0x03;\r
- }\r
- break;\r
-\r
- case DEMOD_ERROR_WAIT:\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
-\r
- default:\r
- Demod.output[Demod.len] = 0xdd;\r
- Demod.state = DEMOD_UNSYNCD;\r
- break;\r
- }\r
-\r
- if(Demod.bitCount>=9) {\r
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;\r
- Demod.len++;\r
-\r
- Demod.parityBits <<= 1;\r
- Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);\r
-\r
- Demod.bitCount = 0;\r
- Demod.shiftReg = 0;\r
- }\r
-\r
- /*if(error) {\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = error & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- Demod.output[Demod.len] = bit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.buffer & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = Demod.syncBit & 0xFF;\r
- Demod.len++;\r
- Demod.output[Demod.len] = 0xBB;\r
- Demod.len++;\r
- return TRUE;\r
- }*/\r
-\r
- }\r
-\r
- } // end (state != UNSYNCED)\r
-\r
- return FALSE;\r
-}\r
-\r
-//=============================================================================\r
-// Finally, a `sniffer' for ISO 14443 Type A\r
-// Both sides of communication!\r
-//=============================================================================\r
-\r
-//-----------------------------------------------------------------------------\r
-// Record the sequence of commands sent by the reader to the tag, with\r
-// triggering so that we start recording at the point that the tag is moved\r
-// near the reader.\r
-//-----------------------------------------------------------------------------\r
-void SnoopIso14443a(void)\r
-{\r
-\r
- // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT\r
-\r
- #define RECV_CMD_OFFSET 3032\r
- #define RECV_RES_OFFSET 3096\r
- #define DMA_BUFFER_OFFSET 3160\r
- #define DMA_BUFFER_SIZE 4096\r
- #define TRACE_LENGTH 3000\r
-\r
-// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values\r
-// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values\r
-// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values\r
-// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values\r
-\r
- // We won't start recording the frames that we acquire until we trigger;\r
- // a good trigger condition to get started is probably when we see a\r
- // response from the tag.\r
- BOOL triggered = TRUE; // FALSE to wait first for card\r
-\r
- // The command (reader -> tag) that we're receiving.\r
- // The length of a received command will in most cases be no more than 18 bytes.\r
- // So 32 should be enough!\r
- BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);\r
- // The response (tag -> reader) that we're receiving.\r
- BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);\r
-\r
- // As we receive stuff, we copy it from receivedCmd or receivedResponse\r
- // into trace, along with its length and other annotations.\r
- BYTE *trace = (BYTE *)BigBuf;\r
- int traceLen = 0;\r
-\r
- // The DMA buffer, used to stream samples from the FPGA\r
- SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;\r
- int lastRxCounter;\r
- SBYTE *upTo;\r
- int smpl;\r
- int maxBehindBy = 0;\r
-\r
- // Count of samples received so far, so that we can include timing\r
- // information in the trace buffer.\r
- int samples = 0;\r
- int rsamples = 0;\r
-\r
- memset(trace, 0x44, RECV_CMD_OFFSET);\r
-\r
- // Set up the demodulator for tag -> reader responses.\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- // And the reader -> tag commands\r
- memset(&Uart, 0, sizeof(Uart));\r
- Uart.output = receivedCmd;\r
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- // And put the FPGA in the appropriate mode\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
- // Setup for the DMA.\r
- FpgaSetupSsc();\r
- upTo = dmaBuf;\r
- lastRxCounter = DMA_BUFFER_SIZE;\r
- FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);\r
-\r
- LED_A_ON();\r
-\r
- // And now we loop, receiving samples.\r
- for(;;) {\r
- WDT_HIT();\r
- int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) &\r
- (DMA_BUFFER_SIZE-1);\r
- if(behindBy > maxBehindBy) {\r
- maxBehindBy = behindBy;\r
- if(behindBy > 400) {\r
- DbpString("blew circular buffer!");\r
- goto done;\r
- }\r
- }\r
- if(behindBy < 1) continue;\r
-\r
- smpl = upTo[0];\r
- upTo++;\r
- lastRxCounter -= 1;\r
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {\r
- upTo -= DMA_BUFFER_SIZE;\r
- lastRxCounter += DMA_BUFFER_SIZE;\r
- PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo;\r
- PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE;\r
- }\r
-\r
- samples += 4;\r
-#define HANDLE_BIT_IF_BODY \\r
- LED_C_ON(); \\r
- if(triggered) { \\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff); \\r
- trace[traceLen++] = ((rsamples >> 24) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \\r
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \\r
- trace[traceLen++] = Uart.byteCnt; \\r
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \\r
- traceLen += Uart.byteCnt; \\r
- if(traceLen > TRACE_LENGTH) break; \\r
- } \\r
- /* And ready to receive another command. */ \\r
- Uart.state = STATE_UNSYNCD; \\r
- /* And also reset the demod code, which might have been */ \\r
- /* false-triggered by the commands from the reader. */ \\r
- Demod.state = DEMOD_UNSYNCD; \\r
- LED_B_OFF(); \\r
-\r
- if(MillerDecoding((smpl & 0xF0) >> 4)) {\r
- rsamples = samples - Uart.samples;\r
- HANDLE_BIT_IF_BODY\r
- }\r
- if(ManchesterDecoding(smpl & 0x0F)) {\r
- rsamples = samples - Demod.samples;\r
- LED_B_ON();\r
-\r
- // timestamp, as a count of samples\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- // length\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedResponse, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) break;\r
-\r
- triggered = TRUE;\r
-\r
- // And ready to receive another response.\r
- memset(&Demod, 0, sizeof(Demod));\r
- Demod.output = receivedResponse;\r
- Demod.state = DEMOD_UNSYNCD;\r
- LED_C_OFF();\r
- }\r
-\r
- if(BUTTON_PRESS()) {\r
- DbpString("cancelled_a");\r
- goto done;\r
- }\r
- }\r
-\r
- DbpString("COMMAND FINISHED");\r
-\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
-\r
-done:\r
- PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE;\r
- DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);\r
- DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-}\r
-\r
-// Prepare communication bits to send to FPGA\r
-void Sequence(SecType seq)\r
-{\r
- ToSendMax++;\r
- switch(seq) {\r
- // CARD TO READER\r
- case SEC_D:\r
- // Sequence D: 11110000\r
- // modulation with subcarrier during first half\r
- ToSend[ToSendMax] = 0xf0;\r
- break;\r
- case SEC_E:\r
- // Sequence E: 00001111\r
- // modulation with subcarrier during second half\r
- ToSend[ToSendMax] = 0x0f;\r
- break;\r
- case SEC_F:\r
- // Sequence F: 00000000\r
- // no modulation with subcarrier\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- // READER TO CARD\r
- case SEC_X:\r
- // Sequence X: 00001100\r
- // drop after half a period\r
- ToSend[ToSendMax] = 0x0c;\r
- break;\r
- case SEC_Y:\r
- default:\r
- // Sequence Y: 00000000\r
- // no drop\r
- ToSend[ToSendMax] = 0x00;\r
- break;\r
- case SEC_Z:\r
- // Sequence Z: 11000000\r
- // drop at start\r
- ToSend[ToSendMax] = 0xc0;\r
- break;\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare tag messages\r
-//-----------------------------------------------------------------------------\r
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)\r
-{\r
- int i;\r
- int oddparity;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- for(i = 0; i < len; i++) {\r
- int j;\r
- BYTE b = cmd[i];\r
-\r
- // Data bits\r
- oddparity = 0x01;\r
- for(j = 0; j < 8; j++) {\r
- oddparity ^= (b & 1);\r
- if(b & 1) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // Parity bit\r
- if(oddparity) {\r
- Sequence(SEC_D);\r
- } else {\r
- Sequence(SEC_E);\r
- }\r
- }\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4\r
-//-----------------------------------------------------------------------------\r
-static void CodeStrangeAnswer()\r
-{\r
- int i;\r
-\r
- ToSendReset();\r
-\r
- // Correction bit, might be removed when not needed\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(1); // 1\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
- ToSendStuffBit(0);\r
-\r
- // Send startbit\r
- Sequence(SEC_D);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 0\r
- Sequence(SEC_E);\r
-\r
- // 1\r
- Sequence(SEC_D);\r
-\r
- // Send stopbit\r
- Sequence(SEC_F);\r
-\r
- // Flush the buffer in FPGA!!\r
- for(i = 0; i < 5; i++) {\r
- Sequence(SEC_F);\r
- }\r
-\r
- // Convert from last byte pos to length\r
- ToSendMax++;\r
-\r
- // Add a few more for slop\r
- ToSend[ToSendMax++] = 0x00;\r
- ToSend[ToSendMax++] = 0x00;\r
- //ToSendMax += 2;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait for commands from reader\r
-// Stop when button is pressed\r
-// Or return TRUE when command is captured\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)\r
-{\r
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);\r
-\r
- // Now run a `software UART' on the stream of incoming samples.\r
- Uart.output = received;\r
- Uart.byteCntMax = maxLen;\r
- Uart.state = STATE_UNSYNCD;\r
-\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(BUTTON_PRESS()) return FALSE;\r
-\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
- if(MillerDecoding((b & 0xf0) >> 4)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- if(MillerDecoding(b & 0x0f)) {\r
- *len = Uart.byteCnt;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Main loop of simulated tag: receive commands from reader, decide what\r
-// response to send, and send it.\r
-//-----------------------------------------------------------------------------\r
-void SimulateIso14443aTag(int tagType, int TagUid)\r
-{\r
- // This function contains the tag emulation\r
-\r
- // Prepare protocol messages\r
- // static const BYTE cmd1[] = { 0x26 };\r
-// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg\r
-//\r
- static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me\r
-// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me\r
-\r
- // UID response\r
- // static const BYTE cmd2[] = { 0x93, 0x20 };\r
- //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg\r
-\r
-\r
-\r
-// my desfire\r
- static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips\r
-\r
-\r
-// When reader selects us during cascade1 it will send cmd3\r
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)\r
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);\r
-\r
-// send cascade2 2nd half of UID\r
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck\r
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID\r
-\r
-\r
-// When reader selects us during cascade2 it will send cmd3a\r
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)\r
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)\r
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);\r
-\r
- static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce\r
-\r
- BYTE *resp;\r
- int respLen;\r
-\r
- // Longest possible response will be 16 bytes + 2 CRC = 18 bytes\r
- // This will need\r
- // 144 data bits (18 * 8)\r
- // 18 parity bits\r
- // 2 Start and stop\r
- // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)\r
- // 1 just for the case\r
- // ----------- +\r
- // 166\r
- //\r
- // 166 bytes, since every bit that needs to be send costs us a byte\r
- //\r
-\r
-\r
- // Respond with card type\r
- BYTE *resp1 = (((BYTE *)BigBuf) + 800);\r
- int resp1Len;\r
-\r
- // Anticollision cascade1 - respond with uid\r
- BYTE *resp2 = (((BYTE *)BigBuf) + 970);\r
- int resp2Len;\r
-\r
- // Anticollision cascade2 - respond with 2nd half of uid if asked\r
- // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88\r
- BYTE *resp2a = (((BYTE *)BigBuf) + 1140);\r
- int resp2aLen;\r
