-//-----------------------------------------------------------------------------\r
-// Miscellaneous routines for low frequency tag operations.\r
-// Tags supported here so far are Texas Instruments (TI), HID\r
-// Also routines for raw mode reading/simulating of LF waveform\r
-//\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "hitag2.h"\r
-#include "../common/crc16.c"\r
-\r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- // Now call the acquisition routine\r
- DoAcquisition125k(at134khz);\r
-}\r
-\r
-// split into two routines so we can avoid timing issues after sending commands //\r
-void DoAcquisition125k(BOOL at134khz)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int n = sizeof(BigBuf);\r
- int i;\r
-\r
- memset(dest,0,n);\r
- i = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- LED_D_ON();\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- i++;\r
- LED_D_OFF();\r
- if(i >= n) {\r
- break;\r
- }\r
- }\r
- }\r
- DbpIntegers(dest[0], dest[1], at134khz);\r
-}\r
-\r
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)\r
-{\r
- BOOL at134khz;\r
-\r
- /* Make sure the tag is reset */\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- SpinDelay(2500);\r
- \r
- // see if 'h' was specified\r
- if(command[strlen((char *) command) - 1] == 'h')\r
- at134khz= TRUE;\r
- else\r
- at134khz= FALSE;\r
-\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
- // And a little more time for the tag to fully power up\r
- SpinDelay(2000);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- // now modulate the reader field\r
- while(*command != '\0' && *command != ' ')\r
- {\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LED_D_OFF();\r
- SpinDelayUs(delay_off);\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
- LED_D_ON();\r
- if(*(command++) == '0') {\r
- SpinDelayUs(period_0);\r
- } else {\r
- SpinDelayUs(period_1);\r
- }\r
- }\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- LED_D_OFF();\r
- SpinDelayUs(delay_off);\r
- if(at134khz) {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- } else {\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
- }\r
-\r
- // now do the read\r
- DoAcquisition125k(at134khz);\r
-}\r
-\r
-/* blank r/w tag data stream\r
-...0000000000000000 01111111\r
-1010101010101010101010101010101010101010101010101010101010101010\r
-0011010010100001\r
-01111111\r
-101010101010101[0]000...\r
-\r
-[5555fe852c5555555555555555fe0000]\r
-*/\r
-void ReadTItag()\r
-{\r
- // some hardcoded initial params\r
- // when we read a TI tag we sample the zerocross line at 2Mhz\r
- // TI tags modulate a 1 as 16 cycles of 123.2Khz\r
- // TI tags modulate a 0 as 16 cycles of 134.2Khz\r
- #define FSAMPLE 2000000\r
- #define FREQLO 123200\r
- #define FREQHI 134200\r
-\r
- signed char *dest = (signed char *)BigBuf;\r
- int n = sizeof(BigBuf);\r
-// int *dest = GraphBuffer;\r
-// int n = GraphTraceLen;\r
-\r
- // 128 bit shift register [shift3:shift2:shift1:shift0]\r
- DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;\r
-\r
- int i, cycles=0, samples=0;\r
- // how many sample points fit in 16 cycles of each frequency\r
- DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;\r
- // when to tell if we're close enough to one freq or another\r
- DWORD threshold = (sampleslo - sampleshi + 1)>>1;\r
-\r
- // TI tags charge at 134.2Khz\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-\r
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
- // connects to SSP_DIN and the SSP_DOUT logic level controls\r
- // whether we're modulating the antenna (high)\r
- // or listening to the antenna (low)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
-\r
- // get TI tag data into the buffer\r
- AcquireTiType();\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-\r
- for (i=0; i<n-1; i++) {\r
- // count cycles by looking for lo to hi zero crossings\r
- if ( (dest[i]<0) && (dest[i+1]>0) ) {\r
- cycles++;\r
- // after 16 cycles, measure the frequency\r
- if (cycles>15) {\r
- cycles=0;\r
- samples=i-samples; // number of samples in these 16 cycles\r
-\r
- // TI bits are coming to us lsb first so shift them\r
- // right through our 128 bit right shift register\r
- shift0 = (shift0>>1) | (shift1 << 31);\r
- shift1 = (shift1>>1) | (shift2 << 31);\r
- shift2 = (shift2>>1) | (shift3 << 31);\r
- shift3 >>= 1;\r
-\r
- // check if the cycles fall close to the number\r
- // expected for either the low or high frequency\r
- if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {\r
- // low frequency represents a 1\r
- shift3 |= (1<<31);\r
- } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {\r
- // high frequency represents a 0\r
- } else {\r
- // probably detected a gay waveform or noise\r
- // use this as gaydar or discard shift register and start again\r
- shift3 = shift2 = shift1 = shift0 = 0;\r
- }\r
- samples = i;\r
-\r
- // for each bit we receive, test if we've detected a valid tag\r
-\r
- // if we see 17 zeroes followed by 6 ones, we might have a tag\r
- // remember the bits are backwards\r
- if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {\r
- // if start and end bytes match, we have a tag so break out of the loop\r
- if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {\r
- cycles = 0xF0B; //use this as a flag (ugly but whatever)\r
- break;\r
- }\r
- }\r
- }\r
- }\r
- }\r
-\r
- // if flag is set we have a tag\r
- if (cycles!=0xF0B) {\r
- DbpString("Info: No valid tag detected.");\r
- } else {\r
- // put 64 bit data into shift1 and shift0\r
- shift0 = (shift0>>24) | (shift1 << 8);\r
- shift1 = (shift1>>24) | (shift2 << 8);\r
-\r
- // align 16 bit crc into lower half of shift2\r
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;\r
-\r
- // if r/w tag, check ident match\r
- if ( shift3&(1<<15) ) {\r
- DbpString("Info: TI tag is rewriteable");\r
- // only 15 bits compare, last bit of ident is not valid\r
- if ( ((shift3>>16)^shift0)&0x7fff ) {\r
- DbpString("Error: Ident mismatch!");\r
- } else {\r
- DbpString("Info: TI tag ident is valid");\r
- }\r
- } else {\r
- DbpString("Info: TI tag is readonly");\r
- }\r
-\r
- // WARNING the order of the bytes in which we calc crc below needs checking\r
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
- // bytes in reverse or something\r
- // calculate CRC\r
- DWORD crc=0;\r
-\r
- crc = update_crc16(crc, (shift0)&0xff);\r
- crc = update_crc16(crc, (shift0>>8)&0xff);\r
- crc = update_crc16(crc, (shift0>>16)&0xff);\r
- crc = update_crc16(crc, (shift0>>24)&0xff);\r
- crc = update_crc16(crc, (shift1)&0xff);\r
- crc = update_crc16(crc, (shift1>>8)&0xff);\r
- crc = update_crc16(crc, (shift1>>16)&0xff);\r
- crc = update_crc16(crc, (shift1>>24)&0xff);\r
-\r
- DbpString("Info: Tag data_hi, data_lo, crc = ");\r
- DbpIntegers(shift1, shift0, shift2&0xffff);\r
- if (crc != (shift2&0xffff)) {\r
