]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso15693.c
fix 'hf iclass snoop'
[proxmark3-svn] / armsrc / iso15693.c
index a80e6c6a06cb8d7ef0d17cfafbc9c6bcb8a472ac..761340e92c74aa2109353cb205176e96660c413c 100644 (file)
-//-----------------------------------------------------------------------------\r
-// Routines to support ISO 15693. This includes both the reader software and\r
-// the `fake tag' modes, but at the moment I've implemented only the reader\r
-// stuff, and that barely.\r
-// Jonathan Westhues, split Nov 2006\r
-\r
-// Modified by Greg Jones, Jan 2009 to perform modulation onboard in arm rather than on PC\r
-// Also added additional reader commands (SELECT, READ etc.)\r
-\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include <stdio.h>\r
-#include <stdlib.h>\r
-\r
-// FROM winsrc\prox.h //////////////////////////////////\r
-#define arraylen(x) (sizeof(x)/sizeof((x)[0]))\r
-\r
-//-----------------------------------------------------------------------------\r
-// Map a sequence of octets (~layer 2 command) into the set of bits to feed\r
-// to the FPGA, to transmit that command to the tag.\r
-//-----------------------------------------------------------------------------\r
-\r
-       // The sampling rate is 106.353 ksps/s, for T = 18.8 us\r
-\r
-       // SOF defined as\r
-       // 1) Unmodulated time of 56.64us\r
-       // 2) 24 pulses of 423.75khz\r
-       // 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz)\r
-\r
-       static const int FrameSOF[] = {\r
-               -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
-               -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
-                1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,\r
-                1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,\r
-               -1, -1, -1, -1,\r
-               -1, -1, -1, -1,\r
-                1,  1,  1,  1,\r
-                1,  1,  1,  1\r
-       };\r
-       static const int Logic0[] = {\r
-                1,  1,  1,  1,\r
-                1,  1,  1,  1,\r
-               -1, -1, -1, -1,\r
-               -1, -1, -1, -1\r
-       };\r
-       static const int Logic1[] = {\r
-               -1, -1, -1, -1,\r
-               -1, -1, -1, -1,\r
-                1,  1,  1,  1,\r
-                1,  1,  1,  1\r
-       };\r
-\r
-       // EOF defined as\r
-       // 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us)\r
-       // 2) 24 pulses of 423.75khz\r
-       // 3) Unmodulated time of 56.64us\r
-\r
-       static const int FrameEOF[] = {\r
-                1,  1,  1,  1,\r
-                1,  1,  1,  1,\r
-               -1, -1, -1, -1,\r
-               -1, -1, -1, -1,\r
-                1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,\r
-                1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,\r
-               -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,\r
-               -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1\r
-       };\r
-\r
-static void CodeIso15693AsReader(BYTE *cmd, int n)\r
-{\r
-       int i, j;\r
-\r
-       ToSendReset();\r
-\r
-       // Give it a bit of slack at the beginning\r
-       for(i = 0; i < 24; i++) {\r
-               ToSendStuffBit(1);\r
-       }\r
-\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(1);\r
-       for(i = 0; i < n; i++) {\r
-               for(j = 0; j < 8; j += 2) {\r
-                       int these = (cmd[i] >> j) & 3;\r
-                       switch(these) {\r
-                               case 0:\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(0);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       break;\r
-                               case 1:\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(0);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       break;\r
-                               case 2:\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(0);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       break;\r
-                               case 3:\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(1);\r
-                                       ToSendStuffBit(0);\r
-                                       break;\r
-                       }\r
-               }\r
-       }\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(1);\r
-       ToSendStuffBit(0);\r
-       ToSendStuffBit(1);\r
-\r
-       // And slack at the end, too.\r
-       for(i = 0; i < 24; i++) {\r
-               ToSendStuffBit(1);\r
-       }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// The CRC used by ISO 15693.\r