-\r
- // Acknowledge select - cascade 1\r
- BYTE *resp3 = (((BYTE *)BigBuf) + 1310);\r
- int resp3Len;\r
-\r
- // Acknowledge select - cascade 2\r
- BYTE *resp3a = (((BYTE *)BigBuf) + 1480);\r
- int resp3aLen;\r
-\r
- // Response to a read request - not implemented atm\r
- BYTE *resp4 = (((BYTE *)BigBuf) + 1550);\r
- int resp4Len;\r
-\r
- // Authenticate response - nonce\r
- BYTE *resp5 = (((BYTE *)BigBuf) + 1720);\r
- int resp5Len;\r
-\r
- BYTE *receivedCmd = (BYTE *)BigBuf;\r
- int len;\r
-\r
- int i;\r
- int u;\r
- BYTE b;\r
-\r
- // To control where we are in the protocol\r
- int order = 0;\r
- int lastorder;\r
-\r
- // Just to allow some checks\r
- int happened = 0;\r
- int happened2 = 0;\r
-\r
- int cmdsRecvd = 0;\r
-\r
- BOOL fdt_indicator;\r
-\r
- memset(receivedCmd, 0x44, 400);\r
-\r
- // Prepare the responses of the anticollision phase\r
- // there will be not enough time to do this at the moment the reader sends it REQA\r
-\r
- // Answer to request\r
- CodeIso14443aAsTag(response1, sizeof(response1));\r
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;\r
-\r
- // Send our UID (cascade 1)\r
- CodeIso14443aAsTag(response2, sizeof(response2));\r
- memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;\r
-\r
- // Answer to select (cascade1)\r
- CodeIso14443aAsTag(response3, sizeof(response3));\r
- memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;\r
-\r
- // Send the cascade 2 2nd part of the uid\r
- CodeIso14443aAsTag(response2a, sizeof(response2a));\r
- memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;\r
-\r
- // Answer to select (cascade 2)\r
- CodeIso14443aAsTag(response3a, sizeof(response3a));\r
- memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;\r
-\r
- // Strange answer is an example of rare message size (3 bits)\r
- CodeStrangeAnswer();\r
- memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;\r
-\r
- // Authentication answer (random nonce)\r
- CodeIso14443aAsTag(response5, sizeof(response5));\r
- memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;\r
-\r
- // We need to listen to the high-frequency, peak-detected path.\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- cmdsRecvd = 0;\r
-\r
- LED_A_ON();\r
- for(;;) {\r
-\r
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {\r
- DbpString("button press");\r
- break;\r
- }\r
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated\r
- // Okay, look at the command now.\r
- lastorder = order;\r
- i = 1; // first byte transmitted\r
- if(receivedCmd[0] == 0x26) {\r
- // Received a REQUEST\r
- resp = resp1; respLen = resp1Len; order = 1;\r
- //DbpString("Hello request from reader:");\r
- } else if(receivedCmd[0] == 0x52) {\r
- // Received a WAKEUP\r
- resp = resp1; respLen = resp1Len; order = 6;\r
-// //DbpString("Wakeup request from reader:");\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision\r
- // Received request for UID (cascade 1)\r
- resp = resp2; respLen = resp2Len; order = 2;\r
-// DbpString("UID (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision\r
- // Received request for UID (cascade 2)\r
- resp = resp2a; respLen = resp2aLen; order = 20;\r
-// DbpString("UID (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select\r
- // Received a SELECT\r
- resp = resp3; respLen = resp3Len; order = 3;\r
-// DbpString("Select (cascade 1) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select\r
- // Received a SELECT\r
- resp = resp3a; respLen = resp3aLen; order = 30;\r
-// DbpString("Select (cascade 2) request from reader:");\r
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x30) {\r
- // Received a READ\r
- resp = resp4; respLen = resp4Len; order = 4; // Do nothing\r
- DbpString("Read request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
-\r
- } else if(receivedCmd[0] == 0x50) {\r
- // Received a HALT\r
- resp = resp1; respLen = 0; order = 5; // Do nothing\r
- DbpString("Reader requested we HALT!:");\r
-\r
- } else if(receivedCmd[0] == 0x60) {\r
- // Received an authentication request\r
- resp = resp5; respLen = resp5Len; order = 7;\r
- DbpString("Authenticate request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
-\r
- } else if(receivedCmd[0] == 0xE0) {\r
- // Received a RATS request\r
- resp = resp1; respLen = 0;order = 70;\r
- DbpString("RATS request from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- } else {\r
- // Never seen this command before\r
- DbpString("Unknown command received from reader:");\r
- DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);\r
- DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);\r
- DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);\r
-\r
- // Do not respond\r
- resp = resp1; respLen = 0; order = 0;\r
- }\r
-\r
- // Count number of wakeups received after a halt\r
- if(order == 6 && lastorder == 5) { happened++; }\r
-\r
- // Count number of other messages after a halt\r
- if(order != 6 && lastorder == 5) { happened2++; }\r
-\r
- // Look at last parity bit to determine timing of answer\r
- if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {\r
- // 1236, so correction bit needed\r
- i = 0;\r
- }\r
-\r
- memset(receivedCmd, 0x44, 32);\r
-\r
- if(cmdsRecvd > 999) {\r
- DbpString("1000 commands later...");\r
- break;\r
- }\r
- else {\r
- cmdsRecvd++;\r
- }\r
-\r
- if(respLen <= 0) continue;\r
-\r
- // Modulate Manchester\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);\r
- SSC_TRANSMIT_HOLDING = 0x00;\r
- FpgaSetupSsc();\r
-\r
- // ### Transmit the response ###\r
- u = 0;\r
- b = 0x00;\r
- fdt_indicator = FALSE;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING;\r
- (void)b;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- if(i > respLen) {\r
- b = 0x00;\r
- u++;\r
- } else {\r
- b = resp[i];\r
- i++;\r
- }\r
- SSC_TRANSMIT_HOLDING = b;\r
-\r
- if(u > 4) {\r
- break;\r
- }\r
- }\r
- if(BUTTON_PRESS()) {\r
- break;\r
- }\r
- }\r
-\r
- }\r
-\r
- DbpIntegers(happened, happened2, cmdsRecvd);\r
- LED_A_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
- int c;\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
-\r
- if(*wait < 10) { *wait = 10; }\r
-\r
- for(c = 0; c < *wait;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00; // For exact timing!\r
- c++;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- c = 0;\r
- for(;;) {\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = cmd[c];\r
- c++;\r
- if(c >= len) {\r
- break;\r
- }\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- volatile DWORD r = SSC_RECEIVE_HOLDING;\r
- (void)r;\r
- }\r
- WDT_HIT();\r
- }\r
- *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// To generate an arbitrary stream from reader\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)\r
-{\r
- int i;\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- for(i = 0; i < len; i++) {\r
- // Data bits\r
- b = cmd[i];\r
- for(j = 0; j < 8; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
-\r
- }\r
-\r
- // Predefined parity bit, the flipper flips when needed, because of flips in byte sent\r
- if(((parity >> (len - i - 1)) & 1)) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Code a 7-bit command without parity bit\r
-// This is especially for 0x26 and 0x52 (REQA and WUPA)\r
-//-----------------------------------------------------------------------------\r
-void ShortFrameFromReader(const BYTE *cmd)\r
-{\r
- int j;\r
- int last;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- b = cmd[0];\r
- for(j = 0; j < 7; j++) {\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Prepare reader command to send to FPGA\r
-//\r
-//-----------------------------------------------------------------------------\r
-void CodeIso14443aAsReader(const BYTE *cmd, int len)\r
-{\r
- int i, j;\r
- int last;\r
- int oddparity;\r
- BYTE b;\r
-\r
- ToSendReset();\r
-\r
- // Start of Communication (Seq. Z)\r
- Sequence(SEC_Z);\r
- last = 0;\r
-\r
- for(i = 0; i < len; i++) {\r
- // Data bits\r
- b = cmd[i];\r
- oddparity = 0x01;\r
- for(j = 0; j < 8; j++) {\r
- oddparity ^= (b & 1);\r
- if(b & 1) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- b >>= 1;\r
- }\r
-\r
- // Parity bit\r
- if(oddparity) {\r
- // Sequence X\r
- Sequence(SEC_X);\r
- last = 1;\r
- } else {\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- }\r
- }\r
-\r
- // End of Communication\r
- if(last == 0) {\r
- // Sequence Z\r
- Sequence(SEC_Z);\r
- }\r
- else {\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
- last = 0;\r
- }\r
- // Sequence Y\r
- Sequence(SEC_Y);\r
-\r
- // Just to be sure!\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
- Sequence(SEC_Y);\r
-\r
- // Convert from last character reference to length\r
- ToSendMax++;\r
-}\r
-\r
-\r
-//-----------------------------------------------------------------------------\r
-// Wait a certain time for tag response\r
-// If a response is captured return TRUE\r
-// If it takes to long return FALSE\r
-//-----------------------------------------------------------------------------\r
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer\r
-{\r
- // buffer needs to be 512 bytes\r
- int c;\r
-\r
- // Set FPGA mode to "reader listen mode", no modulation (listen\r
- // only, since we are receiving, not transmitting).\r
- // Signal field is on with the appropriate LED\r
- LED_D_ON();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);\r
-\r
- // Now get the answer from the card\r
- Demod.output = receivedResponse;\r
- Demod.len = 0;\r
- Demod.state = DEMOD_UNSYNCD;\r
-\r
- BYTE b;\r
- *elapsed = 0;\r
-\r
- c = 0;\r
- for(;;) {\r
- WDT_HIT();\r
-\r
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
- SSC_TRANSMIT_HOLDING = 0x00; // To make use of exact timing of next command from reader!!\r
- (*elapsed)++;\r
- }\r
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
- if(c < 512) { c++; } else { return FALSE; }\r
- b = (BYTE)SSC_RECEIVE_HOLDING;\r
- if(ManchesterDecoding((b & 0xf0) >> 4)) {\r
- *samples = ((c - 1) << 3) + 4;\r
- return TRUE;\r
- }\r
- if(ManchesterDecoding(b & 0x0f)) {\r
- *samples = c << 3;\r
- return TRUE;\r
- }\r
- }\r
- }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ISO 14443a tag. Send out commands and store answers.\r
-//\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso14443a(DWORD parameter)\r
-{\r
- // Anticollision\r
- static const BYTE cmd1[] = { 0x52 }; // or 0x26\r
- static const BYTE cmd2[] = { 0x93,0x20 };\r
- // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes\r
- BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
- // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70\r
-\r
- // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall...\r
- BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select\r
- // 95 20\r
- //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
- // 95 70\r
-\r
- // cascade 2 select\r
- BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };\r
-\r
-\r
- // RATS (request for answer to select)\r
- //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS\r
- BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS\r
-\r
- // Mifare AUTH\r
- BYTE cmd7[] = { 0x60, 0x00, 0x00, 0x00 };\r
-\r
- int reqaddr = 2024; // was 2024 - tied to other size changes\r
- int reqsize = 60;\r
-\r
- BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);\r
- int req1Len;\r
-\r
- BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);\r
- int req2Len;\r
-\r
- BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));\r
- int req3Len;\r
-\r
-// greg added req 4 & 5 to deal with cascade 2 section\r
- BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));\r
- int req4Len;\r
-\r
- BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));\r
- int req5Len;\r
-\r
- BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));\r
- int req6Len;\r
-\r
- BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));\r