- DbpString("Error: CRC mismatch, expected");\r
- DbpIntegers(0, 0, crc);\r
- } else {\r
- DbpString("Info: CRC is good");\r
- }\r
- }\r
-}\r
-\r
-void WriteTIbyte(BYTE b)\r
-{\r
- int i = 0;\r
-\r
- // modulate 8 bits out to the antenna\r
- for (i=0; i<8; i++)\r
- {\r
- if (b&(1<<i)) {\r
- // stop modulating antenna\r
- LOW(GPIO_SSC_DOUT);\r
- SpinDelayUs(1000);\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelayUs(1000);\r
- } else {\r
- // stop modulating antenna\r
- LOW(GPIO_SSC_DOUT);\r
- SpinDelayUs(300);\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelayUs(1700);\r
- }\r
- }\r
-}\r
-\r
-void AcquireTiType(void)\r
-{\r
- int i, j, n;\r
- // tag transmission is <20ms, sampling at 2M gives us 40K samples max\r
- // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS\r
- #define TIBUFLEN 1250\r
-\r
- // clear buffer\r
- memset(BigBuf,0,sizeof(BigBuf));\r
-\r
- // Set up the synchronous serial port\r
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;\r
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;\r
-\r
- // steal this pin from the SSP and use it to control the modulation\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
-\r
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
- AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;\r
-\r
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long\r
- // 48/2 = 24 MHz clock must be divided by 12\r
- AT91C_BASE_SSC->SSC_CMR = 12;\r
-\r
- AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);\r
- AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;\r
- AT91C_BASE_SSC->SSC_TCMR = 0;\r
- AT91C_BASE_SSC->SSC_TFMR = 0;\r
-\r
- LED_D_ON();\r
-\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
-\r
- // Charge TI tag for 50ms.\r
- SpinDelay(50);\r
-\r
- // stop modulating antenna and listen\r
- LOW(GPIO_SSC_DOUT);\r
-\r
- LED_D_OFF();\r
-\r
- i = 0;\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {\r
- BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer\r
- i++; if(i >= TIBUFLEN) break;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- // return stolen pin to SSP\r
- AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;\r
-\r
- char *dest = (char *)BigBuf;\r
- n = TIBUFLEN*32;\r
- // unpack buffer\r
- for (i=TIBUFLEN-1; i>=0; i--) {\r
-// DbpIntegers(0, 0, BigBuf[i]);\r
- for (j=0; j<32; j++) {\r
- if(BigBuf[i] & (1 << j)) {\r
- dest[--n] = 1;\r
- } else {\r
- dest[--n] = -1;\r
- }\r
- }\r
- }\r
-}\r
-\r
-// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc\r
-// if crc provided, it will be written with the data verbatim (even if bogus)\r
-// if not provided a valid crc will be computed from the data and written.\r
-void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)\r
-{\r
-\r
- // WARNING the order of the bytes in which we calc crc below needs checking\r
- // i'm 99% sure the crc algorithm is correct, but it may need to eat the\r
- // bytes in reverse or something\r
-\r
- if(crc == 0) {\r
- crc = update_crc16(crc, (idlo)&0xff);\r
- crc = update_crc16(crc, (idlo>>8)&0xff);\r
- crc = update_crc16(crc, (idlo>>16)&0xff);\r
- crc = update_crc16(crc, (idlo>>24)&0xff);\r
- crc = update_crc16(crc, (idhi)&0xff);\r
- crc = update_crc16(crc, (idhi>>8)&0xff);\r
- crc = update_crc16(crc, (idhi>>16)&0xff);\r
- crc = update_crc16(crc, (idhi>>24)&0xff);\r
- }\r
- DbpString("Writing the following data to tag:");\r
- DbpIntegers(idhi, idlo, crc);\r
-\r
- // TI tags charge at 134.2Khz\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line\r
- // connects to SSP_DIN and the SSP_DOUT logic level controls\r
- // whether we're modulating the antenna (high)\r
- // or listening to the antenna (low)\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);\r
- LED_A_ON();\r
-\r
- // steal this pin from the SSP and use it to control the modulation\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
-\r
- // writing algorithm:\r
- // a high bit consists of a field off for 1ms and field on for 1ms\r
- // a low bit consists of a field off for 0.3ms and field on for 1.7ms\r
- // initiate a charge time of 50ms (field on) then immediately start writing bits\r
- // start by writing 0xBB (keyword) and 0xEB (password)\r
- // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)\r
- // finally end with 0x0300 (write frame)\r
- // all data is sent lsb firts\r
- // finish with 15ms programming time\r
-\r
- // modulate antenna\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelay(50); // charge time\r
-\r
- WriteTIbyte(0xbb); // keyword\r
- WriteTIbyte(0xeb); // password\r
- WriteTIbyte( (idlo )&0xff );\r
- WriteTIbyte( (idlo>>8 )&0xff );\r
- WriteTIbyte( (idlo>>16)&0xff );\r
- WriteTIbyte( (idlo>>24)&0xff );\r
- WriteTIbyte( (idhi )&0xff );\r
- WriteTIbyte( (idhi>>8 )&0xff );\r
- WriteTIbyte( (idhi>>16)&0xff );\r
- WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo\r
- WriteTIbyte( (crc )&0xff ); // crc lo\r
- WriteTIbyte( (crc>>8 )&0xff ); // crc hi\r
- WriteTIbyte(0x00); // write frame lo\r
- WriteTIbyte(0x03); // write frame hi\r
- HIGH(GPIO_SSC_DOUT);\r
- SpinDelay(50); // programming time\r
-\r
- LED_A_OFF();\r
-\r
- // get TI tag data into the buffer\r
- AcquireTiType();\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
- DbpString("Now use tiread to check");\r
-}\r
-\r
-void SimulateTagLowFrequency(int period, int ledcontrol)\r
-{\r
- int i;\r
- BYTE *tab = (BYTE *)BigBuf;\r
-\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
-\r
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;\r
-\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
- AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;\r
-\r
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)\r
-\r
- i = 0;\r
- for(;;) {\r
- while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- if (ledcontrol)\r
- LED_D_ON();\r
-\r
- if(tab[i])\r
- OPEN_COIL();\r
- else\r
- SHORT_COIL();\r
-\r
- if (ledcontrol)\r
- LED_D_OFF();\r
-\r
- while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- return;\r
- }\r
- WDT_HIT();\r
- }\r
-\r
- i++;\r
- if(i == period) i = 0;\r
- }\r
-}\r
-\r
-/* Provides a framework for bidirectional LF tag communication\r
- * Encoding is currently Hitag2, but the general idea can probably\r
- * be transferred to other encodings.\r
- * \r
- * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME\r
- * (PA15) a thresholded version of the signal from the ADC. Setting the\r
- * ADC path to the low frequency peak detection signal, will enable a\r
- * somewhat reasonable receiver for modulation on the carrier signal\r
- * that is generated by the reader. The signal is low when the reader\r
- * field is switched off, and high when the reader field is active. Due\r
- * to the way that the signal looks like, mostly only the rising edge is\r
- * useful, your mileage may vary.\r
- * \r
- * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also\r