-//-----------------------------------------------------------------------------\r
-static WORD Crc(BYTE *v, int n)\r
-{\r
-       DWORD reg;\r
-       int i, j;\r
-\r
-       reg = 0xffff;\r
-       for(i = 0; i < n; i++) {\r
-               reg = reg ^ ((DWORD)v[i]);\r
-               for (j = 0; j < 8; j++) {\r
-                       if (reg & 0x0001) {\r
-                               reg = (reg >> 1) ^ 0x8408;\r
-                       } else {\r
-                               reg = (reg >> 1);\r
-                       }\r
-               }\r
-       }\r
-\r
-       return ~reg;\r
-}\r
-\r
-char *strcat(char *dest, const char *src)\r
-{\r
-       size_t dest_len = strlen(dest);\r
-       size_t i;\r
\r
-       for (i = 0 ; src[i] != '\0' ; i++)\r
-               dest[dest_len + i] = src[i];\r
-       dest[dest_len + i] = '\0';\r
\r
-       return dest;\r
-}\r
-\r
-////////////////////////////////////////// code to do 'itoa'\r
-\r
-/* reverse:  reverse string s in place */\r
-void reverse(char s[])\r
-{\r
-    int c, i, j;\r
-\r
-    for (i = 0, j = strlen(s)-1; i<j; i++, j--) {\r
-        c = s[i];\r
-        s[i] = s[j];\r
-        s[j] = c;\r
-    }\r
-}\r
-\r
-/* itoa:  convert n to characters in s */\r
-void itoa(int n, char s[])\r
-{\r
-    int i, sign;\r
-\r
-    if ((sign = n) < 0)  /* record sign */\r
-        n = -n;          /* make n positive */\r
-    i = 0;\r
-    do {       /* generate digits in reverse order */\r
-        s[i++] = n % 10 + '0';   /* get next digit */\r
-    } while ((n /= 10) > 0);     /* delete it */\r
-    if (sign < 0)\r
-        s[i++] = '-';\r
-    s[i] = '\0';\r
-    reverse(s);\r
-}\r
-\r
-//////////////////////////////////////// END 'itoa' CODE\r
-\r
-//-----------------------------------------------------------------------------\r
-// Encode (into the ToSend buffers) an identify request, which is the first\r
-// thing that you must send to a tag to get a response.\r
-//-----------------------------------------------------------------------------\r
-static void BuildIdentifyRequest(void)\r
-{\r
-       BYTE cmd[5];\r
-\r
-       WORD crc;\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
-       cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);\r
-       // inventory command code\r
-       cmd[1] = 0x01;\r
-       // no mask\r
-       cmd[2] = 0x00;\r
-       //Now the CRC\r
-       crc = Crc(cmd, 3);\r
-       cmd[3] = crc & 0xff;\r
-       cmd[4] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildSysInfoRequest(BYTE *uid)\r
-{\r
-       BYTE cmd[12];\r
-\r
-       WORD crc;\r
-       // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
-       // followed by teh block data\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       cmd[0] =  (1 << 5) | (1 << 1); // no SELECT bit\r
-       // System Information command code\r
-       cmd[1] = 0x2B;\r
-       // UID may be optionally specified here\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-       //Now the CRC\r
-       crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes\r
-       cmd[10] = crc & 0xff;\r
-       cmd[11] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void BuildSelectRequest( BYTE uid[])\r
-{\r
-\r
-//     uid[6]=0x31;  // this is getting ignored - the uid array is not happening...\r
-       BYTE cmd[12];\r
-\r
-       WORD crc;\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       //cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);      // INVENTROY FLAGS\r
-       cmd[0] = (1 << 4) | (1 << 5) | (1 << 1);        // Select and addressed FLAGS\r
-       // SELECT command code\r
-       cmd[1] = 0x25;\r
-       // 64-bit UID\r
-//     cmd[2] = uid[0];//0x32;\r
-//     cmd[3]= uid[1];//0x4b;\r
-//     cmd[4] = uid[2];//0x03;\r
-//     cmd[5] = uid[3];//0x01;\r
-//     cmd[6] = uid[4];//0x00;\r
-//     cmd[7] = uid[5];//0x10;\r
-//     cmd[8] = uid[6];//0x05;\r
-       cmd[2] = 0x32;//\r
-       cmd[3] = 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05; // infineon?\r
-\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-\r
-//     DbpIntegers(cmd[8],cmd[7],cmd[6]);\r
-       // Now the CRC\r
-       crc = Crc(cmd, 10); // the crc needs to be calculated over 10 bytes\r
-       cmd[10] = crc & 0xff;\r
-       cmd[11] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadBlockRequest(BYTE *uid, BYTE blockNumber )\r
-{\r
-       BYTE cmd[13];\r
-\r
-       WORD crc;\r
-       // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
-       // followed by teh block data\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit\r
-       // READ BLOCK command code\r