- int req7Len;\r
-\r
- BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes\r
-\r
- BYTE *trace = (BYTE *)BigBuf;\r
- int traceLen = 0;\r
- int rsamples = 0;\r
-\r
- memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages\r
- // setting it to 3000 causes no tag responses to be detected (2900 is ok)\r
- // setting it to 1000 causes no tag responses to be detected\r
-\r
- // Prepare some commands!\r
- ShortFrameFromReader(cmd1);\r
- memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;\r
-\r
- CodeIso14443aAsReader(cmd2, sizeof(cmd2));\r
- memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;\r
-\r
- CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
- memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request\r
- memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select\r
- memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
-\r
- CodeIso14443aAsReader(cmd6, sizeof(cmd6));\r
- memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;\r
-\r
- // Setup SSC\r
- FpgaSetupSsc();\r
-\r
- // Start from off (no field generated)\r
- // Signal field is off with the appropriate LED\r
- LED_D_OFF();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(200);\r
-\r
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
- FpgaSetupSsc();\r
-\r
- // Now give it time to spin up.\r
- // Signal field is on with the appropriate LED\r
- LED_D_ON();\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
- SpinDelay(200);\r
-\r
- LED_A_ON();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
-\r
- int samples = 0;\r
- int tsamples = 0;\r
- int wait = 0;\r
- int elapsed = 0;\r
-\r
- for(;;) {\r
- // Send WUPA (or REQA)\r
- TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 1;\r
- memcpy(trace+traceLen, cmd1, 1);\r
- traceLen += 1;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- if(BUTTON_PRESS()) goto done;\r
-\r
- // No answer, just continue polling\r
- TransmitFor14443a(req1, req1Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 1;\r
- memcpy(trace+traceLen, cmd1, 1);\r
- traceLen += 1;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Ask for card UID\r
- TransmitFor14443a(req2, req2Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 2;\r
- memcpy(trace+traceLen, cmd2, 2);\r
- traceLen += 2;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Construct SELECT UID command\r
- // First copy the 5 bytes (Mifare Classic) after the 93 70\r
- memcpy(cmd3+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);\r
- // Prepare the bit sequence to modulate the subcarrier\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 9;\r
- memcpy(trace+traceLen, cmd3, 9);\r
- traceLen += 9;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- CodeIso14443aAsReader(cmd3, sizeof(cmd3));\r
- memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;\r
-\r
- // Select the card\r
- TransmitFor14443a(req3, req3Len, &samples, &wait);\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
-// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in\r
-// which case we need to make a cascade 2 request and select - this is a long UID\r
- if (receivedAnswer[0] == 0x88)\r
- {\r
- // Do cascade level 2 stuff\r
- ///////////////////////////////////////////////////////////////////\r
- // First issue a '95 20' identify request\r
- // Ask for card UID (part 2)\r
- TransmitFor14443a(req4, req4Len, &tsamples, &wait);\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 2;\r
- memcpy(trace+traceLen, cmd4, 2);\r
- traceLen += 2;\r
- if(traceLen > TRACE_LENGTH) {\r
- DbpString("Bugging out, just popped tracelength");\r
- goto done;}\r
-\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- //////////////////////////////////////////////////////////////////\r
- // Then Construct SELECT UID (cascasde 2) command\r
- DbpString("Just about to copy the UID out of the cascade 2 id req");\r
- // First copy the 5 bytes (Mifare Classic) after the 95 70\r
- memcpy(cmd5+2,receivedAnswer,5);\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);\r
- // Prepare the bit sequence to modulate the subcarrier\r
- // Store answer in buffer\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 9;\r
- memcpy(trace+traceLen, cmd5, 9);\r
- traceLen += 9;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- CodeIso14443aAsReader(cmd5, sizeof(cmd5));\r
- memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;\r
-\r
- // Select the card\r
- TransmitFor14443a(req4, req4Len, &samples, &wait);\r
- if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- continue;\r
- }\r
-\r
- // Store answer in buffer\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- }\r
-\r
- // Secondly compute the two CRC bytes at the end\r
- ComputeCrc14443(CRC_14443_A, cmd7, 2, &cmd7[2], &cmd7[3]);\r
- CodeIso14443aAsReader(cmd7, sizeof(cmd7));\r
- memcpy(req7, ToSend, ToSendMax); req7Len = ToSendMax;\r
- // Send authentication request (Mifare Classic)\r
- TransmitFor14443a(req7, req7Len, &samples, &wait);\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;\r
- trace[traceLen++] = 4;\r
- memcpy(trace+traceLen, cmd7, 4);\r
- traceLen += 4;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
- if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {\r
- rsamples++;\r
- // We received probably a random, continue and trace!\r
- }\r
- else {\r
- // Received nothing\r
- continue;\r
- }\r
-\r
- // Trace the random, i'm curious\r
- rsamples = rsamples + (samples - Demod.samples);\r
- trace[traceLen++] = ((rsamples >> 0) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 8) & 0xff);\r
- trace[traceLen++] = ((rsamples >> 16) & 0xff);\r
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);\r
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);\r
- trace[traceLen++] = Demod.len;\r
- memcpy(trace+traceLen, receivedAnswer, Demod.len);\r
- traceLen += Demod.len;\r
- if(traceLen > TRACE_LENGTH) goto done;\r
-\r
- // Thats it...\r
- }\r
-\r
-done:\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LEDsoff();\r
- DbpIntegers(rsamples, 0xCC, 0xCC);\r
- DbpString("ready..");\r
-}\r
+//-----------------------------------------------------------------------------
+// Merlok - June 2011, 2012
+// Gerhard de Koning Gans - May 2008
+// Hagen Fritsch - June 2010
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "string.h"
+#include "cmd.h"
+
+#include "iso14443crc.h"
+#include "iso14443a.h"
+#include "crapto1.h"
+#include "mifareutil.h"
+
+static uint32_t iso14a_timeout;
+uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
+int traceLen = 0;
+int rsamples = 0;
+int tracing = TRUE;
+uint8_t trigger = 0;
+// the block number for the ISO14443-4 PCB
+static uint8_t iso14_pcb_blocknum = 0;
+
+// CARD TO READER - manchester
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD - miller
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
+
+const uint8_t OddByteParity[256] = {
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+
+void iso14a_set_trigger(bool enable) {
+ trigger = enable;
+}
+
+void iso14a_clear_trace() {
+ memset(trace, 0x44, TRACE_SIZE);
+ traceLen = 0;
+}
+
+void iso14a_set_tracing(bool enable) {
+ tracing = enable;
+}
+
+void iso14a_set_timeout(uint32_t timeout) {
+ iso14a_timeout = timeout;
+}
+
+//-----------------------------------------------------------------------------
+// Generate the parity value for a byte sequence
+//
+//-----------------------------------------------------------------------------
+byte_t oddparity (const byte_t bt)
+{
+ return OddByteParity[bt];
+}
+
+uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+{
+ int i;
+ uint32_t dwPar = 0;
+
+ // Generate the encrypted data
+ for (i = 0; i < iLen; i++) {
+ // Save the encrypted parity bit
+ dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+ }
+ return dwPar;
+}
+
+void AppendCrc14443a(uint8_t* data, int len)
+{
+ ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+}
+
+// The function LogTrace() is also used by the iClass implementation in iClass.c
+int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
+{
+ // Return when trace is full
+ if (traceLen >= TRACE_SIZE) return FALSE;
+
+ // Trace the random, i'm curious
+ rsamples += iSamples;
+ trace[traceLen++] = ((rsamples >> 0) & 0xff);
+ trace[traceLen++] = ((rsamples >> 8) & 0xff);
+ trace[traceLen++] = ((rsamples >> 16) & 0xff);
+ trace[traceLen++] = ((rsamples >> 24) & 0xff);
+ if (!bReader) {
+ trace[traceLen - 1] |= 0x80;
+ }
+ trace[traceLen++] = ((dwParity >> 0) & 0xff);
+ trace[traceLen++] = ((dwParity >> 8) & 0xff);
+ trace[traceLen++] = ((dwParity >> 16) & 0xff);
+ trace[traceLen++] = ((dwParity >> 24) & 0xff);
+ trace[traceLen++] = iLen;
+ memcpy(trace + traceLen, btBytes, iLen);
+ traceLen += iLen;
+ return TRUE;
+}
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static tUart Uart;
+
+static RAMFUNC int MillerDecoding(int bit)
+{
+ //int error = 0;
+ int bitright;
+
+ if(!Uart.bitBuffer) {
+ Uart.bitBuffer = bit ^ 0xFF0;
+ return FALSE;
+ }
+ else {
+ Uart.bitBuffer <<= 4;
+ Uart.bitBuffer ^= bit;
+ }
+
+ int EOC = FALSE;
+
+ if(Uart.state != STATE_UNSYNCD) {
+ Uart.posCnt++;
+
+ if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+ bit = 0x00;
+ }
+ else {
+ bit = 0x01;
+ }
+ if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+ bitright = 0x00;
+ }
+ else {
+ bitright = 0x01;
+ }
+ if(bit != bitright) { bit = bitright; }
+
+ if(Uart.posCnt == 1) {
+ // measurement first half bitperiod
+ if(!bit) {
+ Uart.drop = DROP_FIRST_HALF;
+ }
+ }
+ else {
+ // measurement second half bitperiod
+ if(!bit & (Uart.drop == DROP_NONE)) {
+ Uart.drop = DROP_SECOND_HALF;
+ }
+ else if(!bit) {
+ // measured a drop in first and second half
+ // which should not be possible
+ Uart.state = STATE_ERROR_WAIT;
+ //error = 0x01;
+ }
+
+ Uart.posCnt = 0;
+
+ switch(Uart.state) {
+ case STATE_START_OF_COMMUNICATION:
+ Uart.shiftReg = 0;
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // error, should not happen in SOC
+ Uart.state = STATE_ERROR_WAIT;
+ //error = 0x02;
+ }
+ else {
+ // correct SOC
+ Uart.state = STATE_MILLER_Z;
+ }
+ break;
+
+ case STATE_MILLER_Z:
+ Uart.bitCnt++;
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // logic '0' followed by sequence Y
+ // end of communication
+ Uart.state = STATE_UNSYNCD;
+ EOC = TRUE;
+ }
+ // if(Uart.drop == DROP_FIRST_HALF) {
+ // Uart.state = STATE_MILLER_Z; stay the same
+ // we see a logic '0' }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // we see a logic '1'
+ Uart.shiftReg |= 0x100;
+ Uart.state = STATE_MILLER_X;
+ }
+ break;
+
+ case STATE_MILLER_X:
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // sequence Y, we see a '0'
+ Uart.state = STATE_MILLER_Y;
+ Uart.bitCnt++;
+ }
+ if(Uart.drop == DROP_FIRST_HALF) {
+ // Would be STATE_MILLER_Z
+ // but Z does not follow X, so error
+ Uart.state = STATE_ERROR_WAIT;
+ //error = 0x03;
+ }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // We see a '1' and stay in state X
+ Uart.shiftReg |= 0x100;
+ Uart.bitCnt++;
+ }
+ break;
+
+ case STATE_MILLER_Y:
+ Uart.bitCnt++;
+ Uart.shiftReg >>= 1;
+ if(Uart.drop == DROP_NONE) {
+ // logic '0' followed by sequence Y
+ // end of communication
+ Uart.state = STATE_UNSYNCD;
+ EOC = TRUE;
+ }
+ if(Uart.drop == DROP_FIRST_HALF) {
+ // we see a '0'
+ Uart.state = STATE_MILLER_Z;
+ }
+ if(Uart.drop == DROP_SECOND_HALF) {
+ // We see a '1' and go to state X
+ Uart.shiftReg |= 0x100;
+ Uart.state = STATE_MILLER_X;
+ }
+ break;
+
+ case STATE_ERROR_WAIT:
+ // That went wrong. Now wait for at least two bit periods
+ // and try to sync again
+ if(Uart.drop == DROP_NONE) {
+ Uart.highCnt = 6;
+ Uart.state = STATE_UNSYNCD;
+ }
+ break;
+
+ default:
+ Uart.state = STATE_UNSYNCD;
+ Uart.highCnt = 0;
+ break;
+ }
+
+ Uart.drop = DROP_NONE;
+
+ // should have received at least one whole byte...