- * TIOA1, which can be used as the capture input for timer 1. This should\r
- * make it possible to measure the exact edge-to-edge time, without processor\r
- * intervention.\r
- * \r
- * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)\r
- * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)\r
- * \r
- * The following defines are in carrier periods: \r
- */\r
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ \r
-#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */\r
-#define HITAG_T_EOF 40 /* T_EOF should be > 36 */\r
-#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */\r
-\r
-static void hitag_handle_frame(int t0, int frame_len, char *frame);\r
-//#define DEBUG_RA_VALUES 1\r
-#define DEBUG_FRAME_CONTENTS 1\r
-void SimulateTagLowFrequencyBidir(int divisor, int t0)\r
-{\r
-#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS\r
- int i = 0;\r
-#endif\r
- char frame[10];\r
- int frame_pos=0;\r
- \r
- DbpString("Starting Hitag2 emulator, press button to end");\r
- hitag2_init();\r
- \r
- /* Set up simulator mode, frequency divisor which will drive the FPGA\r
- * and analog mux selection.\r
- */\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
- RELAY_OFF();\r
- \r
- /* Set up Timer 1:\r
- * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,\r
- * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising\r
- * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)\r
- */\r
- \r
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);\r
- AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;\r
- AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 |\r
- AT91C_TC_ETRGEDG_RISING |\r
- AT91C_TC_ABETRG |\r
- AT91C_TC_LDRA_RISING |\r
- AT91C_TC_LDRB_RISING;\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |\r
- AT91C_TC_SWTRG;\r
- \r
- /* calculate the new value for the carrier period in terms of TC1 values */\r
- t0 = t0/2;\r
- \r
- int overflow = 0;\r
- while(!BUTTON_PRESS()) {\r
- WDT_HIT();\r
- if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {\r
- int ra = AT91C_BASE_TC1->TC_RA;\r
- if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;\r
-#if DEBUG_RA_VALUES\r
- if(ra > 255 || overflow) ra = 255;\r
- ((char*)BigBuf)[i] = ra;\r
- i = (i+1) % 8000;\r
-#endif\r
- \r
- if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {\r
- /* Ignore */\r
- } else if(ra >= t0*HITAG_T_1_MIN ) {\r
- /* '1' bit */\r
- if(frame_pos < 8*sizeof(frame)) {\r
- frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );\r
- frame_pos++;\r
- }\r
- } else if(ra >= t0*HITAG_T_0_MIN) {\r
- /* '0' bit */\r
- if(frame_pos < 8*sizeof(frame)) {\r
- frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );\r
- frame_pos++;\r
- }\r
- }\r
- \r
- overflow = 0;\r
- LED_D_ON();\r
- } else {\r
- if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {\r
- /* Minor nuisance: In Capture mode, the timer can not be\r
- * stopped by a Compare C. There's no way to stop the clock\r
- * in software, so we'll just have to note the fact that an\r
- * overflow happened and the next loaded timer value might\r
- * have wrapped. Also, this marks the end of frame, and the\r
- * still running counter can be used to determine the correct\r
- * time for the start of the reply.\r
- */ \r
- overflow = 1;\r
- \r
- if(frame_pos > 0) {\r
- /* Have a frame, do something with it */\r
-#if DEBUG_FRAME_CONTENTS\r
- ((char*)BigBuf)[i++] = frame_pos;\r
- memcpy( ((char*)BigBuf)+i, frame, 7);\r
- i+=7;\r
- i = i % sizeof(BigBuf);\r
-#endif\r
- hitag_handle_frame(t0, frame_pos, frame);\r
- memset(frame, 0, sizeof(frame));\r
- }\r
- frame_pos = 0;\r
-\r
- }\r
- LED_D_OFF();\r
- }\r
- }\r
- DbpString("All done");\r
-}\r
-\r
-static void hitag_send_bit(int t0, int bit) {\r
- if(bit == 1) {\r
- /* Manchester: Loaded, then unloaded */\r
- LED_A_ON();\r
- SHORT_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*15);\r
- OPEN_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*31);\r
- LED_A_OFF();\r
- } else if(bit == 0) {\r
- /* Manchester: Unloaded, then loaded */\r
- LED_B_ON();\r
- OPEN_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*15);\r
- SHORT_COIL();\r
- while(AT91C_BASE_TC1->TC_CV < t0*31);\r
- LED_B_OFF();\r
- }\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */\r
- \r
-}\r
-static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)\r
-{\r
- OPEN_COIL();\r
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;\r
- \r
- /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,\r
- * not that since the clock counts since the rising edge, but T_wresp is\r
- * with respect to the falling edge, we need to wait actually (T_wresp - T_g)\r
- * periods. The gap time T_g varies (4..10).\r
- */\r
- while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));\r
-\r
- int saved_cmr = AT91C_BASE_TC1->TC_CMR;\r
- AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */\r
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */\r
- \r
- int i;\r
- for(i=0; i<5; i++)\r
- hitag_send_bit(t0, 1); /* Start of frame */\r
- \r
- for(i=0; i<frame_len; i++) {\r
- hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );\r
- }\r
- \r
- OPEN_COIL();\r
- AT91C_BASE_TC1->TC_CMR = saved_cmr;\r
-}\r
-\r
-/* Callback structure to cleanly separate tag emulation code from the radio layer. */\r
-static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)\r
-{\r
- hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);\r
- return 0;\r
-}\r
-/* Frame length in bits, frame contents in MSBit first format */\r
-static void hitag_handle_frame(int t0, int frame_len, char *frame)\r
-{\r
- hitag2_handle_command(frame, frame_len, hitag_cb, &t0);\r
-}\r
-\r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int idx;\r
-\r
- // for when we want an fc8 pattern every 4 logical bits\r
- if(c==0) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples\r
- if(c==8) {\r
- for (idx=0; idx<6; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-\r
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
- if(c==10) {\r
- for (idx=0; idx<5; idx++) {\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=1;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- dest[((*n)++)]=0;\r
- }\r
- }\r
-}\r
-\r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-void CmdHIDsimTAG(int hi, int lo, int ledcontrol)\r
-{\r
- int n=0, i=0;\r
- /*\r
- HID tag bitstream format\r
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
- A fc8 is inserted before every 4 bits\r
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
- */\r
-\r
- if (hi>0xFFF) {\r
- DbpString("Tags can only have 44 bits.");\r
- return;\r
- }\r
- fc(0,&n);\r
- // special start of frame marker containing invalid bit sequences\r
- fc(8, &n); fc(8, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
- fc(10, &n); fc(10, &n); // invalid\r
- fc(8, &n); fc(10, &n); // logical 0\r
-\r