-       cmd[1] = 0x20;\r
-       // UID may be optionally specified here\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-       // Block number to read\r
-       cmd[10] = blockNumber;//0x00;\r
-       //Now the CRC\r
-       crc = Crc(cmd, 11); // the crc needs to be calculated over 2 bytes\r
-       cmd[11] = crc & 0xff;\r
-       cmd[12] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildReadMultiBlockRequest(BYTE *uid)\r
-{\r
-       BYTE cmd[14];\r
-\r
-       WORD crc;\r
-       // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
-       // followed by teh block data\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       cmd[0] =  (1 << 5) | (1 << 1); // no SELECT bit\r
-       // READ Multi BLOCK command code\r
-       cmd[1] = 0x23;\r
-       // UID may be optionally specified here\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-       // First Block number to read\r
-       cmd[10] = 0x00;\r
-       // Number of Blocks to read\r
-       cmd[11] = 0x2f; // read quite a few\r
-       //Now the CRC\r
-       crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
-       cmd[12] = crc & 0xff;\r
-       cmd[13] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryRequest(BYTE *uid,BYTE CmdCode)\r
-{\r
-       BYTE cmd[14];\r
-\r
-       WORD crc;\r
-       // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
-       // followed by teh block data\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       cmd[0] =   (1 << 5) | (1 << 1); // no SELECT bit\r
-       // READ BLOCK command code\r
-       cmd[1] = CmdCode;\r
-       // UID may be optionally specified here\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-       // Parameter\r
-       cmd[10] = 0x00;\r
-       cmd[11] = 0x0a;\r
-\r
-//     cmd[12] = 0x00;\r
-//     cmd[13] = 0x00; //Now the CRC\r
-       crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
-       cmd[12] = crc & 0xff;\r
-       cmd[13] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-static void __attribute__((unused)) BuildArbitraryCustomRequest(BYTE uid[], BYTE CmdCode)\r
-{\r
-       BYTE cmd[14];\r
-\r
-       WORD crc;\r
-       // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block\r
-       // followed by teh block data\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       cmd[0] =   (1 << 5) | (1 << 1); // no SELECT bit\r
-       // READ BLOCK command code\r
-       cmd[1] = CmdCode;\r
-       // UID may be optionally specified here\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0; // always e0 (not exactly unique)\r
-       // Parameter\r
-       cmd[10] = 0x05; // for custom codes this must be manufcturer code\r
-       cmd[11] = 0x00;\r
-\r
-//     cmd[12] = 0x00;\r
-//     cmd[13] = 0x00; //Now the CRC\r
-       crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes\r
-       cmd[12] = crc & 0xff;\r
-       cmd[13] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-/////////////////////////////////////////////////////////////////////////\r
-// Now the VICC>VCD responses when we are simulating a tag\r
-////////////////////////////////////////////////////////////////////\r
-\r
- static void BuildInventoryResponse(void)\r
-{\r
-       BYTE cmd[12];\r
-\r
-       WORD crc;\r
-       // one sub-carrier, inventory, 1 slot, fast rate\r
-       // AFI is at bit 5 (1<<4) when doing an INVENTORY\r
-       cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);\r
-       cmd[1] = 0;\r
-       // 64-bit UID\r
-       cmd[2] = 0x32;\r
-       cmd[3]= 0x4b;\r
-       cmd[4] = 0x03;\r
-       cmd[5] = 0x01;\r
-       cmd[6] = 0x00;\r
-       cmd[7] = 0x10;\r
-       cmd[8] = 0x05;\r
-       cmd[9]= 0xe0;\r
-       //Now the CRC\r
-       crc = Crc(cmd, 10);\r
-       cmd[10] = crc & 0xff;\r
-       cmd[11] = crc >> 8;\r
-\r
-       CodeIso15693AsReader(cmd, sizeof(cmd));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the tag) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Tag(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
-    int c;\r
-\r
-//    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
-       if(*wait < 10) { *wait = 10; }\r
-\r
-//    for(c = 0; c < *wait;) {\r
-//        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-//            SSC_TRANSMIT_HOLDING = 0x00;             // For exact timing!\r
-//            c++;\r
-//        }\r
-//        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-//            volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-//            (void)r;\r
-//        }\r
-//        WDT_HIT();\r
-//    }\r
-\r
-    c = 0;\r