+ if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
+ return TRUE;
+ }
+
+ if(Uart.bitCnt == 9) {
+ Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
+ Uart.byteCnt++;
+
+ Uart.parityBits <<= 1;
+ Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
+
+ if(EOC) {
+ // when End of Communication received and
+ // all data bits processed..
+ return TRUE;
+ }
+ Uart.bitCnt = 0;
+ }
+
+ /*if(error) {
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = error & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
+ Uart.byteCnt++;
+ Uart.output[Uart.byteCnt] = 0xAA;
+ Uart.byteCnt++;
+ return TRUE;
+ }*/
+ }
+
+ }
+ else {
+ bit = Uart.bitBuffer & 0xf0;
+ bit >>= 4;
+ bit ^= 0x0F;
+ if(bit) {
+ // should have been high or at least (4 * 128) / fc
+ // according to ISO this should be at least (9 * 128 + 20) / fc
+ if(Uart.highCnt == 8) {
+ // we went low, so this could be start of communication
+ // it turns out to be safer to choose a less significant
+ // syncbit... so we check whether the neighbour also represents the drop
+ Uart.posCnt = 1; // apparently we are busy with our first half bit period
+ Uart.syncBit = bit & 8;
+ Uart.samples = 3;
+ if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
+ else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+ if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
+ else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+ if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
+ if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+ Uart.syncBit = 8;
+
+ // the first half bit period is expected in next sample
+ Uart.posCnt = 0;
+ Uart.samples = 3;
+ }
+ }
+ else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
+
+ Uart.syncBit <<= 4;
+ Uart.state = STATE_START_OF_COMMUNICATION;
+ Uart.drop = DROP_FIRST_HALF;
+ Uart.bitCnt = 0;
+ Uart.byteCnt = 0;
+ Uart.parityBits = 0;
+ //error = 0;
+ }
+ else {
+ Uart.highCnt = 0;
+ }
+ }
+ else {
+ if(Uart.highCnt < 8) {
+ Uart.highCnt++;
+ }
+ }
+ }
+
+ return FALSE;
+}
+
+//=============================================================================
+// ISO 14443 Type A - Manchester
+//=============================================================================
+static tDemod Demod;
+
+static RAMFUNC int ManchesterDecoding(int v)
+{
+ int bit;
+ int modulation;
+ //int error = 0;
+
+ if(!Demod.buff) {
+ Demod.buff = 1;
+ Demod.buffer = v;
+ return FALSE;
+ }
+ else {
+ bit = Demod.buffer;
+ Demod.buffer = v;
+ }
+
+ if(Demod.state==DEMOD_UNSYNCD) {
+ Demod.output[Demod.len] = 0xfa;
+ Demod.syncBit = 0;
+ //Demod.samples = 0;
+ Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
+
+ if(bit & 0x08) {
+ Demod.syncBit = 0x08;
+ }
+
+ if(bit & 0x04) {
+ if(Demod.syncBit) {
+ bit <<= 4;
+ }
+ Demod.syncBit = 0x04;
+ }
+
+ if(bit & 0x02) {
+ if(Demod.syncBit) {
+ bit <<= 2;
+ }
+ Demod.syncBit = 0x02;
+ }
+
+ if(bit & 0x01 && Demod.syncBit) {
+ Demod.syncBit = 0x01;
+ }
+
+ if(Demod.syncBit) {
+ Demod.len = 0;
+ Demod.state = DEMOD_START_OF_COMMUNICATION;
+ Demod.sub = SUB_FIRST_HALF;
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ Demod.parityBits = 0;
+ Demod.samples = 0;
+ if(Demod.posCount) {
+ if(trigger) LED_A_OFF();
+ switch(Demod.syncBit) {
+ case 0x08: Demod.samples = 3; break;
+ case 0x04: Demod.samples = 2; break;
+ case 0x02: Demod.samples = 1; break;
+ case 0x01: Demod.samples = 0; break;
+ }
+ }
+ //error = 0;
+ }
+ }
+ else {
+ //modulation = bit & Demod.syncBit;
+ modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
+
+ Demod.samples += 4;
+
+ if(Demod.posCount==0) {
+ Demod.posCount = 1;
+ if(modulation) {
+ Demod.sub = SUB_FIRST_HALF;
+ }
+ else {
+ Demod.sub = SUB_NONE;
+ }
+ }
+ else {
+ Demod.posCount = 0;
+ if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
+ if(Demod.state!=DEMOD_ERROR_WAIT) {
+ Demod.state = DEMOD_ERROR_WAIT;
+ Demod.output[Demod.len] = 0xaa;
+ //error = 0x01;
+ }
+ }
+ else if(modulation) {
+ Demod.sub = SUB_SECOND_HALF;
+ }
+
+ switch(Demod.state) {
+ case DEMOD_START_OF_COMMUNICATION:
+ if(Demod.sub == SUB_FIRST_HALF) {
+ Demod.state = DEMOD_MANCHESTER_D;
+ }
+ else {
+ Demod.output[Demod.len] = 0xab;
+ Demod.state = DEMOD_ERROR_WAIT;
+ //error = 0x02;
+ }
+ break;
+
+ case DEMOD_MANCHESTER_D:
+ case DEMOD_MANCHESTER_E:
+ if(Demod.sub == SUB_FIRST_HALF) {
+ Demod.bitCount++;
+ Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
+ Demod.state = DEMOD_MANCHESTER_D;
+ }
+ else if(Demod.sub == SUB_SECOND_HALF) {
+ Demod.bitCount++;
+ Demod.shiftReg >>= 1;
+ Demod.state = DEMOD_MANCHESTER_E;
+ }
+ else {
+ Demod.state = DEMOD_MANCHESTER_F;
+ }
+ break;
+
+ case DEMOD_MANCHESTER_F:
+ // Tag response does not need to be a complete byte!
+ if(Demod.len > 0 || Demod.bitCount > 0) {
+ if(Demod.bitCount > 0) {
+ Demod.shiftReg >>= (9 - Demod.bitCount);
+ Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+ Demod.len++;
+ // No parity bit, so just shift a 0
+ Demod.parityBits <<= 1;
+ }
+
+ Demod.state = DEMOD_UNSYNCD;
+ return TRUE;
+ }
+ else {
+ Demod.output[Demod.len] = 0xad;
+ Demod.state = DEMOD_ERROR_WAIT;
+ //error = 0x03;
+ }
+ break;
+
+ case DEMOD_ERROR_WAIT:
+ Demod.state = DEMOD_UNSYNCD;
+ break;
+
+ default:
+ Demod.output[Demod.len] = 0xdd;
+ Demod.state = DEMOD_UNSYNCD;
+ break;
+ }
+
+ if(Demod.bitCount>=9) {
+ Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+ Demod.len++;
+
+ Demod.parityBits <<= 1;
+ Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
+
+ Demod.bitCount = 0;
+ Demod.shiftReg = 0;
+ }
+
+ /*if(error) {
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ Demod.output[Demod.len] = error & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ Demod.output[Demod.len] = bit & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = Demod.buffer & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = Demod.syncBit & 0xFF;
+ Demod.len++;
+ Demod.output[Demod.len] = 0xBB;
+ Demod.len++;
+ return TRUE;
+ }*/
+
+ }
+
+ } // end (state != UNSYNCED)
+
+ return FALSE;
+}
+
+//=============================================================================
+// Finally, a `sniffer' for ISO 14443 Type A
+// Both sides of communication!
+//=============================================================================
+
+//-----------------------------------------------------------------------------
+// Record the sequence of commands sent by the reader to the tag, with
+// triggering so that we start recording at the point that the tag is moved
+// near the reader.
+//-----------------------------------------------------------------------------
+void RAMFUNC SnoopIso14443a(uint8_t param) {
+ // param:
+ // bit 0 - trigger from first card answer
+ // bit 1 - trigger from first reader 7-bit request
+
+ LEDsoff();
+ // init trace buffer
+ iso14a_clear_trace();
+
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == FALSE -- to wait first for card
+ int triggered = !(param & 0x03);
+
+ // The command (reader -> tag) that we're receiving.
+ // The length of a received command will in most cases be no more than 18 bytes.
+ // So 32 should be enough!
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ // The response (tag -> reader) that we're receiving.
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+ // As we receive stuff, we copy it from receivedCmd or receivedResponse
+ // into trace, along with its length and other annotations.
+ //uint8_t *trace = (uint8_t *)BigBuf;
+
+ // The DMA buffer, used to stream samples from the FPGA
+ int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ int8_t *data = dmaBuf;
+ int maxDataLen = 0;
+ int dataLen = 0;
+
+ // Set up the demodulator for tag -> reader responses.
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ // Set up the demodulator for the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
+ Uart.output = receivedCmd;
+ Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+ Uart.state = STATE_UNSYNCD;
+
+ // Setup for the DMA.
+ FpgaSetupSsc();
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ rsamples = 0;
+ // And now we loop, receiving samples.