- WDT_HIT();\r
- // manchester encode bits 43 to 32\r
- for (i=11; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((hi>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- WDT_HIT();\r
- // manchester encode bits 31 to 0\r
- for (i=31; i>=0; i--) {\r
- if ((i%4)==3) fc(0,&n);\r
- if ((lo>>i)&1) {\r
- fc(10, &n); fc(8, &n); // low-high transition\r
- } else {\r
- fc(8, &n); fc(10, &n); // high-low transition\r
- }\r
- }\r
-\r
- if (ledcontrol)\r
- LED_A_ON();\r
- SimulateTagLowFrequency(n, ledcontrol);\r
-\r
- if (ledcontrol)\r
- LED_A_OFF();\r
-}\r
-\r
-\r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)\r
-{\r
- BYTE *dest = (BYTE *)BigBuf;\r
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
- DWORD hi=0, lo=0;\r
-\r
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
-\r
- // Connect the A/D to the peak-detected low-frequency path.\r
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
- // Give it a bit of time for the resonant antenna to settle.\r
- SpinDelay(50);\r
-\r
- // Now set up the SSC to get the ADC samples that are now streaming at us.\r
- FpgaSetupSsc();\r
-\r
- for(;;) {\r
- WDT_HIT();\r
- if (ledcontrol)\r
- LED_A_ON();\r
- if(BUTTON_PRESS()) {\r
- DbpString("Stopped");\r
- if (ledcontrol)\r
- LED_A_OFF();\r
- return;\r
- }\r
-\r
- i = 0;\r
- m = sizeof(BigBuf);\r
- memset(dest,128,m);\r
- for(;;) {\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
- AT91C_BASE_SSC->SSC_THR = 0x43;\r
- if (ledcontrol)\r
- LED_D_ON();\r
- }\r
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
- // we don't care about actual value, only if it's more or less than a\r
- // threshold essentially we capture zero crossings for later analysis\r
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
- i++;\r
- if (ledcontrol)\r
- LED_D_OFF();\r
- if(i >= m) {\r
- break;\r
- }\r
- }\r
- }\r
-\r
- // FSK demodulator\r
-\r
- // sync to first lo-hi transition\r
- for( idx=1; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx])\r
- lastval=idx;\r
- break;\r
- }\r
- WDT_HIT();\r
-\r
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
- for( i=0; idx<m; idx++) {\r
- if (dest[idx-1]<dest[idx]) {\r
- dest[i]=idx-lastval;\r
- if (dest[i] <= 8) {\r
- dest[i]=1;\r
- } else {\r
- dest[i]=0;\r
- }\r
-\r
- lastval=idx;\r
- i++;\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
- lastval=dest[0];\r
- idx=0;\r
- i=0;\r
- n=0;\r
- for( idx=0; idx<m; idx++) {\r
- if (dest[idx]==lastval) {\r
- n++;\r
- } else {\r
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
- // swallowed up by rounding\r
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
- // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
- // like 111000\r
- if (dest[idx-1]) {\r
- n=(n+1)/6; // fc/8 in sets of 6\r
- } else {\r
- n=(n+1)/5; // fc/10 in sets of 5\r
- }\r
- switch (n) { // stuff appropriate bits in buffer\r
- case 0:\r
- case 1: // one bit\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 2: // two bits\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- case 3: // 3 bit start of frame markers\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- // When a logic 0 is immediately followed by the start of the next transmisson\r
- // (special pattern) a pattern of 4 bit duration lengths is created.\r
- case 4:\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- dest[i++]=dest[idx-1];\r
- break;\r
- default: // this shouldn't happen, don't stuff any bits\r
- break;\r
- }\r
- n=0;\r
- lastval=dest[idx];\r
- }\r
- }\r
- m=i;\r
- WDT_HIT();\r
-\r
- // final loop, go over previously decoded manchester data and decode into usable tag ID\r
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
- for( idx=0; idx<m-6; idx++) {\r
- // search for a start of frame marker\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- DbpString("TAG ID");\r
- DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
- /* if we're only looking for one tag */\r
- if (findone)\r
- {\r
- *high = hi;\r
- *low = lo;\r
- return;\r
- }\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- if (found) {\r
- if (dest[idx] && (!dest[idx+1]) ) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|0;\r
- } else if ( (!dest[idx]) && dest[idx+1]) {\r
- hi=(hi<<1)|(lo>>31);\r
- lo=(lo<<1)|1;\r
- } else {\r
- found=0;\r
- hi=0;\r
- lo=0;\r
- }\r
- idx++;\r
- }\r
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
- {\r
- found=1;\r
- idx+=6;\r
- if (found && (hi|lo)) {\r
- DbpString("TAG ID");\r
- DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
- /* if we're only looking for one tag */\r
- if (findone)\r
- {\r
- *high = hi;\r
- *low = lo;\r
- return;\r
- }\r
- hi=0;\r
- lo=0;\r
- found=0;\r
- }\r
- }\r
- }\r
- WDT_HIT();\r
- }\r
-}\r
+//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Miscellaneous routines for low frequency tag operations.
+// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
+// Also routines for raw mode reading/simulating of LF waveform
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "hitag2.h"
+#include "crc16.h"
+#include "string.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "protocols.h"
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
+{
+ // start timer
+ StartTicks();
+
+ // use lf config settings
+ sample_config *sc = getSamplingConfig();
+
+ // Make sure the tag is reset
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitMS(2500);
+
+ // clear read buffer (after fpga bitstream loaded...)
+ BigBuf_Clear_keep_EM();
+
+ // power on
+ LFSetupFPGAForADC(sc->divisor, 1);
+
+ // And a little more time for the tag to fully power up
+ WaitMS(2000);
+ // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
+ bool bitbang = delay_off == 0;
+ // now modulate the reader field
+
+ if (bitbang) {
+ // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
+ uint8_t hack_cnt = 7;
+ if (period_0 < hack_cnt || period_1 < hack_cnt) {
+ DbpString("Warning periods cannot be less than 7us in bit bang mode");
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ return;
+ }
+
+ // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
+ // leading to ~ 1 to 2 125khz samples extra in every off period
+ // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
+ // but is this time different for every antenna or other hw builds??? more testing needed
+
+ // prime cmd_len to save time comparing strings while modulating
+ int cmd_len = 0;
+ while(command[cmd_len] != '\0' && command[cmd_len] != ' ')
+ cmd_len++;
+
+ int counter = 0;
+ bool off = false;
+ for (counter = 0; counter < cmd_len; counter++) {
+ // if cmd = 0 then turn field off
+ if (command[counter] == '0') {
+ // if field already off leave alone (affects timing otherwise)
+ if (off == false) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ off = true;
+ }
+ // note we appear to take about 7us to switch over (or run the if statements/loop...)