-    for(;;) {\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = cmd[c];\r
-            c++;\r
-            if(c >= len) {\r
-                break;\r
-            }\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-            volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-            (void)r;\r
-        }\r
-        WDT_HIT();\r
-    }\r
-       *samples = (c + *wait) << 3;\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Transmit the command (to the reader) that was placed in ToSend[].\r
-//-----------------------------------------------------------------------------\r
-static void TransmitTo15693Reader(const BYTE *cmd, int len, int *samples, int *wait)\r
-{\r
-    int c;\r
-\r
-//     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR);        // No requirement to energise my coils\r
-       if(*wait < 10) { *wait = 10; }\r
-\r
-    c = 0;\r
-    for(;;) {\r
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-            SSC_TRANSMIT_HOLDING = cmd[c];\r
-            c++;\r
-            if(c >= len) {\r
-                break;\r
-            }\r
-        }\r
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-            volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-            (void)r;\r
-        }\r
-        WDT_HIT();\r
-    }\r
-       *samples = (c + *wait) << 3;\r
-}\r
-\r
-static int GetIso15693AnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
-       int c = 0;\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int getNext = 0;\r
-\r
-       SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       //spindelay(60);        // greg - experiment to get rid of some of the 0 byte/failed reads\r
-       c = 0;\r
-       getNext = FALSE;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       SBYTE b;\r
-                       b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
-                       // The samples are correlations against I and Q versions of the\r
-                       // tone that the tag AM-modulates, so every other sample is I,\r
-                       // every other is Q. We just want power, so abs(I) + abs(Q) is\r
-                       // close to what we want.\r
-                       if(getNext) {\r
-                               SBYTE r;\r
-\r
-                               if(b < 0) {\r
-                                       r = -b;\r
-                               } else {\r
-                                       r = b;\r
-                               }\r
-                               if(prev < 0) {\r
-                                       r -= prev;\r
-                               } else {\r
-                                       r += prev;\r
-                               }\r
-\r
-                               dest[c++] = (BYTE)r;\r
-\r
-                               if(c >= 2000) {\r
-                                       break;\r
-                               }\r
-                       } else {\r
-                               prev = b;\r
-                       }\r
-\r
-                       getNext = !getNext;\r
-               }\r
-       }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
-       int i, j;\r
-       int max = 0, maxPos=0;\r
-\r
-       int skip = 4;\r
-\r
-//     if(GraphTraceLen < 1000) return;        // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
-       // First, correlate for SOF\r
-       for(i = 0; i < 100; i++) {\r
-               int corr = 0;\r
-               for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
-                       corr += FrameSOF[j]*dest[i+(j/skip)];\r
-               }\r
-               if(corr > max) {\r
-                       max = corr;\r
-                       maxPos = i;\r
-               }\r
-       }\r
-//     DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
-       int k = 0; // this will be our return value\r
-\r
-       // greg - If correlation is less than 1 then there's little point in continuing\r
-       if ((max/(arraylen(FrameSOF)/skip)) >= 1)\r
-       {\r
-\r
-       i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
-       BYTE outBuf[20];\r
-       memset(outBuf, 0, sizeof(outBuf));\r
-       BYTE mask = 0x01;\r
-       for(;;) {\r
-               int corr0 = 0, corr1 = 0, corrEOF = 0;\r
-               for(j = 0; j < arraylen(Logic0); j += skip) {\r
-                       corr0 += Logic0[j]*dest[i+(j/skip)];\r
-               }\r
-               for(j = 0; j < arraylen(Logic1); j += skip) {\r
-                       corr1 += Logic1[j]*dest[i+(j/skip)];\r
-               }\r