+ while(true) {
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ goto done;
+ }
+
+ LED_A_ON();
+ WDT_HIT();
+
+ int register readBufDataP = data - dmaBuf;
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if (readBufDataP <= dmaBufDataP){
+ dataLen = dmaBufDataP - readBufDataP;
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+ }
+ // test for length of buffer
+ if(dataLen > maxDataLen) {
+ maxDataLen = dataLen;
+ if(dataLen > 400) {
+ Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+ goto done;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ rsamples += 4;
+ if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+ LED_C_ON();
+
+ // check - if there is a short 7bit request from reader
+ if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE;
+
+ if(triggered) {
+ if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break;
+ }
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ Demod.state = DEMOD_UNSYNCD;
+ LED_B_OFF();
+ }
+
+ if(ManchesterDecoding(data[0] & 0x0F)) {
+ LED_B_ON();
+
+ if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
+
+ if ((!triggered) && (param & 0x01)) triggered = TRUE;
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = receivedResponse;
+ Demod.state = DEMOD_UNSYNCD;
+ LED_C_OFF();
+ }
+
+ data++;
+ if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ data = dmaBuf;
+ }
+ } // main cycle
+
+ DbpString("COMMAND FINISHED");
+
+done:
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt);
+ Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Prepare tag messages
+//-----------------------------------------------------------------------------
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+{
+ int i;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+
+ for(i = 0; i < len; i++) {
+ int j;
+ uint8_t b = cmd[i];
+
+ // Data bits
+ for(j = 0; j < 8; j++) {
+ if(b & 1) {
+ ToSend[++ToSendMax] = SEC_D;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ b >>= 1;
+ }
+
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ ToSend[++ToSendMax] = SEC_D;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ }
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+}
+
+static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
+ CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+}
+
+//-----------------------------------------------------------------------------
+// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
+//-----------------------------------------------------------------------------
+static void CodeStrangeAnswerAsTag()
+{
+ int i;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+
+ // 0
+ ToSend[++ToSendMax] = SEC_E;
+
+ // 0
+ ToSend[++ToSendMax] = SEC_E;
+
+ // 1
+ ToSend[++ToSendMax] = SEC_D;
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Flush the buffer in FPGA!!
+ for(i = 0; i < 5; i++) {
+ ToSend[++ToSendMax] = SEC_F;
+ }
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+}
+
+static void Code4bitAnswerAsTag(uint8_t cmd)
+{
+ int i;
+
+ ToSendReset();
+
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+
+ uint8_t b = cmd;
+ for(i = 0; i < 4; i++) {
+ if(b & 1) {
+ ToSend[++ToSendMax] = SEC_D;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ b >>= 1;
+ }
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Flush the buffer in FPGA!!
+ for(i = 0; i < 5; i++) {
+ ToSend[++ToSendMax] = SEC_F;
+ }
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed
+// Or return TRUE when command is captured
+//-----------------------------------------------------------------------------
+static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+{
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Now run a `software UART' on the stream of incoming samples.
+ Uart.output = received;
+ Uart.byteCntMax = maxLen;
+ Uart.state = STATE_UNSYNCD;
+
+ for(;;) {
+ WDT_HIT();
+
+ if(BUTTON_PRESS()) return FALSE;
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding((b & 0xf0) >> 4)) {
+ *len = Uart.byteCnt;
+ return TRUE;
+ }
+ if(MillerDecoding(b & 0x0f)) {
+ *len = Uart.byteCnt;
+ return TRUE;
+ }
+ }
+ }
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSend4bitEx(uint8_t resp, int correctionNeeded);
+int EmSend4bit(uint8_t resp);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSendCmd(uint8_t *resp, int respLen);
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
+
+//-----------------------------------------------------------------------------
+// Main loop of simulated tag: receive commands from reader, decide what
+// response to send, and send it.
+//-----------------------------------------------------------------------------
+void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+{
+ // Enable and clear the trace
+ tracing = TRUE;
+ iso14a_clear_trace();
+
+ // This function contains the tag emulation
+ uint8_t sak;
+
+ // The first response contains the ATQA (note: bytes are transmitted in reverse order).
+ uint8_t response1[2];
+
+ switch (tagType) {
+ case 1: { // MIFARE Classic
+ // Says: I am Mifare 1k - original line
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x08;
+ } break;
+ case 2: { // MIFARE Ultralight
+ // Says: I am a stupid memory tag, no crypto
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x00;
+ } break;
+ case 3: { // MIFARE DESFire
+ // Says: I am a DESFire tag, ph33r me
+ response1[0] = 0x04;
+ response1[1] = 0x03;
+ sak = 0x20;
+ } break;
+ case 4: { // ISO/IEC 14443-4
+ // Says: I am a javacard (JCOP)
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x28;
+ } break;
+ default: {
+ Dbprintf("Error: unkown tagtype (%d)",tagType);
+ return;
+ } break;
+ }
+
+ // The second response contains the (mandatory) first 24 bits of the UID
+ uint8_t response2[5];
+
+ // Check if the uid uses the (optional) part
+ uint8_t response2a[5];
+ if (uid_2nd) {
+ response2[0] = 0x88;
+ num_to_bytes(uid_1st,3,response2+1);
+ num_to_bytes(uid_2nd,4,response2a);
+ response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
+
+ // Configure the ATQA and SAK accordingly
+ response1[0] |= 0x40;
+ sak |= 0x04;
+ } else {
+ num_to_bytes(uid_1st,4,response2);
+ // Configure the ATQA and SAK accordingly
+ response1[0] &= 0xBF;
+ sak &= 0xFB;
+ }
+
+ // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
+ response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
+
+ // Prepare the mandatory SAK (for 4 and 7 byte UID)
+ uint8_t response3[3];
+ response3[0] = sak;
+ ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+
+ // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
+ uint8_t response3a[3];
+ response3a[0] = sak & 0xFB;
+ ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+
+ uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+ uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+ ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]);
+
+ uint8_t *resp = NULL;
+ int respLen;
+
+ // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
+ // This will need
+ // 144 data bits (18 * 8)
+ // 18 parity bits
+ // 2 Start and stop
+ // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+ // 1 just for the case
+ // ----------- +
+ // 166
+ //
+ // 166 bytes, since every bit that needs to be send costs us a byte
+ //
+
+ // Respond with card type
+ uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ int resp1Len;
+
+ // Anticollision cascade1 - respond with uid
+ uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166);
+ int resp2Len;
+
+ // Anticollision cascade2 - respond with 2nd half of uid if asked
+ // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
+ uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
+ int resp2aLen;
+
+ // Acknowledge select - cascade 1
+ uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2));
+ int resp3Len;
+
+ // Acknowledge select - cascade 2
+ uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3));
+ int resp3aLen;
+
+ // Response to a read request - not implemented atm
+ uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4));
+// int resp4Len;
+
+ // Authenticate response - nonce
+ uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5));
+ int resp5Len;
+
+ // Authenticate response - nonce
+ uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6));
+ int resp6Len;
+
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ int len;
+
+ // To control where we are in the protocol
+ int order = 0;
+ int lastorder;
+
+ // Just to allow some checks
+ int happened = 0;
+ int happened2 = 0;
+
+ int cmdsRecvd = 0;
+ uint8_t* respdata = NULL;
+ int respsize = 0;
+// uint8_t nack = 0x04;
+
+ memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+
+ // Prepare the responses of the anticollision phase
+ // there will be not enough time to do this at the moment the reader sends it REQA
+
+ // Answer to request
+ CodeIso14443aAsTag(response1, sizeof(response1));
+ memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+
+ // Send our UID (cascade 1)
+ CodeIso14443aAsTag(response2, sizeof(response2));
+ memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
+
+ // Answer to select (cascade1)
+ CodeIso14443aAsTag(response3, sizeof(response3));
+ memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
+
+ // Send the cascade 2 2nd part of the uid
+ CodeIso14443aAsTag(response2a, sizeof(response2a));
+ memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
+
+ // Answer to select (cascade 2)
+ CodeIso14443aAsTag(response3a, sizeof(response3a));
+ memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
+
+ // Strange answer is an example of rare message size (3 bits)
+ CodeStrangeAnswerAsTag();
+ memcpy(resp4, ToSend, ToSendMax);// resp4Len = ToSendMax;
+
+ // Authentication answer (random nonce)
+ CodeIso14443aAsTag(response5, sizeof(response5));
+ memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
+
+ // dummy ATS (pseudo-ATR), answer to RATS
+ CodeIso14443aAsTag(response6, sizeof(response6));
+ memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax;
+
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ cmdsRecvd = 0;
+
+ LED_A_ON();
+ for(;;) {
+
+ if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+ DbpString("button press");
+ break;
+ }
+
+ if (tracing) {
+ LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
+ }
+
+ // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
+ // Okay, look at the command now.
+ lastorder = order;
+ if(receivedCmd[0] == 0x26) { // Received a REQUEST
+ resp = resp1; respLen = resp1Len; order = 1;
+ respdata = response1;
+ respsize = sizeof(response1);
+ } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
+ resp = resp1; respLen = resp1Len; order = 6;
+ respdata = response1;
+ respsize = sizeof(response1);
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
+ resp = resp2; respLen = resp2Len; order = 2;
+ respdata = response2;
+ respsize = sizeof(response2);
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+ resp = resp2a; respLen = resp2aLen; order = 20;
+ respdata = response2a;
+ respsize = sizeof(response2a);
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
+ resp = resp3; respLen = resp3Len; order = 3;
+ respdata = response3;
+ respsize = sizeof(response3);
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
+ resp = resp3a; respLen = resp3aLen; order = 30;
+ respdata = response3a;
+ respsize = sizeof(response3a);
+ } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
+// resp = resp4; respLen = resp4Len; order = 4; // Do nothing
+// respdata = &nack;
+// respsize = sizeof(nack); // 4-bit answer
+ EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+ Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ respLen = 0;
+ } else if(receivedCmd[0] == 0x50) { // Received a HALT
+// DbpString("Reader requested we HALT!:");
+ // Do not respond
+ resp = resp1; respLen = 0; order = 0;
+ respdata = NULL;
+ respsize = 0;
+ } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
+ resp = resp5; respLen = resp5Len; order = 7;
+ respdata = response5;
+ respsize = sizeof(response5);
+ } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
+ resp = resp6; respLen = resp6Len; order = 70;
+ respdata = response6;
+ respsize = sizeof(response6);
+ } else {
+ if (order == 7 && len ==8) {
+ uint32_t nr = bytes_to_num(receivedCmd,4);
+ uint32_t ar = bytes_to_num(receivedCmd+4,4);
+ Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ } else {
+ // Never seen this command before
+ Dbprintf("Received unknown command (len=%d):",len);
+ Dbhexdump(len,receivedCmd,false);
+ }
+ // Do not respond
+ resp = resp1; respLen = 0; order = 0;
+ respdata = NULL;
+ respsize = 0;
+ }
+
+ // Count number of wakeups received after a halt
+ if(order == 6 && lastorder == 5) { happened++; }
+
+ // Count number of other messages after a halt
+ if(order != 6 && lastorder == 5) { happened2++; }
+
+ // Look at last parity bit to determine timing of answer
+ if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
+ // 1236, so correction bit needed
+ //i = 0;
+ }
+
+ if(cmdsRecvd > 999) {
+ DbpString("1000 commands later...");
+ break;
+ } else {
+ cmdsRecvd++;
+ }
+
+ if(respLen > 0) {
+ EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
+ }
+
+ if (tracing) {
+ if (respdata != NULL) {
+ LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
+ }
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+ }
+
+ memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+ }
+
+ Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+ LED_A_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
+{
+ int c;
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+ if (wait)
+ if(*wait < 10)
+ *wait = 10;
+
+ for(c = 0; c < *wait;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
+ c++;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+
+ c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = cmd[c];
+ c++;
+ if(c >= len) {
+ break;
+ }
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+ (void)r;
+ }
+ WDT_HIT();
+ }
+ if (samples) *samples = (c + *wait) << 3;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command (in bits, support short frames) to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+{
+ int i, j;
+ int last;
+ uint8_t b;
+
+ ToSendReset();
+
+ // Start of Communication (Seq. Z)
+ ToSend[++ToSendMax] = SEC_Z;
+ last = 0;
+
+ size_t bytecount = nbytes(bits);
+ // Generate send structure for the data bits
+ for (i = 0; i < bytecount; i++) {
+ // Get the current byte to send
+ b = cmd[i];
+ size_t bitsleft = MIN((bits-(i*8)),8);
+
+ for (j = 0; j < bitsleft; j++) {
+ if (b & 1) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ b >>= 1;
+ }
+
+ // Only transmit (last) parity bit if we transmitted a complete byte
+ if (j == 8) {
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ last = 1;
+ } else {
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ }
+ }
+ }
+
+ // End of Communication
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+
+ // Just to be sure!