+ WaitUS(period_0-hack_cnt);
+ // else if cmd = 1 then turn field on
+ } else {
+ // if field already on leave alone (affects timing otherwise)
+ if (off) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ off = false;
+ }
+ // note we appear to take about 7us to switch over (or run the if statements/loop...)
+ WaitUS(period_1-hack_cnt);
+ }
+ }
+ } else { // old mode of cmd read using delay as off period
+ while(*command != '\0' && *command != ' ') {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ LED_D_ON();
+ if(*(command++) == '0') {
+ WaitUS(period_0);
+ } else {
+ WaitUS(period_1);
+ }
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ WaitUS(delay_off);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // now do the read
+ DoAcquisition_config(false, 0);
+
+ // Turn off antenna
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ // tell client we are done
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+/* blank r/w tag data stream
+...0000000000000000 01111111
+1010101010101010101010101010101010101010101010101010101010101010
+0011010010100001
+01111111
+101010101010101[0]000...
+
+[5555fe852c5555555555555555fe0000]
+*/
+void ReadTItag(void)
+{
+ // some hardcoded initial params
+ // when we read a TI tag we sample the zerocross line at 2Mhz
+ // TI tags modulate a 1 as 16 cycles of 123.2Khz
+ // TI tags modulate a 0 as 16 cycles of 134.2Khz
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+
+ signed char *dest = (signed char *)BigBuf_get_addr();
+ uint16_t n = BigBuf_max_traceLen();
+ // 128 bit shift register [shift3:shift2:shift1:shift0]
+ uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+
+ int i, cycles=0, samples=0;
+ // how many sample points fit in 16 cycles of each frequency
+ uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+ // when to tell if we're close enough to one freq or another
+ uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
+
+ // TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+ for (i=0; i<n-1; i++) {
+ // count cycles by looking for lo to hi zero crossings
+ if ( (dest[i]<0) && (dest[i+1]>0) ) {
+ cycles++;
+ // after 16 cycles, measure the frequency
+ if (cycles>15) {
+ cycles=0;
+ samples=i-samples; // number of samples in these 16 cycles
+
+ // TI bits are coming to us lsb first so shift them
+ // right through our 128 bit right shift register
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
+
+ // check if the cycles fall close to the number
+ // expected for either the low or high frequency
+ if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
+ // low frequency represents a 1
+ shift3 |= (1<<31);
+ } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
+ // high frequency represents a 0
+ } else {
+ // probably detected a gay waveform or noise
+ // use this as gaydar or discard shift register and start again
+ shift3 = shift2 = shift1 = shift0 = 0;
+ }
+ samples = i;
+
+ // for each bit we receive, test if we've detected a valid tag
+
+ // if we see 17 zeroes followed by 6 ones, we might have a tag
+ // remember the bits are backwards
+ if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
+ // if start and end bytes match, we have a tag so break out of the loop
+ if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
+ cycles = 0xF0B; //use this as a flag (ugly but whatever)
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // if flag is set we have a tag
+ if (cycles!=0xF0B) {
+ DbpString("Info: No valid tag detected.");
+ } else {
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
+
+ // align 16 bit crc into lower half of shift2
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+
+ // if r/w tag, check ident match
+ if (shift3 & (1<<15) ) {
+ DbpString("Info: TI tag is rewriteable");
+ // only 15 bits compare, last bit of ident is not valid
+ if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
+ DbpString("Error: Ident mismatch!");
+ } else {
+ DbpString("Info: TI tag ident is valid");
+ }
+ } else {
+ DbpString("Info: TI tag is readonly");
+ }
+
+ // WARNING the order of the bytes in which we calc crc below needs checking
+ // i'm 99% sure the crc algorithm is correct, but it may need to eat the
+ // bytes in reverse or something
+ // calculate CRC
+ uint32_t crc=0;
+
+ crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0>>8)&0xff);
+ crc = update_crc16(crc, (shift0>>16)&0xff);
+ crc = update_crc16(crc, (shift0>>24)&0xff);
+ crc = update_crc16(crc, (shift1)&0xff);
+ crc = update_crc16(crc, (shift1>>8)&0xff);
+ crc = update_crc16(crc, (shift1>>16)&0xff);
+ crc = update_crc16(crc, (shift1>>24)&0xff);
+
+ Dbprintf("Info: Tag data: %x%08x, crc=%x",
+ (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ if (crc != (shift2&0xffff)) {
+ Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
+ } else {
+ DbpString("Info: CRC is good");
+ }
+ }
+}
+
+void WriteTIbyte(uint8_t b)
+{
+ int i = 0;
+
+ // modulate 8 bits out to the antenna
+ for (i=0; i<8; i++)
+ {
+ if (b&(1<<i)) {
+ // stop modulating antenna
+ LOW(GPIO_SSC_DOUT);
+ SpinDelayUs(1000);
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelayUs(1000);
+ } else {
+ // stop modulating antenna
+ LOW(GPIO_SSC_DOUT);
+ SpinDelayUs(300);
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelayUs(1700);
+ }
+ }
+}
+
+void AcquireTiType(void)
+{
+ int i, j, n;
+ // tag transmission is <20ms, sampling at 2M gives us 40K samples max
+ // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+ #define TIBUFLEN 1250
+
+ // clear buffer
+ uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+ BigBuf_Clear_ext(false);
+
+ // Set up the synchronous serial port
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
+
+ // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+ // 48/2 = 24 MHz clock must be divided by 12
+ AT91C_BASE_SSC->SSC_CMR = 12;
+
+ AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+ AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+ AT91C_BASE_SSC->SSC_TCMR = 0;
+ AT91C_BASE_SSC->SSC_TFMR = 0;
+
+ LED_D_ON();
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+
+ // Charge TI tag for 50ms.
+ SpinDelay(50);
+
+ // stop modulating antenna and listen
+ LOW(GPIO_SSC_DOUT);
+
+ LED_D_OFF();
+
+ i = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
+ i++; if(i >= TIBUFLEN) break;
+ }
+ WDT_HIT();
+ }
+
+ // return stolen pin to SSP
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
+
+ char *dest = (char *)BigBuf_get_addr();
+ n = TIBUFLEN*32;
+ // unpack buffer
+ for (i=TIBUFLEN-1; i>=0; i--) {
+ for (j=0; j<32; j++) {
+ if(BigBuf[i] & (1 << j)) {
+ dest[--n] = 1;
+ } else {
+ dest[--n] = -1;
+ }
+ }
+ }
+}
+
+// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
+// if crc provided, it will be written with the data verbatim (even if bogus)
+// if not provided a valid crc will be computed from the data and written.
