// Low frequency commands
//-----------------------------------------------------------------------------
-//#include <stdio.h>
#include <stdlib.h>
#include <string.h>
-//#include <inttypes.h>
-//#include <limits.h>
#include "lfdemod.h"
-//#include "proxmark3.h"
-//#include "data.h"
-//#include "ui.h"
-//#include "graph.h"
-//#include "cmdparser.h"
-//#include "util.h"
-//#include "cmdmain.h"
-//#include "cmddata.h"
-//uint8_t BinStream[MAX_GRAPH_TRACE_LEN];
-//uint8_t BinStreamLen;
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
- int high=0, low=0;
+ int high=0, low=128;
uint64_t lo=0; //hi=0,
uint32_t i = 0;
//prints binary found and saves in graphbuffer for further commands
int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert)
{
- uint32_t i;
- //int invert=0; //invert default
- int high = 0, low = 0;
- *clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default
- uint8_t BitStream[252] = {0};
+ int i;
+ int high = 0, low = 128;
+ *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default
- //sscanf(Cmd, "%i %i", &clk, &invert);
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 200;
if (initLoopMax>*BitLen) initLoopMax=*BitLen;
// Detect high and lows
- //PrintAndLog("Using Clock: %d and invert=%d",clk,invert);
for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
{
if (BinStream[i] > high)
else if (BinStream[i] < low)
low = BinStream[i];
}
- if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ if ((high < 158) ){ //throw away static
//PrintAndLog("no data found");
- return -1;
+ return -2;
}
- //13% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)(0.75*high);
- low=(int)(0.75*low);
-
+ //25% fuzz in case highs and lows aren't clipped [marshmellow]
+ high=(int)((high-128)*.75)+128;
+ low= (int)((low-128)*.75)+128;
+
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
- uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- uint32_t iii = 0;
+ int iii = 0;
uint32_t gLen = *BitLen;
- if (gLen > 500) gLen=500;
+ if (gLen > 3000) gLen=3000;
uint8_t errCnt =0;
uint32_t bestStart = *BitLen;
uint32_t bestErrCnt = (*BitLen/1000);
+ uint32_t maxErr = (*BitLen/1000);
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){
lastBit=iii-*clk;
- bitnum=0;
+ errCnt=0;
//loop through to see if this start location works
for (i = iii; i < *BitLen; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
- BitStream[bitnum] = *invert;
- bitnum++;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
- BitStream[bitnum] = 1-*invert;
- bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
-
-
+
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
- if (bitnum > 0){
- BitStream[bitnum]=77;
- bitnum++;
- }
-
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
- if (errCnt>((*BitLen/1000))){ //allow 1 error for every 1000 samples else start over
- errCnt=0;
- bitnum=0;//start over
- break;
- }
+ if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
}
}
- if (bitnum >250) break;
+ if ((i-iii) >(400 * *clk)) break; //got plenty of bits
}
//we got more than 64 good bits and not all errors
- if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) {
+ if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
//possible good read
- if (errCnt==0) break; //great read - finish
- if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
+ if (errCnt==0){
+ bestStart=iii;
+ bestErrCnt=errCnt;
+ break; //great read - finish
+ }
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
- if (iii>=gLen){ //exhausted test
- //if there was a ok test go back to that one and re-run the best run (then dump after that run)
- if (bestErrCnt < (*BitLen/1000)) iii=bestStart;
- }
}
- if (bitnum>16){
-
- // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
- //move BitStream back to GraphBuffer
- //ClearGraph(0);
- for (i=0; i < bitnum; ++i){
- BinStream[i]=BitStream[i];
+ if (bestErrCnt<maxErr){
+ //best run is good enough set to best run and set overwrite BinStream
+ iii=bestStart;
+ lastBit=bestStart-*clk;
+ bitnum=0;
+ for (i = iii; i < *BitLen; ++i) {
+ if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
+ lastBit+=*clk;
+ BinStream[bitnum] = *invert;
+ bitnum++;
+ } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
+ //low found and we are expecting a bar
+ lastBit+=*clk;
+ BinStream[bitnum] = 1-*invert;
+ bitnum++;
+ } else {
+ //mid value found or no bar supposed to be here
+ if ((i-lastBit)>(*clk+tol)){
+ //should have hit a high or low based on clock!!