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
+
+ // Convert from last character reference to length
+ ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command to send to FPGA
+//-----------------------------------------------------------------------------
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+{
+ CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed (return 1) or field was gone (return 2)
+// Or return 0 when command is captured
+//-----------------------------------------------------------------------------
+static int EmGetCmd(uint8_t *received, int *len, int maxLen)
+{
+ *len = 0;
+
+ uint32_t timer = 0, vtime = 0;
+ int analogCnt = 0;
+ int analogAVG = 0;
+
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Set ADC to read field strength
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(32) |
+ ADC_MODE_STARTUP_TIME(16) |
+ ADC_MODE_SAMPLE_HOLD_TIME(8);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
+ // start ADC
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
+ // Now run a 'software UART' on the stream of incoming samples.
+ Uart.output = received;
+ Uart.byteCntMax = maxLen;
+ Uart.state = STATE_UNSYNCD;
+
+ for(;;) {
+ WDT_HIT();
+
+ if (BUTTON_PRESS()) return 1;
+
+ // test if the field exists
+ if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
+ analogCnt++;
+ analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ if (analogCnt >= 32) {
+ if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+ vtime = GetTickCount();
+ if (!timer) timer = vtime;
+ // 50ms no field --> card to idle state
+ if (vtime - timer > 50) return 2;
+ } else
+ if (timer) timer = 0;
+ analogCnt = 0;
+ analogAVG = 0;
+ }
+ }
+ // transmit none
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ // receive and test the miller decoding
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding((b & 0xf0) >> 4)) {
+ *len = Uart.byteCnt;
+ if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+ return 0;
+ }
+ if(MillerDecoding(b & 0x0f)) {
+ *len = Uart.byteCnt;
+ if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+ return 0;
+ }
+ }
+ }
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
+{
+ int i, u = 0;
+ uint8_t b = 0;
+
+ // Modulate Manchester
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSetupSsc();
+
+ // include correction bit
+ i = 1;
+ if((Uart.parityBits & 0x01) || correctionNeeded) {
+ // 1236, so correction bit needed
+ i = 0;
+ }
+
+ // send cycle
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ (void)b;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ if(i > respLen) {
+ b = 0xff; // was 0x00
+ u++;
+ } else {
+ b = resp[i];
+ i++;
+ }
+ AT91C_BASE_SSC->SSC_THR = b;
+
+ if(u > 4) break;
+ }
+ if(BUTTON_PRESS()) {
+ break;
+ }
+ }
+
+ return 0;
+}
+
+int EmSend4bitEx(uint8_t resp, int correctionNeeded){
+ Code4bitAnswerAsTag(resp);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
+ return res;
+}
+
+int EmSend4bit(uint8_t resp){
+ return EmSend4bitEx(resp, 0);
+}
+
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
+ CodeIso14443aAsTagPar(resp, respLen, par);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
+ return res;
+}
+
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
+ return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+}
+
+int EmSendCmd(uint8_t *resp, int respLen){
+ return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
+}
+
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+ return EmSendCmdExPar(resp, respLen, 0, par);
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+// If a response is captured return TRUE
+// If it takes to long return FALSE
+//-----------------------------------------------------------------------------
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
+{
+ // buffer needs to be 512 bytes
+ int c;
+
+ // Set FPGA mode to "reader listen mode", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+
+ // Now get the answer from the card
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ uint8_t b;
+ if (elapsed) *elapsed = 0;
+
+ c = 0;
+ for(;;) {
+ WDT_HIT();
+
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
+ if (elapsed) (*elapsed)++;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ if(c < iso14a_timeout) { c++; } else { return FALSE; }
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(ManchesterDecoding((b>>4) & 0xf)) {
+ *samples = ((c - 1) << 3) + 4;
+ return TRUE;
+ }
+ if(ManchesterDecoding(b & 0x0f)) {
+ *samples = c << 3;
+ return TRUE;
+ }
+ }
+ }
+}
+
+void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
+{
+ int wait = 0;
+ int samples = 0;
+
+ // This is tied to other size changes
+ // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
+ CodeIso14443aBitsAsReaderPar(frame,bits,par);
+
+ // Select the card
+ TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+ if(trigger)
+ LED_A_ON();
+
+ // Store reader command in buffer
+ if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
+}
+
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
+{
+ ReaderTransmitBitsPar(frame,len*8,par);
+}
+
+void ReaderTransmit(uint8_t* frame, int len)
+{
+ // Generate parity and redirect
+ ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len));
+}
+
+int ReaderReceive(uint8_t* receivedAnswer)
+{
+ int samples = 0;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+ if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ if(samples == 0) return FALSE;
+ return Demod.len;
+}
+
+int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
+{
+ int samples = 0;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+ if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ *parptr = Demod.parityBits;
+ if(samples == 0) return FALSE;
+ return Demod.len;
+}
+
+/* performs iso14443a anticolision procedure
+ * fills the uid pointer unless NULL
+ * fills resp_data unless NULL */
+int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
+ uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+ uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
+ byte_t uid_resp[4];
+ size_t uid_resp_len;
+
+ uint8_t sak = 0x04; // cascade uid
+ int cascade_level = 0;
+ int len;
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa,7,0);
+ // Receive the ATQA
+ if(!ReaderReceive(resp)) return 0;
+// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->atqa, resp, 2);
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid,0,10);
+ }
+
+ // clear uid
+ if (uid_ptr) {
+ memset(uid_ptr,0,8);
+ }
+
+ // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+ // which case we need to make a cascade 2 request and select - this is a long UID
+ // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+ for(; sak & 0x04; cascade_level++) {
+ // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+ sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+ // SELECT_ALL
+ ReaderTransmit(sel_all,sizeof(sel_all));
+ if (!ReaderReceive(resp)) return 0;
+
+ // First backup the current uid
+ memcpy(uid_resp,resp,4);
+ uid_resp_len = 4;
+ // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+
+ // calculate crypto UID
+ if(cuid_ptr) {
+ *cuid_ptr = bytes_to_num(uid_resp, 4);
+ }
+
+ // Construct SELECT UID command
+ memcpy(sel_uid+2,resp,5);
+ AppendCrc14443a(sel_uid,7);
+ ReaderTransmit(sel_uid,sizeof(sel_uid));
+
+ // Receive the SAK
+ if (!ReaderReceive(resp)) return 0;
+ sak = resp[0];
+
+ // Test if more parts of the uid are comming
+ if ((sak & 0x04) && uid_resp[0] == 0x88) {
+ // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+ // http://www.nxp.com/documents/application_note/AN10927.pdf
+ memcpy(uid_resp, uid_resp + 1, 3);
+ uid_resp_len = 3;
+ }
+
+ if(uid_ptr) {
+ memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+ }
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+ p_hi14a_card->uidlen += uid_resp_len;
+ }
+ }
+
+ if(p_hi14a_card) {
+ p_hi14a_card->sak = sak;
+ p_hi14a_card->ats_len = 0;
+ }
+
+ if( (sak & 0x20) == 0) {
+ return 2; // non iso14443a compliant tag
+ }
+
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats));
+
+ if (!(len = ReaderReceive(resp))) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+ p_hi14a_card->ats_len = len;
+ }
+
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
+ return 1;
+}
+
+void iso14443a_setup() {
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(50);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(50);
+
+ iso14a_timeout = 2048; //default
+}
+
+int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+ uint8_t real_cmd[cmd_len+4];
+ real_cmd[0] = 0x0a; //I-Block
+ // put block number into the PCB
+ real_cmd[0] |= iso14_pcb_blocknum;
+ real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
+ memcpy(real_cmd+2, cmd, cmd_len);
+ AppendCrc14443a(real_cmd,cmd_len+2);
+
+ ReaderTransmit(real_cmd, cmd_len+4);
+ size_t len = ReaderReceive(data);
+ uint8_t * data_bytes = (uint8_t *) data;
+ if (!len)
+ return 0; //DATA LINK ERROR
+ // if we received an I- or R(ACK)-Block with a block number equal to the
+ // current block number, toggle the current block number
+ else if (len >= 4 // PCB+CID+CRC = 4 bytes
+ && ((data_bytes[0] & 0xC0) == 0 // I-Block
+ || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+ && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+ {
+ iso14_pcb_blocknum ^= 1;
+ }
+
+ return len;
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderIso14443a(UsbCommand * c)
+{
+ iso14a_command_t param = c->arg[0];
+ uint8_t * cmd = c->d.asBytes;
+ size_t len = c->arg[1];
+ uint32_t arg0 = 0;
+ byte_t buf[USB_CMD_DATA_SIZE];
+
+ iso14a_clear_trace();
+ iso14a_set_tracing(true);
+
+ if(param & ISO14A_REQUEST_TRIGGER) {
+ iso14a_set_trigger(1);
+ }
+
+ if(param & ISO14A_CONNECT) {
+ iso14443a_setup();
+ arg0 = iso14443a_select_card(NULL,(iso14a_card_select_t*)buf,NULL);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
+// UsbSendPacket((void *)ack, sizeof(UsbCommand));
+ }
+
+ if(param & ISO14A_SET_TIMEOUT) {
+ iso14a_timeout = c->arg[2];
+ }
+
+ if(param & ISO14A_SET_TIMEOUT) {
+ iso14a_timeout = c->arg[2];
+ }
+
+ if(param & ISO14A_APDU) {
+ arg0 = iso14_apdu(cmd, len, buf);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+// UsbSendPacket((void *)ack, sizeof(UsbCommand));
+ }
+
+ if(param & ISO14A_RAW) {
+ if(param & ISO14A_APPEND_CRC) {
+ AppendCrc14443a(cmd,len);
+ len += 2;
+ }
+ ReaderTransmit(cmd,len);
+ arg0 = ReaderReceive(buf);
+// UsbSendPacket((void *)ack, sizeof(UsbCommand));
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ }
+
+ if(param & ISO14A_REQUEST_TRIGGER) {
+ iso14a_set_trigger(0);
+ }
+
+ if(param & ISO14A_NO_DISCONNECT) {
+ return;
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+}
+
+#define TEST_LENGTH 100
+typedef struct mftest{
+ uint8_t nt[8];
+ uint8_t count;
+}mftest ;
+
+/**
+ *@brief Tunes the mifare attack settings. This method checks the nonce entropy when
+ *using a specified timeout.
+ *Different cards behave differently, some cards require up to a second to power down (and thus reset
+ *token generator), other cards are fine with 50 ms.
