]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/ui.c
FIXED: lf t55xx fsk now demods but only to binary.
[proxmark3-svn] / client / ui.c
index 4f1b5d8592110011537405abf23c4669b36a30a3..59ca72dcdc5496b497b2afb4a9a946a1f1c3a2aa 100644 (file)
 #include <stdarg.h>
 #include <stdlib.h>
 #include <stdio.h>
+#include <stdbool.h>
 #include <time.h>
 #include <readline/readline.h>
 #include <pthread.h>
-
+#include "loclass/cipherutils.h"
 #include "ui.h"
 
+//#include <liquid/liquid.h>
+#define M_PI 3.14159265358979323846264338327
+
 double CursorScaleFactor;
 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
 int offline;
@@ -85,22 +89,20 @@ void PrintAndLog(char *fmt, ...)
        pthread_mutex_unlock(&print_lock);  
 }
 
-
 void SetLogFilename(char *fn)
 {
   logfilename = fn;
 }
 
-
-int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
+int manchester_decode( int * data, const size_t len, uint8_t * dataout){
        
        int bitlength = 0;
        int i, clock, high, low, startindex;
        low = startindex = 0;
        high = 1;
        uint8_t bitStream[len];
-
-       memset(bitStream, 0x00, len);   
+       
+       memset(bitStream, 0x00, len);
        
        /* Detect high and lows */
        for (i = 0; i < len; i++) {
@@ -112,23 +114,17 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
        
        /* get clock */
        clock = GetT55x7Clock( data, len, high );       
-       startindex = DetectFirstTransition(data, len, high, low);
+       startindex = DetectFirstTransition(data, len, high);
   
-       PrintAndLog(" Clock      : %d", clock);
-       PrintAndLog(" startindex : %d", startindex);
+       PrintAndLog(" Clock       : %d", clock);
+       PrintAndLog(" startindex  : %d", startindex);
        
        if (high != 1)
                bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
        else
                bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
 
-       if ( bitlength > 0 ){
-               PrintPaddedManchester(bitStream, bitlength, clock);
-       }
-
        memcpy(dataout, bitStream, bitlength);
-       
-       free(bitStream);
        return bitlength;
 }
 
@@ -171,80 +167,109 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
                break;
                default:  break;
        }
-       return 32;
+       
+       //PrintAndLog(" Found Clock : %d  - trying to adjust", clock);
+       
+       // When detected clock is 31 or 33 then then return 
+       int clockmod = clock%8;
+       if ( clockmod == 7 ) 
+               clock += 1;
+       else if ( clockmod == 1 )
+               clock -= 1;
+       
+       return clock;
  }
  
- int DetectFirstTransition(const int * data, const size_t len, int high, int low){
+ int DetectFirstTransition(const int * data, const size_t len, int threshold){
 
-       int i, retval;
-       retval = 0;
-       /* 
-               Detect first transition Lo-Hi (arbitrary)       
-               skip to the first high
-       */
-         for (i = 0; i < len; ++i)
-               if (data[i] == high)
-                 break;
-                 
-         /* now look for the first low */
-         for (; i < len; ++i) {
-               if (data[i] == low) {
-                       retval = i;
+       int i =0;
+       /* now look for the first threshold */
+       for (; i < len; ++i) {
+               if (data[i] == threshold) {
                        break;
                }
-         }
-       return retval;
+       }
+       return i;
  }
 
  int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
 
-       int i, j, hithigh, hitlow, first, bit, bitIndex;
-       i = startIndex;
+       int i, j, z, hithigh, hitlow, bitIndex, startType;
+       i = 0;
        bitIndex = 0;
+       
+       int isDamp = 0;
+       int damplimit = (int)((high / 2) * 0.3);
+       int dampHi =  (high/2)+damplimit;
+       int dampLow = (high/2)-damplimit;
+       int firstST = 0;
 
-       /*
-       * We assume the 1st bit is zero, it may not be
-       * the case: this routine (I think) has an init problem.
-       * Ed.
-       */
-       bit = 0; 
-
+       // i = clock frame of data
        for (; i < (int)(len / clock); i++)
        {
                hithigh = 0;
                hitlow = 0;
-               first = 1;
-
+               startType = -1;
+               z = startIndex + (i*clock);
+               isDamp = 0;
+                       
                /* Find out if we hit both high and low peaks */
                for (j = 0; j < clock; j++)
-               {
-                       if (data[(i * clock) + j] == high)
+               {               
+                       if (data[z+j] == high){
                                hithigh = 1;
-                       else if (data[(i * clock) + j] == low)
+                               if ( startType == -1)
+                                       startType = 1;
+                       }
+                       
+                       if (data[z+j] == low ){
                                hitlow = 1;
-
-                       /* it doesn't count if it's the first part of our read
-                          because it's really just trailing from the last sequence */
-                       if (first && (hithigh || hitlow))
-                         hithigh = hitlow = 0;
-                       else
-                         first = 0;
-
+                               if ( startType == -1)
+                                       startType = 0;
+                       } 
+               
                        if (hithigh && hitlow)
                          break;
                }
+               
+               // No high value found, are we in a dampening field?
+               if ( !hithigh ) {
+                       //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
+                       for (j = 0; j < clock; j++)
+                       {
+                               if ( 
+                                    (data[z+j] <= dampHi && data[z+j] >= dampLow)
+                                  ){
+                                  isDamp++;
+                               }
+                       }
+               }
 