+
+ //debug
+ //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+ if (bitnum > 0){
+ BinStream[bitnum]=77;
+ bitnum++;
+ }
+
+ lastBit+=*clk;//skip over error
+ }
+ }
+ if (bitnum >=400) break;
}
*BitLen=bitnum;
- //RepaintGraphWindow();
- //output
- //if (errCnt>0){
- // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
- //}
- // PrintAndLog("ASK decoded bitstream:");
- // Now output the bitstream to the scrollback by line of 16 bits
- // printBitStream2(BitStream,bitnum);
- // Em410xDecode(Cmd);
- }
- return errCnt;
+ } else{
+ *invert=bestStart;
+ *clk=iii;
+ return -1;
+ }
+ return bestErrCnt;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
-int manrawdemod(uint8_t * BitStream, int *bitLen)
+int manrawdecode(uint8_t * BitStream, int *bitLen)
{
- uint8_t BitStream2[252]={0};
int bitnum=0;
int errCnt =0;
int i=1;
int bestErr = 1000;
int bestRun = 0;
- int finish = 0;
int ii=1;
for (ii=1;ii<3;++ii){
i=1;
for (i=i+ii;i<*bitLen-2;i+=2){
if(BitStream[i]==1 && (BitStream[i+1]==0)){
- BitStream2[bitnum++]=0;
} else if((BitStream[i]==0)&& BitStream[i+1]==1){
- BitStream2[bitnum++]=1;
} else {
- BitStream2[bitnum++]=77;
errCnt++;
}
- if(bitnum>250) break;
+ if(bitnum>300) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
bestRun=ii;
}
- if (ii>1 || finish==1) {
- if (bestRun==ii) {
- break;
- } else{
- ii=bestRun-1;
- finish=1;
- }
- }
errCnt=0;
- bitnum=0;
}
errCnt=bestErr;
if (errCnt<20){
- for (i=0; i<bitnum;++i){
- BitStream[i]=BitStream2[i];
- }
- *bitLen=bitnum;
- }
+ ii=bestRun;
+ i=1;
+ for (i=i+ii;i<*bitLen-2;i+=2){
+ if(BitStream[i]==1 && (BitStream[i+1]==0)){
+ BitStream[bitnum++]=0;
+ } else if((BitStream[i]==0)&& BitStream[i+1]==1){
+ BitStream[bitnum++]=1;
+ } else {
+ BitStream[bitnum++]=77;
+ //errCnt++;
+ }
+ if(bitnum>300) break;
+ }
+ *bitLen=bitnum;
+ }
+ return errCnt;
+}
+
+
+//by marshmellow
+//take 01 or 10 = 0 and 11 or 00 = 1
+int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset)
+{
+ uint8_t bitnum=0;
+ uint32_t errCnt =0;
+ uint32_t i=1;
+ i=offset;
+ for (;i<*bitLen-2;i+=2){
+ if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=1;
+ } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=0;
+ } else {
+ BitStream[bitnum++]=77;
+ errCnt++;
+ }
+ if(bitnum>250) break;
+ }
+ *bitLen=bitnum;
return errCnt;
}
{
uint32_t i;
// int invert=0; //invert default
- int high = 0, low = 0;
- *clk=DetectClock2(BinStream,*bitLen,*clk); //clock default
+ int high = 0, low = 128;
+ *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default
uint8_t BitStream[502] = {0};
if (*clk<8) *clk =64;
else if (BinStream[i] < low)
low = BinStream[i];
}
- if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first)
+ if ((high < 158)){ //throw away static
// PrintAndLog("no data found");
- return -1;
+ return -2;
}
//25% fuzz in case highs and lows aren't clipped [marshmellow]
- high=(int)(0.75*high);
- low=(int)(0.75*low);
+ high=(int)((high-128)*.75)+128;
+ low= (int)((low-128)*.75)+128;
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
return errCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
-size_t fsk_wave_demod(uint8_t * dest, size_t size)
+size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
uint32_t maxVal=0;
-
+ if (fchigh==0) fchigh=10;
+ if (fclow==0) fclow=8;
// we do care about the actual theshold value as sometimes near the center of the
// wave we may get static that changes direction of wave for one value
// if our value is too low it might affect the read. and if our tag or
// antenna is weak a setting too high might not see anything. [marshmellow]
if (size<100) return 0;
for(idx=1; idx<100; idx++){
- if(maxVal<dest[idx]) maxVal = dest[idx];
- }
- // set close to the top of the wave threshold with 13% margin for error
+ if(maxVal<dest[idx]) maxVal = dest[idx];
+ }
+ // set close to the top of the wave threshold with 25% margin for error
// less likely to get a false transition up there.