+ *
+ * @param time
+ * @return the entropy. A value of 100 (%) means that every nonce was unique, while a value close to
+ *zero indicates a low entropy: the given timeout is sufficient to power down the card.
+ */
+int TuneMifare(int time)
+{
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+
+ iso14443a_setup();
+ int TIME1=time;
+ int TIME2=2000;
+ uint8_t uid[8];
+ uint32_t cuid;
+ byte_t nt[4];
+ Dbprintf("Tuning... testing a delay of %d ms (press button to skip)",time);
+
+
+ mftest nt_values[TEST_LENGTH];
+ int nt_size = 0;
+ int i = 0;
+ for(i = 0 ; i< 100 ; i++)
+ {
+ LED_C_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(TIME1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ LED_C_ON();
+ SpinDelayUs(TIME2);
+ if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
+
+ // Transmit MIFARE_CLASSIC_AUTH
+ ReaderTransmit(mf_auth, sizeof(mf_auth));
+
+ // Receive the (16 bit) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) continue;
+ memcpy(nt, receivedAnswer, 4);
+
+ //store it
+ int already_stored = 0;
+ for(int i = 0 ; i < nt_size && !already_stored; i++)
+ {
+ if( memcmp(nt, nt_values[i].nt, 4) == 0)
+ {
+ nt_values[i].count++;
+ already_stored = 1;
+ }
+ }
+ if(!already_stored)
+ {
+ mftest* ptr= &nt_values[nt_size++];
+ //Clear it before use
+ memset(ptr, 0, sizeof(mftest));
+ memcpy(ptr->nt, nt, 4);
+ ptr->count = 1;
+ }
+
+ if(BUTTON_PRESS())
+ {
+ Dbprintf("Tuning aborted prematurely");
+ break;
+ }
+ }
+ /*
+ for(int i = 0 ; i < nt_size;i++){
+ mftest x = nt_values[i];
+ Dbprintf("%d,%d,%d,%d : %d",x.nt[0],x.nt[1],x.nt[2],x.nt[3],x.count);
+ }
+ */
+ int result = nt_size *100 / i;
+ Dbprintf(" ... results for %d ms : %d %",time, result);
+ return result;
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+#define STATE_SIZE 100
+typedef struct AttackState{
+ byte_t nt[4];
+ byte_t par_list[8];
+ byte_t ks_list[8];
+ byte_t par;
+ byte_t par_low;
+ byte_t nt_diff;
+ uint8_t mf_nr_ar[8];
+} AttackState;
+
+
+int continueAttack(AttackState* pState,uint8_t* receivedAnswer)
+{
+
+ // Transmit reader nonce and reader answer
+ ReaderTransmitPar(pState->mf_nr_ar, sizeof(pState->mf_nr_ar),pState->par);
+
+ // Receive 4 bit answer
+ int len = ReaderReceive(receivedAnswer);
+ if (!len)
+ {
+ if (pState->nt_diff == 0)
+ {
+ pState->par++;
+ } else {
+ pState->par = (((pState->par >> 3) + 1) << 3) | pState->par_low;
+ }
+ return 2;
+ }
+ if(pState->nt_diff == 0)
+ {
+ pState->par_low = pState->par & 0x07;
+ }
+ //Dbprintf("answer received, parameter (%d), (memcmp(nt, nt_no)=%d",parameter,memcmp(nt, nt_noattack, 4));
+ //if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
+ //isNULL = 0;//|| !(nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0);
+ //
+ // if ( /*(isNULL != 0 ) && */(memcmp(nt, nt_attacked, 4) != 0) ) continue;
+
+ //led_on = !led_on;
+ //if(led_on) LED_B_ON(); else LED_B_OFF();
+ pState->par_list[pState->nt_diff] = pState->par;
+ pState->ks_list[pState->nt_diff] = receivedAnswer[0] ^ 0x05;
+
+ // Test if the information is complete
+ if (pState->nt_diff == 0x07) {
+ return 0;
+ }
+
+ pState->nt_diff = (pState->nt_diff + 1) & 0x07;
+ pState->mf_nr_ar[3] = pState->nt_diff << 5;
+ pState->par = pState->par_low;
+ return 1;
+}
+
+void reportResults(uint8_t uid[8],AttackState *pState, int isOK)
+{
+ LogTrace(pState->nt, 4, 0, GetParity(pState->nt, 4), TRUE);
+ LogTrace(pState->par_list, 8, 0, GetParity(pState->par_list, 8), TRUE);
+ LogTrace(pState->ks_list, 8, 0, GetParity(pState->ks_list, 8), TRUE);
+
+ byte_t buf[48];
+ memcpy(buf + 0, uid, 4);
+ if(pState != NULL)
+ {
+ memcpy(buf + 4, pState->nt, 4);
+ memcpy(buf + 8, pState->par_list, 8);
+ memcpy(buf + 16, pState->ks_list, 8);
+ }
+
+ LED_B_ON();
+ cmd_send(CMD_ACK,isOK,0,0,buf,48);
+ LED_B_OFF();
+
+ // Thats it...
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+ tracing = TRUE;
+
+ if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED");
+}
+
+void ReaderMifareBegin(uint32_t offset_time, uint32_t powerdown_time);
+
+/**
+ * @brief New implementation of ReaderMifare, the classic mifare attack.
+ * This implementation is backwards-compatible, but has some added parameters.
+ * @param c the usbcommand in complete
+ * c->arg[0] - nt_noattack (deprecated)
+ * c->arg[1] - offset_time us (0 => random)
+ * c->arg[2] - powerdown_time ms (0=> tuning)
+ *
+ */
+void ReaderMifare(UsbCommand *c)
+{
+ /*
+ * The 'no-attack' is not used anymore, with the introduction of
+ * state tables. Instead, we use an offset which is random. This means that we
+ * should not get stuck on a 'bad' nonce, so no-attack is not needed.
+ * Anyway, arg[0] is reserved for backwards compatibility
+ uint32_t nt_noattack_uint = c->arg[0];
+ byte_t nt_noattack[4];
+ num_to_bytes(parameter, 4, nt_noattack_uint);
+
+ */
+ /*
+ *IF, for some reason, you want to attack a specific nonce or whatever,
+ *you can specify the offset time yourself, in which case it won't be random.
+ *
+ * The offset time is microseconds, MICROSECONDS, not ms.
+ */
+ uint32_t offset_time = c->arg[1];
+ if(offset_time == 0)
+ {
+ //[Martin:]I would like to have used rand(), but linking problems prevented it
+ //offset_time = rand() % 4000;
+ //So instead, I found this nifty thingy, which seems to fit the bill
+ offset_time = GetTickCount() % 2000;
+ }
+ /*
+ * There is an implementation of tuning. Tuning will try to determine
+ * a good power-down time, which is different for different cards.
+ * If a value is specified from the packet, we won't do any tuning.
+ * A value of zero will initialize a tuning.
+ * The power-down time is milliseconds, that MILLI-seconds .
+ */
+ uint32_t powerdown_time = c->arg[2];
+ if(powerdown_time == 0)
+ {
+ //Tuning required
+ int entropy = 100;
+ int time = 25;
+ entropy = TuneMifare(time);
+
+ while(entropy > 50 && time < 2000){
+ //Increase timeout, but never more than 500ms at a time
+ time = MIN(time*2, time+500);
+ entropy = TuneMifare(time);
+ }
+ if(entropy > 50){
+ Dbprintf("OBS! This card has high entropy (%d) and slow power-down. This may take a while", entropy);
+ }
+ powerdown_time = time;
+ }
+ //The actual attack
+ ReaderMifareBegin(offset_time, powerdown_time);
+}
+void ReaderMifareBegin(uint32_t offset_time, uint32_t powerdown_time)
+{
+ Dbprintf("Using power-down-time of %d ms, offset time %d us", powerdown_time, offset_time);
+
+ /**
+ *Allocate our state-table and initialize with zeroes
+ **/
+
+ AttackState states[STATE_SIZE] ;
+ //Dbprintf("Memory allocated ok! (%d bytes)",STATE_SIZE*sizeof(AttackState) );
+ memset(states, 0, STATE_SIZE*sizeof(AttackState));
+
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
+
+ traceLen = 0;
+ tracing = false;
+
+ iso14443a_setup();
+ LED_A_ON();
+ LED_B_OFF();
+ LED_C_OFF();
+
+ LED_A_OFF();
+ uint8_t uid[8];
+ uint32_t cuid;
+
+ byte_t nt[4];
+ int nts_attacked= 0;
+ //Keeps track of progress (max value of nt_diff for our states)
+ int progress = 0;
+ int high_entropy_warning_issued = 0;
+ while(!BUTTON_PRESS())
+ {
+ LED_C_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(powerdown_time);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ LED_C_ON();
+ SpinDelayUs(offset_time);
+
+ if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
+
+ // Transmit MIFARE_CLASSIC_AUTH
+ ReaderTransmit(mf_auth, sizeof(mf_auth));
+
+ // Receive the (16 bit) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) continue;
+ memcpy(nt, receivedAnswer, 4);
+
+ //Now we have the NT. Check if this NT is already under attack
+ AttackState* pState = NULL;
+ int i = 0;
+ for(i = 0 ; i < nts_attacked && pState == NULL; i++)
+ {
+ if( memcmp(nt, states[i].nt, 4) == 0)
+ {
+ //we have it
+ pState = &states[i];
+ //Dbprintf("Existing state found (%d)", i);
+ }
+ }
+
+ if(pState == NULL){
+ if(nts_attacked < STATE_SIZE )
+ {
+ //Initialize a new state
+ pState = &states[nts_attacked++];
+ //Clear it before use
+ memset(pState, 0, sizeof(AttackState));
+ memcpy(pState->nt, nt, 4);
+ i = nts_attacked;
+ //Dbprintf("New state created, nt=");
+ }else if(!high_entropy_warning_issued){
+ /**
+ *If we wound up here, it means that the state table was eaten up by potential nonces. This could be fixed by
+ *increasing the size of the state buffer, however, it points to some other problem. Ideally, we should get the same nonce
+ *every time. Realistically we should get a few different nonces, but if we get more than 50, there is probably somehting
+ *else that is wrong. An attack using too high nonce entropy will take **LONG** time to finish.
+ */
+ DbpString("WARNING: Nonce entropy is suspiciously high, something is wrong. Check timeouts (and perhaps increase STATE_SIZE)");
+ high_entropy_warning_issued = 1;
+ }
+ }
+ if(pState == NULL) continue;
+
+ int result = continueAttack(pState, receivedAnswer);
+
+ if(result == 1){
+ //One state progressed another step
+ if(pState->nt_diff > progress)
+ {
+ progress = pState->nt_diff;
+ //Alert the user
+ Dbprintf("Recovery progress: %d/8, NTs attacked: %d ", progress,nts_attacked );
+ }
+ //Dbprintf("State increased to %d in state %d", pState->nt_diff, i);
+ }
+ else if(result == 2){
+ //Dbprintf("Continue attack no answer, par is now %d", pState->par);
+ }
+ else if(result == 0){
+ reportResults(uid,pState,1);
+ return;
+ }
+ }
+ reportResults(uid,NULL,0);
+}
+//-----------------------------------------------------------------------------
+// MIFARE 1K simulate.