-               /* If we didn't hit both high and low peaks, we had a bit transition */
-               if (!hithigh || !hitlow)
-                       bit ^= 1;
-
-               dataout[bitIndex++] = bit;
+               /*  Manchester Switching..
+                       0: High -> Low   
+                       1: Low -> High  
+               */
+               if (startType == 0)
+                       dataout[bitIndex++] = 1;
+               else if (startType == 1) 
+                       dataout[bitIndex++] = 0;
+               else
+                       dataout[bitIndex++] = 2;
+                       
+               if ( isDamp > clock/2 ) {
+                       firstST++;
+               }
+               
+               if ( firstST == 4)
+                       break;
        }
        return bitIndex;
  }
  
  int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
 
+       PrintAndLog(" Path B");
        int i,j, bitindex, lc, tolerance, warnings;
        warnings = 0;
        int upperlimit = len*2/clock+8;
@@ -253,7 +278,7 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
        tolerance = clock/4;
        uint8_t decodedArr[len];
        
-       /* Then detect duration between 2 successive transitions */
+       /* Detect duration between 2 successive transitions */
        for (bitindex = 1; i < len; i++) {
        
                if (data[i-1] != data[i]) {
@@ -350,19 +375,234 @@ int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
        PrintAndLog("%s", sprint_hex(decodedArr, j));
 }
  
 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
 
-         PrintAndLog(" Manchester decoded bitstream : %d bits", len);
+       PrintAndLog(" Manchester decoded  : %d bits", len);
          