+void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ if(crc == 0) {
+ crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo>>8)&0xff);
+ crc = update_crc16(crc, (idlo>>16)&0xff);
+ crc = update_crc16(crc, (idlo>>24)&0xff);
+ crc = update_crc16(crc, (idhi)&0xff);
+ crc = update_crc16(crc, (idhi>>8)&0xff);
+ crc = update_crc16(crc, (idhi>>16)&0xff);
+ crc = update_crc16(crc, (idhi>>24)&0xff);
+ }
+ Dbprintf("Writing to tag: %x%08x, crc=%x",
+ (unsigned int) idhi, (unsigned int) idlo, crc);
+
+ // TI tags charge at 134.2Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ // Place FPGA in passthrough mode, in this mode the CROSS_LO line
+ // connects to SSP_DIN and the SSP_DOUT logic level controls
+ // whether we're modulating the antenna (high)
+ // or listening to the antenna (low)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ LED_A_ON();
+
+ // steal this pin from the SSP and use it to control the modulation
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+
+ // writing algorithm:
+ // a high bit consists of a field off for 1ms and field on for 1ms
+ // a low bit consists of a field off for 0.3ms and field on for 1.7ms
+ // initiate a charge time of 50ms (field on) then immediately start writing bits
+ // start by writing 0xBB (keyword) and 0xEB (password)
+ // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
+ // finally end with 0x0300 (write frame)
+ // all data is sent lsb firts
+ // finish with 15ms programming time
+
+ // modulate antenna
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // charge time
+
+ WriteTIbyte(0xbb); // keyword
+ WriteTIbyte(0xeb); // password
+ WriteTIbyte( (idlo )&0xff );
+ WriteTIbyte( (idlo>>8 )&0xff );
+ WriteTIbyte( (idlo>>16)&0xff );
+ WriteTIbyte( (idlo>>24)&0xff );
+ WriteTIbyte( (idhi )&0xff );
+ WriteTIbyte( (idhi>>8 )&0xff );
+ WriteTIbyte( (idhi>>16)&0xff );
+ WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
+ WriteTIbyte( (crc )&0xff ); // crc lo
+ WriteTIbyte( (crc>>8 )&0xff ); // crc hi
+ WriteTIbyte(0x00); // write frame lo
+ WriteTIbyte(0x03); // write frame hi
+ HIGH(GPIO_SSC_DOUT);
+ SpinDelay(50); // programming time
+
+ LED_A_OFF();
+
+ // get TI tag data into the buffer
+ AcquireTiType();
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Now use `lf ti read` to check");
+}
+
+void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
+{
+ int i;
+ uint8_t *tab = BigBuf_get_addr();
+
+ //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
+ //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
+
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
+
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+
+ i = 0;
+ for(;;) {
+ //wait until SSC_CLK goes HIGH
+ int ii = 0;
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
+ }
+ WDT_HIT();
+ ii++;
+ }
+ if (ledcontrol)
+ LED_D_ON();
+
+ if(tab[i])
+ OPEN_COIL();
+ else
+ SHORT_COIL();
+
+ if (ledcontrol)
+ LED_D_OFF();
+ ii=0;
+ //wait until SSC_CLK goes LOW
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+ //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
+ if ( ii == 1000 ) {
+ if (BUTTON_PRESS() || usb_poll_validate_length() ) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ return;
+ }
+ ii=0;
+ }
+ WDT_HIT();
+ ii++;
+ }
+
+ i++;
+ if(i == period) {
+
+ i = 0;
+ if (gap) {
+ SHORT_COIL();
+ SpinDelayUs(gap);
+ }
+ }
+
+ }
+}
+
+#define DEBUG_FRAME_CONTENTS 1
+void SimulateTagLowFrequencyBidir(int divisor, int t0)
+{
+}
+
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ int idx;
+
+ // for when we want an fc8 pattern every 4 logical bits
+ if(c==0) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+
+ // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
+ if(c==8) {
+ for (idx=0; idx<6; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+
+ // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
+ if(c==10) {
+ for (idx=0; idx<5; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ dest[((*n)++)]=0;
+ }
+ }
+}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfFC = fc/2;
+ uint8_t wavesPerClock = clock/fc;
+ uint8_t mod = clock % fc; //modifier
+ uint8_t modAdj = fc/mod; //how often to apply modifier
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=true;
+ // loop through clock - step field clock
+ for (uint8_t idx=0; idx < wavesPerClock; idx++){
+ // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+ memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ if (mod>0) (*modCnt)++;
+ if ((mod>0) && modAdjOk){ //fsk2
+ if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+ memset(dest+(*n), 0, fc-halfFC);
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ }
+ if (mod>0 && !modAdjOk){ //fsk1
+ memset(dest+(*n), 0, mod-(mod/2));
+ memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+ *n += mod;
+ }
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a HID tag until the button is pressed
+void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
+{
+ int n=0, i=0;
+ /*
+ HID tag bitstream format
+ The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+ A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+ A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+ A fc8 is inserted before every 4 bits
+ A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+ nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+ */
+
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
+ return;
+ }
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ fc(0,&n);
+ // special start of frame marker containing invalid bit sequences
+ fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+ fc(10, &n); fc(10, &n); // invalid
+ fc(8, &n); fc(10, &n); // logical 0
+
+ WDT_HIT();
+ // manchester encode bits 43 to 32
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ WDT_HIT();
+ // manchester encode bits 31 to 0
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((lo>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t fcHigh = arg1 >> 8;
+ uint8_t fcLow = arg1 & 0xFF;
+ uint16_t modCnt = 0;
+ uint8_t clk = arg2 & 0xFF;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ for (i=0; i<size; i++){
+ if (BitStream[i] == invert){
+ fcAll(fcLow, &n, clk, &modCnt);
+ } else {
+ fcAll(fcHigh, &n, clk, &modCnt);
+ }
+ }
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+ /*Dbprintf("DEBUG: First 32:");
+ uint8_t *dest = BigBuf_get_addr();
+ i=0;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ i+=16;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ */
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ // c = current bit 1 or 0
+ if (manchester==1){
+ memset(dest+(*n), c, halfClk);
+ memset(dest+(*n) + halfClk, c^1, halfClk);
+ } else {
+ memset(dest+(*n), c, clock);
+ }
+ *n += clock;
+}
+
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ if (c){
+ memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+ memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+ } else {
+ memset(dest+(*n), c ^ *phase, clock);
+ *phase ^= 1;
+ }
+ *n += clock;
+}
+
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol = 1;
+ int n=0, i=0;
+ uint8_t clk = (arg1 >> 8) & 0xFF;
+ uint8_t encoding = arg1 & 0xFF;
+ uint8_t separator = arg2 & 1;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ if (encoding==2){ //biphase
+ uint8_t phase=0;
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ if (phase==1) { //run a second set inverted to keep phase in check
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ }
+ } else { // ask/manchester || ask/raw
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert, &n, clk, encoding);
+ }
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+ }
+ }
+ }
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
+
+ Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+ //DEBUG
+ //Dbprintf("First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfWave = waveLen/2;
+ //uint8_t idx;
+ int i = 0;
+ if (phaseChg){
+ // write phase change
+ memset(dest+(*n), *curPhase^1, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase, halfWave);
+ *n += waveLen;
+ *curPhase ^= 1;
+ i += waveLen;
+ }
+ //write each normal clock wave for the clock duration
+ for (; i < clk; i+=waveLen){
+ memset(dest+(*n), *curPhase, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+ *n += waveLen;
+ }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t clk = arg1 >> 8;
+ uint8_t carrier = arg1 & 0xFF;
+ uint8_t invert = arg2 & 0xFF;
+ uint8_t curPhase = 0;
+ // set LF so we don't kill the bigbuf we are setting with simulation data.