+//
+//-----------------------------------------------------------------------------
+void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
+{
+ int cardSTATE = MFEMUL_NOFIELD;
+ int _7BUID = 0;
+ int vHf = 0; // in mV
+ //int nextCycleTimeout = 0;
+ int res;
+// uint32_t timer = 0;
+ uint32_t selTimer = 0;
+ uint32_t authTimer = 0;
+ uint32_t par = 0;
+ int len = 0;
+ uint8_t cardWRBL = 0;
+ uint8_t cardAUTHSC = 0;
+ uint8_t cardAUTHKEY = 0xff; // no authentication
+ //uint32_t cardRn = 0;
+ uint32_t cardRr = 0;
+ uint32_t cuid = 0;
+ //uint32_t rn_enc = 0;
+ uint32_t ans = 0;
+ uint32_t cardINTREG = 0;
+ uint8_t cardINTBLOCK = 0;
+ struct Crypto1State mpcs = {0, 0};
+ struct Crypto1State *pcs;
+ pcs = &mpcs;
+
+ uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
+ uint8_t *response = eml_get_bigbufptr_sendbuf();
+
+ static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+
+ static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
+
+ static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+ static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+
+ static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+// static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
+ static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
+
+ // clear trace
+ traceLen = 0;
+ tracing = true;
+
+ // Authenticate response - nonce
+ uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+
+ // get UID from emul memory
+ emlGetMemBt(receivedCmd, 7, 1);
+ _7BUID = !(receivedCmd[0] == 0x00);
+ if (!_7BUID) { // ---------- 4BUID
+ rATQA[0] = 0x04;
+
+ emlGetMemBt(rUIDBCC1, 0, 4);
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ } else { // ---------- 7BUID
+ rATQA[0] = 0x44;
+
+ rUIDBCC1[0] = 0x88;
+ emlGetMemBt(&rUIDBCC1[1], 0, 3);
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ emlGetMemBt(rUIDBCC2, 3, 4);
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ }
+
+// -------------------------------------- test area
+
+// -------------------------------------- END test area
+ // start mkseconds counter
+ StartCountUS();
+
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ SpinDelay(200);
+
+ if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID);
+ // calibrate mkseconds counter
+ GetDeltaCountUS();
+ while (true) {
+ WDT_HIT();
+
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
+ // find reader field
+ // Vref = 3300mV, and an 10:1 voltage divider on the input
+ // can measure voltages up to 33000 mV
+ if (cardSTATE == MFEMUL_NOFIELD) {
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ if (vHf > MF_MINFIELDV) {
+ cardSTATE_TO_IDLE();
+ LED_A_ON();
+ }
+ }
+
+ if (cardSTATE != MFEMUL_NOFIELD) {
+ res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
+ if (res == 2) {
+ cardSTATE = MFEMUL_NOFIELD;
+ LEDsoff();
+ continue;
+ }
+ if(res) break;
+ }
+
+ //nextCycleTimeout = 0;
+
+// if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
+
+ if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
+ // REQ or WUP request in ANY state and WUP in HALTED state
+ if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+ selTimer = GetTickCount();
+ EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+ cardSTATE = MFEMUL_SELECT1;
+
+ // init crypto block
+ LED_B_OFF();
+ LED_C_OFF();
+ crypto1_destroy(pcs);
+ cardAUTHKEY = 0xff;
+ }
+ }
+
+ switch (cardSTATE) {
+ case MFEMUL_NOFIELD:{
+ break;
+ }
+ case MFEMUL_HALTED:{
+ break;
+ }
+ case MFEMUL_IDLE:{
+ break;
+ }
+ case MFEMUL_SELECT1:{
+ // select all
+ if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
+ break;
+ }
+
+ // select card
+ if (len == 9 &&
+ (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+ if (!_7BUID)
+ EmSendCmd(rSAK, sizeof(rSAK));
+ else
+ EmSendCmd(rSAK1, sizeof(rSAK1));
+
+ cuid = bytes_to_num(rUIDBCC1, 4);
+ if (!_7BUID) {
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+ break;
+ } else {
+ cardSTATE = MFEMUL_SELECT2;
+ break;
+ }
+ }
+
+ break;
+ }
+ case MFEMUL_SELECT2:{
+ if (!len) break;
+
+ if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+ break;
+ }
+
+ // select 2 card
+ if (len == 9 &&
+ (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+ EmSendCmd(rSAK, sizeof(rSAK));
+
+ cuid = bytes_to_num(rUIDBCC2, 4);
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ break;
+ }
+
+ // i guess there is a command). go into the work state.
+ if (len != 4) break;
+ cardSTATE = MFEMUL_WORK;
+ goto lbWORK;
+ }
+ case MFEMUL_AUTH1:{
+ if (len == 8) {
+ // --- crypto
+ //rn_enc = bytes_to_num(receivedCmd, 4);
+ //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
+ cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
+ // test if auth OK
+ if (cardRr != prng_successor(nonce, 64)){
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+ // --- crypto
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ cardSTATE = MFEMUL_AUTH2;
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ if (cardSTATE != MFEMUL_AUTH2) break;
+ }
+ case MFEMUL_AUTH2:{
+ LED_C_ON();
+ cardSTATE = MFEMUL_WORK;
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+ break;
+ }
+ case MFEMUL_WORK:{
+lbWORK: if (len == 0) break;
+
+ if (cardAUTHKEY == 0xff) {
+ // first authentication
+ if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+ authTimer = GetTickCount();
+
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60;
+
+ // --- crypto
+ crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ num_to_bytes(nonce, 4, rAUTH_AT);
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ // --- crypto
+
+// last working revision
+// EmSendCmd14443aRaw(resp1, resp1Len, 0);
+// LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
+
+ cardSTATE = MFEMUL_AUTH1;
+ //nextCycleTimeout = 10;
+ break;
+ }
+ } else {
+ // decrypt seqence
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+
+ // nested authentication
+ if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+ authTimer = GetTickCount();
+
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60;
+
+ // --- crypto
+ crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ // --- crypto
+
+ cardSTATE = MFEMUL_AUTH1;
+ //nextCycleTimeout = 10;
+ break;
+ }
+ }
+
+ // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
+ // BUT... ACK --> NACK
+ if (len == 1 && receivedCmd[0] == CARD_ACK) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
+ if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ break;
+ }
+
+ // read block
+ if (len == 4 && receivedCmd[0] == 0x30) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ emlGetMem(response, receivedCmd[1], 1);
+ AppendCrc14443a(response, 16);
+ mf_crypto1_encrypt(pcs, response, 18, &par);
+ EmSendCmdPar(response, 18, par);
+ break;
+ }
+
+ // write block
+ if (len == 4 && receivedCmd[0] == 0xA0) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ //nextCycleTimeout = 50;
+ cardSTATE = MFEMUL_WRITEBL2;
+ cardWRBL = receivedCmd[1];
+ break;
+ }
+
+ // works with cardINTREG
+
+ // increment, decrement, restore
+ if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
+ if (receivedCmd[1] >= 16 * 4 ||
+ receivedCmd[1] / 4 != cardAUTHSC ||
+ emlCheckValBl(receivedCmd[1])) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ if (receivedCmd[0] == 0xC1)
+ cardSTATE = MFEMUL_INTREG_INC;
+ if (receivedCmd[0] == 0xC0)
+ cardSTATE = MFEMUL_INTREG_DEC;
+ if (receivedCmd[0] == 0xC2)
+ cardSTATE = MFEMUL_INTREG_REST;
+ cardWRBL = receivedCmd[1];
+
+ break;
+ }
+
+
+ // transfer
+ if (len == 4 && receivedCmd[0] == 0xB0) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ else
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+
+ break;
+ }
+
+ // halt
+ if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
+ LED_B_OFF();
+ LED_C_OFF();
+ cardSTATE = MFEMUL_HALTED;
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
+ break;
+ }
+
+ // command not allowed
+ if (len == 4) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ // case break
+ break;
+ }
+ case MFEMUL_WRITEBL2:{
+ if (len == 18){
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ emlSetMem(receivedCmd, cardWRBL, 1);
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ cardSTATE = MFEMUL_WORK;
+ break;
+ } else {
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ break;
+ }
+
+ case MFEMUL_INTREG_INC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardINTREG = cardINTREG + ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_DEC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardINTREG = cardINTREG - ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_REST:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ }
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+
+ // add trace trailer
+ memset(rAUTH_NT, 0x44, 4);
+ LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
+
+ if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
+}
+
+//-----------------------------------------------------------------------------
+// MIFARE sniffer.
+//
+//-----------------------------------------------------------------------------
+void RAMFUNC SniffMifare(uint8_t param) {
+ // param:
+ // bit 0 - trigger from first card answer
+ // bit 1 - trigger from first reader 7-bit request
+
+ // C(red) A(yellow) B(green)
+ LEDsoff();
+ // init trace buffer
+ iso14a_clear_trace();
+
+ // The command (reader -> tag) that we're receiving.
+ // The length of a received command will in most cases be no more than 18 bytes.
+ // So 32 should be enough!
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ // The response (tag -> reader) that we're receiving.
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+ // As we receive stuff, we copy it from receivedCmd or receivedResponse
+ // into trace, along with its length and other annotations.
+ //uint8_t *trace = (uint8_t *)BigBuf;
+
+ // The DMA buffer, used to stream samples from the FPGA
+ int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ int8_t *data = dmaBuf;
+ int maxDataLen = 0;
+ int dataLen = 0;
+
+ // Set up the demodulator for tag -> reader responses.
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ // Set up the demodulator for the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
+ Uart.output = receivedCmd;
+ Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+ Uart.state = STATE_UNSYNCD;
+
+ // Setup for the DMA.
+ FpgaSetupSsc();
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // init sniffer
+ MfSniffInit();
+ int sniffCounter = 0;
+
+ // And now we loop, receiving samples.
+ while(true) {
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ goto done;
+ }
+
+ LED_A_ON();
+ WDT_HIT();
+
+ if (++sniffCounter > 65) {
+ if (MfSniffSend(2000)) {
+ FpgaEnableSscDma();
+ }
+ sniffCounter = 0;
+ }
+
+ int register readBufDataP = data - dmaBuf;
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if (readBufDataP <= dmaBufDataP){
+ dataLen = dmaBufDataP - readBufDataP;
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+ }
+ // test for length of buffer
+ if(dataLen > maxDataLen) {
+ maxDataLen = dataLen;
+ if(dataLen > 400) {
+ Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+ goto done;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+ LED_C_INV();
+ // check - if there is a short 7bit request from reader
+ if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break;
+
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+
+ /* And also reset the demod code */
+ Demod.state = DEMOD_UNSYNCD;
+ }
+
+ if(ManchesterDecoding(data[0] & 0x0F)) {
+ LED_C_INV();
+
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = receivedResponse;
+ Demod.state = DEMOD_UNSYNCD;
+
+ /* And also reset the uart code */
+ Uart.state = STATE_UNSYNCD;
+ }
+
+ data++;
+ if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ data = dmaBuf;
+ }
+ } // main cycle
+
+ DbpString("COMMAND FINISHED");
+
+done:
+ FpgaDisableSscDma();
+ MfSniffEnd();
+
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax);
+ LEDsoff();
+}