-         uint8_t mod = len % blocksize;
-         uint8_t div = len / blocksize;
-         int i;
-         // Now output the bitstream to the scrollback by line of 16 bits
-         for (i = 0; i < div*blocksize; i+=blocksize) {
+       uint8_t mod = len % blocksize;
+       uint8_t div = len / blocksize;
+       int i;
+  
+       // Now output the bitstream to the scrollback by line of 16 bits
+       for (i = 0; i < div*blocksize; i+=blocksize) {
                PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
-         }
-         if ( mod > 0 ){
-               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
-         }
+       }
+       
+       if ( mod > 0 )
+               PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );      
+}
+
+void iceFsk(int * data, const size_t len){
+
+       //34359738  == 125khz   (2^32 / 125) =
+       
+    // parameters
+    float phase_offset      = 0.00f;   // carrier phase offset
+    float frequency_offset  = 0.30f;   // carrier frequency offset
+    float wn                = 0.01f;   // pll bandwidth
+    float zeta              = 0.707f;  // pll damping factor
+    float K                 = 1000;    // pll loop gain
+    size_t n                = len;     // number of samples
+
+    // generate loop filter parameters (active PI design)
+    float t1 = K/(wn*wn);   // tau_1
+    float t2 = 2*zeta/wn;   // tau_2
+
+    // feed-forward coefficients (numerator)
+    float b0 = (4*K/t1)*(1.+t2/2.0f);
+    float b1 = (8*K/t1);
+    float b2 = (4*K/t1)*(1.-t2/2.0f);
+
+    // feed-back coefficients (denominator)
+    //    a0 =  1.0  is implied
+    float a1 = -2.0f;
+    float a2 =  1.0f;
+
+    // filter buffer
+    float v0=0.0f, v1=0.0f, v2=0.0f;
+    
+    // initialize states
+    float phi     = phase_offset;  // input signal's initial phase
+    float phi_hat = 0.0f;      // PLL's initial phase
+    
+    unsigned int i;
+    float complex x,y;
+       float complex output[n];
+       
+       for (i=0; i<n; i++) {
+               // INPUT SIGNAL
+               x = data[i];
+               phi += frequency_offset;
+               
+               // generate complex sinusoid
+               y = cosf(phi_hat) + _Complex_I*sinf(phi_hat);
+
+               output[i] = y;
+
+               // compute error estimate
+               float delta_phi = cargf( x * conjf(y) );
+
+               
+        // print results to standard output
+        printf("  %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n",
+                  i,
+                  crealf(x), cimagf(x),
+                  crealf(y), cimagf(y),
+                  delta_phi);
+       
+               // push result through loop filter, updating phase estimate
+
+               // advance buffer
+               v2 = v1;  // shift center register to upper register
+               v1 = v0;  // shift lower register to center register
+
+               // compute new lower register
+               v0 = delta_phi - v1*a1 - v2*a2;
+
+               // compute new output
+               phi_hat = v0*b0 + v1*b1 + v2*b2;
+
+       }
+
+       for (i=0; i<len; ++i){
+               data[i] = (int)crealf(output[i]);
+       }
+}
+
+/* Sliding DFT
+   Smooths out 
+*/ 
+void iceFsk2(int * data, const size_t len){
+
+       int i, j;
+       int output[len];
+       
+       // for (i=0; i<len-5; ++i){
+               // for ( j=1; j <=5; ++j) {
+                       // output[i] += data[i*j];
+               // }
+               // output[i] /= 5;
+       // }
+       int rest = 127;
+       int tmp =0;
+       for (i=0; i<len; ++i){
+               if ( data[i] < 127)
+                       output[i] = 0;
+               else {
+                       tmp =  (100 * (data[i]-rest)) / rest;
+                       output[i] = (tmp > 60)? 100:0;
+               }
+       }
+       
+       for (j=0; j<len; ++j)
+               data[j] = output[j];
+}
+
+void iceFsk3(int * data, const size_t len){
+
+       int i,j;
+       int output[len];
+    float fc            = 0.1125f;          // center frequency
+
+    // create very simple low-pass filter to remove images (2nd-order Butterworth)
+    float complex iir_buf[3] = {0,0,0};
+    float b[3] = {0.003621681514929,  0.007243363029857, 0.003621681514929};
+    float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
+    
+    // process entire input file one sample at a time
+    float         sample      = 0;      // input sample read from file
+    float complex x_prime     = 1.0f;   // save sample for estimating frequency
+    float complex x;
+               
+       for (i=0; i<len; ++i) {
+
+               sample = data[i];
+               
+        // remove DC offset and mix to complex baseband
+        x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
+
+        // apply low-pass filter, removing spectral image (IIR using direct-form II)
+        iir_buf[2] = iir_buf[1];
+        iir_buf[1] = iir_buf[0];
+        iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
+        x          = b[0]*iir_buf[0] +
+                     b[1]*iir_buf[1] +
+                     b[2]*iir_buf[2];
+                                        
+        // compute instantaneous frequency by looking at phase difference
+        // between adjacent samples
+        float freq = cargf(x*conjf(x_prime));
+        x_prime = x;    // retain this sample for next iteration
+
+               output[i] =(freq > 0)? 10 : -10;
+    } 
+
+       // show data
+       for (j=0; j<len; ++j)
+               data[j] = output[j];
+               
+       CmdLtrim("30");
+       
+       // zero crossings.
+       for (j=0; j<len; ++j){
+               if ( data[j] == 10) break;
+       }
+       int startOne =j;
+       
+       for (;j<len; ++j){
+               if ( data[j] == -10 ) break;
+       }
+       int stopOne = j-1;
+       
+       int fieldlen = stopOne-startOne;
+       
+       fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
+       fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
+       if ( fieldlen != 40 && fieldlen != 50){
+               printf("Detected field Length: %d \n", fieldlen);
+               printf("Can only handle len 40 or 50.  Aborting...");
+               return;
+       }
+       
+       // FSK sequence start == 000111
+       int startPos = 0;
+       for (i =0; i<len; ++i){
+               int dec = 0;
+               for ( j = 0; j < 6*fieldlen; ++j){
+                       dec += data[i + j];
+               }
+               if (dec == 0) {
+                       startPos = i;
+                       break;
+               }
+       }
+       
+       printf("000111 position: %d \n", startPos);
+
+       startPos += 6*fieldlen+5;
+       
+       int bit =0;
+       printf("BINARY\n");
+       printf("R/40 :  ");
+       for (i =startPos ; i < len; i += 40){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );
+       }
+       printf("\n");   
+       
+       printf("R/50 :  ");
+       for (i =startPos ; i < len; i += 50){
+               bit = data[i]>0 ? 1:0;
+               printf("%d", bit );     }
+       printf("\n");   
+       
+}
+
+float complex cexpf (float complex Z)
+{
+  float complex  Res;
+  double rho = exp (__real__ Z);
+  __real__ Res = rho * cosf(__imag__ Z);
+  __imag__ Res = rho * sinf(__imag__ Z);
+  return Res;
 }
Impressum, Datenschutz