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ for (i=0; i<size; i++){
+ if (BitStream[i] == curPhase){
+ pskSimBit(carrier, &n, clk, &curPhase, false);
+ } else {
+ pskSimBit(carrier, &n, clk, &curPhase, true);
+ }
+ }
+ Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+ //Dbprintf("DEBUG: First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol) LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+ if (ledcontrol) LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+ size_t size;
+ uint32_t hi2=0, hi=0, lo=0;
+ int idx=0;
+ int dummyIdx = 0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
+
+ if (idx>0 && lo>0 && (size==96 || size==192)){
+ // go over previously decoded manchester data and decode into usable tag ID
+ if (hi2 != 0){ //extra large HID tags 88/192 bits
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }else { //standard HID tags 44/96 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2 > 1){ //find last bit set to 1 (format len bit)
+ lo2=lo2 >> 1;
+ idx3++;
+ }
+ bitlen = idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen == 26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen == 37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen == 34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen == 35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ }
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high = hi;
+ *low = lo;
+ break;
+ }
+ // reset
+ }
+ hi2 = hi = lo = idx = 0;
+ WDT_HIT();
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ size_t size;
+ int idx=0, dummyIdx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = AWIDdemodFSK(dest, &size, &dummyIdx);
+
+ if (idx<=0 || size!=96) continue;
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
+ // -----------------------------------------------------------------------------
+ // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
+ // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
+ // |---26 bit---| |-----117----||-------------142-------------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ //get raw ID before removing parities
+ uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
+ uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
+ uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
+
+ size = removeParity(dest, idx+8, 4, 1, 88);
+ if (size != 66) continue;
+ // ok valid card found!
+
+ // Index map
+ // 0 10 20 30 40 50 60
+ // | | | | | | |
+ // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
+ // -----------------------------------------------------------------------------
+ // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
+ // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ // |26 bit| |-117--| |-----142------|
+ // b = format bit len, o = odd parity of last 3 bits
+ // f = facility code, c = card number
+ // w = wiegand parity
+ // (26 bit format shown)
+
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ uint32_t code1 = 0;
+ uint32_t code2 = 0;
+ uint8_t fmtLen = bytebits_to_byte(dest,8);
+ if (fmtLen==26){
+ fc = bytebits_to_byte(dest+9, 8);
+ cardnum = bytebits_to_byte(dest+17, 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ if (fmtLen>32){
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else{
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+ }
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ break;
+ }
+ // reset
+ idx = 0;
+ WDT_HIT();
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+
+ size_t size=0, idx=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
+ uint32_t hi=0;
+ uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ size = BigBuf_max_traceLen();
+ //askdemod and manchester decode
+ if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+ errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+ WDT_HIT();
+
+ if (errCnt<0) continue;
+
+ errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+ if (errCnt){
+ if (size>64){
+ Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+ hi,
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ } else {
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ }
+
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high=lo>>32;
+ *low=lo & 0xFFFFFFFF;
+ break;
+ }
+ }
+ WDT_HIT();
+ hi = lo = size = idx = 0;
+ clk = invert = errCnt = 0;
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ int idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
+ int dummyIdx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+ DoAcquisition_default(-1,true);
+ //fskdemod and get start index
+ WDT_HIT();
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen(), &dummyIdx);
+ if (idx<0) continue;
+ //valid tag found
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+18,8);
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ *high=code;
+ *low=code2;
+ break;
+ }
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
+ idx=0;
+
+ WDT_HIT();
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+/*------------------------------
+ * T5555/T5557/T5567/T5577 routines
+ *------------------------------
+ * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
+ *
+ * Relevant communication times in microsecond
+ * To compensate antenna falling times shorten the write times
+ * and enlarge the gap ones.
+ * Q5 tags seems to have issues when these values changes.
+ */
+#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
+#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
+#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
+#define READ_GAP 15*8
+
+void TurnReadLFOn(int delay) {
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ WaitUS(delay); //155*8 //50*8
+}
+
+// Write one bit to card
+void T55xxWriteBit(int bit) {
+ if (!bit)
+ TurnReadLFOn(WRITE_0);
+ else
+ TurnReadLFOn(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(WRITE_GAP);
+}
+
+// Send T5577 reset command then read stream (see if we can identify the start of the stream)
+void T55xxResetRead(void) {
+ LED_A_ON();
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_keep_EM();
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // reset tag - op code 00
+ T55xxWriteBit(0);
+ T55xxWriteBit(0);
+
+ TurnReadLFOn(READ_GAP);
+
+ // Acquisition
+ DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+ LED_A_ON();
+ bool PwdMode = arg & 0x1;
+ uint8_t Page = (arg & 0x2)>>1;
+ bool testMode = arg & 0x4;
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+ // Trigger T55x7 in mode.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ if (testMode) Dbprintf("TestMODE");
+ // Std Opcode 10
+ T55xxWriteBit(testMode ? 0 : 1);
+ T55xxWriteBit(testMode ? 1 : Page); //Page 0
+
+ if (PwdMode) {
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Send Lock bit
+ T55xxWriteBit(0);
+
+ // Send Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Send Block number
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+
+ // "there is a clock delay before programming"
+ // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
+ // so we should wait 1 clock + 5.6ms then read response?
+ // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
+ if (testMode) {
+ //TESTMODE TIMING TESTS:
+ // <566us does nothing
+ // 566-568 switches between wiping to 0s and doing nothing
+ // 5184 wipes and allows 1 block to be programmed.
+ // indefinite power on wipes and then programs all blocks with bitshifted data sent.