// (but have to be careful not to go too high and miss some short waves)
- uint8_t threshold_value = (uint8_t)(maxVal*.87); idx=1;
+ uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128);
+ // idx=1;
//uint8_t threshold_value = 127;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
+
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
+
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- if (idx-last_transition<6){ //0-5 = garbage noise
+ if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
//do nothing with extra garbage
- } else if (idx-last_transition < 9) { //6-8 = 8 waves
+ } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
dest[numBits]=1;
} else { //9+ = 10 waves
dest[numBits]=0;
}
//translate 11111100000 to 10
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
{
uint8_t lastval=dest[0];
uint32_t idx=0;
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
- n=myround2((float)(n+1)/((float)(rfLen)/(float)8));
+ n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
//n=(n+1) / h2l_crossing_value;
} else {// 0->1 crossing
- n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10)); //-2 for fudge factor
+ n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor
//n=(n+1) / l2h_crossing_value;
}
if (n == 0) n = 1;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
-int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert)
+int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
- //uint8_t h2l_crossing_value = 6;
- //uint8_t l2h_crossing_value = 5;
-
- // if (rfLen==64) //currently only know settings for RF/64 change from default if option entered
- // {
- // h2l_crossing_value=8; //or 8 as 64/8 = 8
- // l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4
- // }
- // size_t size = GraphTraceLen;
- // FSK demodulator
- size = fsk_wave_demod(dest, size);
- size = aggregate_bits(dest, size,rfLen,192,invert);
- // size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values
- //done messing with GraphBuffer - repaint
- //RepaintGraphWindow();
+ // FSK demodulator
+ size = fsk_wave_demod(dest, size, fchigh, fclow);
+ size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow);
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
size_t idx=0; //, found=0; //size=0,
// FSK demodulator
- size = fskdemod(dest, size,50,0);
+ size = fskdemod(dest, size,50,0,10,8);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
{
uint32_t idx=0;
//make sure buffer has data
- if (size < 64) return -1;
+ if (size < 66) return -1;
//test samples are not just noise
uint8_t testMax=0;
- for(idx=0;idx<64;idx++){
+ for(idx=0;idx<65;idx++){
if (testMax<dest[idx]) testMax=dest[idx];
}
idx=0;
//if not just noise
if (testMax>170){
// FSK demodulator
- size = fskdemod(dest, size,64,1);
+ size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert
+ if (size < 65) return -1; //did we get a good demod?
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
- for( idx=0; idx < (size - 74); idx++) {
+ for( idx=0; idx < (size - 65); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
-int DetectClock2(uint8_t dest[], size_t size, int clock)
+int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
- int low=0;
+ int low=128;
int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 256; //don't need to loop through entire array...
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
for (;i<8;++i)
if (clk[i]==clock) return clock;
- if (!peak){
- for (i=0;i<size;++i){
- if(dest[i]>peak){
- peak = dest[i];
- }
- if(dest[i]<low){
- low = dest[i];
- }
+
+ //get high and low peak
+ for (i=0;i<loopCnt;++i){
+ if(dest[i]>peak){
+ peak = dest[i];
+ }
+ if(dest[i]<low){
+ low = dest[i];
}
- peak=(int)(peak*.75);
- low= (int)(low*.75);
}
+ peak=(int)((peak-128)*.75)+128;
+ low= (int)((low-128)*.75)+128;
int ii;
- int loopCnt = 256;
- if (size<loopCnt) loopCnt = size;
int clkCnt;
int tol = 0;
int bestErr=1000;
int errCnt[]={0,0,0,0,0,0,0,0};
+ //test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt<6;++clkCnt){
if (clk[clkCnt]==32){
tol=1;
tol=0;
}
bestErr=1000;
+ //try lining up the peaks by moving starting point (try first 256)
for (ii=0; ii<loopCnt; ++ii){
if ((dest[ii]>=peak) || (dest[ii]<=low)){
errCnt[clkCnt]=0;
+ // now that we have the first one lined up test rest of wave array
for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
- }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
}else{ //error no peak detected
errCnt[clkCnt]++;
}
}
+ //if we found no errors this is correct one - return this clock
if(errCnt[clkCnt]==0) return clk[clkCnt];
+ //if we found errors see if it is lowest so far and save it as best run
if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
}
}
- errCnt[clkCnt]=bestErr;
}
int iii=0;
int best=0;