+ TurnReadLFOn(5184);
+
+ } else {
+ TurnReadLFOn(20 * 1000);
+ //could attempt to do a read to confirm write took
+ // as the tag should repeat back the new block
+ // until it is reset, but to confirm it we would
+ // need to know the current block 0 config mode for
+ // modulation clock an other details to demod the response...
+ // response should be (for t55x7) a 0 bit then (ST if on)
+ // block data written in on repeat until reset.
+
+ //DoPartialAcquisition(20, true, 12000);
+ }
+
+ // turn field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
+ T55xxWriteBlockExt(Data, Block, Pwd, arg);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Read one card block in page [page]
+void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
+ LED_A_ON();
+ bool PwdMode = arg0 & 0x1;
+ uint8_t Page = (arg0 & 0x2) >> 1;
+ uint32_t i = 0;
+ bool RegReadMode = (Block == 0xFF);//regular read mode
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ //make sure block is at max 7
+ Block &= 0x7;
+
+ // Set up FPGA, 125kHz to power up the tag
+ LFSetupFPGAForADC(95, true);
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+ // Trigger T55x7 Direct Access Mode with start gap
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // Opcode 1[page]
+ T55xxWriteBit(1);
+ T55xxWriteBit(Page); //Page 0
+
+ if (PwdMode){
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Send a zero bit separation
+ T55xxWriteBit(0);
+
+ // Send Block number (if direct access mode)
+ if (!RegReadMode)
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ // 137*8 seems to get to the start of data pretty well...
+ // but we want to go past the start and let the repeating data settle in...
+ TurnReadLFOn(210*8);
+
+ // Acquisition
+ // Now do the acquisition
+ DoPartialAcquisition(0, true, 12000, 0);
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
+}
+
+void T55xxWakeUp(uint32_t Pwd){
+ LED_B_ON();
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ LFSetupFPGAForADC(95, true);
+ StartTicks();
+ // make sure tag is fully powered up...
+ WaitMS(5);
+
+ // Trigger T55x7 Direct Access Mode
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(START_GAP);
+
+ // Opcode 10
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+
+ // Send Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+
+ // Turn and leave field on to let the begin repeating transmission
+ TurnReadLFOn(20*1000);
+}
+
+/*-------------- Cloning routines -----------*/
+
+void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
+ // write last block first and config block last (if included)
+ for (uint8_t i = numblocks+startblock; i > startblock; i--) {
+ T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
+ }
+}
+
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
+ uint32_t data[] = {0,0,0,0,0,0,0};
+ uint8_t last_block = 0;
+
+ if (longFMT) {
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ // load preamble (1D) & long format identifier (9E manchester encoded)
+ data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
+ // load raw id from hi2, hi, lo to data blocks (manchester encoded)
+ data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
+ data[3] = manchesterEncode2Bytes(hi >> 16);
+ data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
+ data[5] = manchesterEncode2Bytes(lo >> 16);
+ data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
+ } else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+ // load preamble
+ data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
+ data[2] = manchesterEncode2Bytes(lo >> 16);
+ data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
+ }
+ // load chip config block
+ data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
+
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ WriteT55xx(data, 0, last_block+1);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
+ uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 config
+ WriteT55xx(data, 0, 3);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
+ uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+
+ WriteT55xx(data, 0, 3);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
+ DbpString("DONE!");
+}
+// Clone Indala 224-bit tag by UID to T55x7
+void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
+ //Program the 7 data blocks for supplied 224bit UID
+ uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
+ // and the block 0 for Indala224 format
+ //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
+ data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK2 | (7 << T55x7_MAXBLOCK_SHIFT);
+ //TODO add selection of chip for Q5 or T55x7
+ // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
+ WriteT55xx(data, 0, 8);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+ DbpString("DONE!");
+}
+// clone viking tag to T55xx
+void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
+ uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
+ if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ // Program the data blocks for supplied ID and the block 0 config
+ WriteT55xx(data, 0, 3);
+ LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER 0x1FF
+#define EM410X_ID_LENGTH 40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
+
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
+
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
+
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
+
+ // Add stop bit
+ id <<= 1;
+
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
+
+ // Write EM410x ID
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
+
+ clock = (card & 0xFF00) >> 8;
+ clock = (clock == 0) ? 64 : clock;
+ Dbprintf("Clock rate: %d", clock);
+ if (card & 0xFF) { //t55x7
+ clock = GetT55xxClockBit(clock);
+ if (clock == 0) {
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+ data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
+ } else { //t5555 (Q5)
+ data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+ }
+
+ WriteT55xx(data, 0, 3);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32), (uint32_t)id);
+}
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+// VALUES TAKEN FROM EM4x function: SendForward
+// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
+// WRITE_GAP = 128; (16*8)
+// WRITE_1 = 256 32*8; (32*8)
+
+// These timings work for 4469/4269/4305 (with the 55*8 above)
+// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+uint8_t Prepare_Addr( uint8_t addr ) {
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ // Set up FPGA, 125kHz or 95 divisor
+ LFSetupFPGAForADC(95, true);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ WaitUS(18*8); //18 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ WaitUS(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ WaitUS(23*8); //23 cycles off (8us each)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ WaitUS(18*8); //18 cycles on (8us each)
+ }
+ }
+}
+
+void EM4xLogin(uint32_t Password) {
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+
+ // Clear destination buffer before sending the command
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
+ StartTicks();
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ SendForward(fwd_bit_count);
+ WaitUS(400);
+ // Now do the acquisition
+ DoPartialAcquisition(20, true, 6000, 1000);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+
+void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
+
+ bool PwdMode = (flag & 0xF);
+ uint8_t Address = (flag >> 8) & 0xFF;
+ uint8_t fwd_bit_count;
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ LED_A_ON();
+ StartTicks();
+ //If password mode do login
+ if (PwdMode) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ //SpinDelay(10);
+
+ WaitUS(6500);
+ //Capture response if one exists
+ DoPartialAcquisition(20, true, 6000, 1000);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_A_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+}
+/*
+Reading a COTAG.
+
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
+
+READER START SEQUENCE:
+burst 800 us, gap 2.2 msecs
+burst 3.6 msecs gap 2.2 msecs
+burst 800 us gap 2.2 msecs
+pulse 3.6 msecs
+
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+
+#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+
+ uint8_t rawsignal = arg0 & 0xF;
+
+ LED_A_ON();
+
+ // Switching to LF image on FPGA. This might empty BigBuff
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ // Set up FPGA, 132kHz to power up the tag
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ // start clock - 1.5ticks is 1us
+ StartTicks();
+
+ //send COTAG start pulse
+ ON(740) OFF
+ ON(3330) OFF
+ ON(740) OFF
+ ON(1000)
+
+ switch(rawsignal) {
+ case 0: doCotagAcquisition(50000); break;
+ case 1: doCotagAcquisitionManchester(); break;
+ case 2: DoAcquisition_config(true, 0); break;
+ }
+
+ // Turn the field off
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
+}