-               for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
-                       corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
-               }\r
-               // Even things out by the length of the target waveform.\r
-               corr0 *= 4;\r
-               corr1 *= 4;\r
-\r
-               if(corrEOF > corr1 && corrEOF > corr0) {\r
-//                     DbpString("EOF at %d", i);\r
-                       break;\r
-               } else if(corr1 > corr0) {\r
-                       i += arraylen(Logic1)/skip;\r
-                       outBuf[k] |= mask;\r
-               } else {\r
-                       i += arraylen(Logic0)/skip;\r
-               }\r
-               mask <<= 1;\r
-               if(mask == 0) {\r
-                       k++;\r
-                       mask = 0x01;\r
-               }\r
-               if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
-                       DbpString("ran off end!");\r
-                       break;\r
-               }\r
-       }\r
-       if(mask != 0x01) {\r
-               DbpString("error, uneven octet! (discard extra bits!)");\r
-///            DbpString("   mask=%02x", mask);\r
-       }\r
-//     BYTE str1 [8];\r
-//     itoa(k,str1);\r
-//     strcat(str1," octets read");\r
-\r
-//     DbpString(  str1);    // DbpString("%d octets", k);\r
-\r
-//     for(i = 0; i < k; i+=3) {\r
-//             //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-//             DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-//     }\r
-\r
-       for(i = 0; i < k; i++) {\r
-               receivedResponse[i] = outBuf[i];\r
-       }\r
-       } // "end if correlation > 0"   (max/(arraylen(FrameSOF)/skip))\r
-       return k; // return the number of bytes demodulated\r
-\r
-///    DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-\r
-}\r
-\r
-// Now the GetISO15693 message from sniffing command\r
-static int GetIso15693AnswerFromSniff(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed)\r
-{\r
-       int c = 0;\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int getNext = 0;\r
-\r
-       SBYTE prev = 0;\r
-\r
-// NOW READ RESPONSE\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       //spindelay(60);        // greg - experiment to get rid of some of the 0 byte/failed reads\r
-       c = 0;\r
-       getNext = FALSE;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       SBYTE b;\r
-                       b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
-                       // The samples are correlations against I and Q versions of the\r
-                       // tone that the tag AM-modulates, so every other sample is I,\r
-                       // every other is Q. We just want power, so abs(I) + abs(Q) is\r
-                       // close to what we want.\r
-                       if(getNext) {\r
-                               SBYTE r;\r
-\r
-                               if(b < 0) {\r
-                                       r = -b;\r
-                               } else {\r
-                                       r = b;\r
-                               }\r
-                               if(prev < 0) {\r
-                                       r -= prev;\r
-                               } else {\r
-                                       r += prev;\r
-                               }\r
-\r
-                               dest[c++] = (BYTE)r;\r
-\r
-                               if(c >= 20000) {\r
-                                       break;\r
-                               }\r
-                       } else {\r
-                               prev = b;\r
-                       }\r
-\r
-                       getNext = !getNext;\r
-               }\r
-       }\r
-\r
-//////////////////////////////////////////\r
-/////////// DEMODULATE ///////////////////\r
-//////////////////////////////////////////\r
-\r
-       int i, j;\r
-       int max = 0, maxPos=0;\r
-\r
-       int skip = 4;\r
-\r
-//     if(GraphTraceLen < 1000) return;        // THIS CHECKS FOR A BUFFER TO SMALL\r
-\r
-       // First, correlate for SOF\r
-       for(i = 0; i < 19000; i++) {\r
-               int corr = 0;\r
-               for(j = 0; j < arraylen(FrameSOF); j += skip) {\r
-                       corr += FrameSOF[j]*dest[i+(j/skip)];\r
-               }\r
-               if(corr > max) {\r
-                       max = corr;\r
-                       maxPos = i;\r
-               }\r
-       }\r
-//     DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));\r
-\r
-       int k = 0; // this will be our return value\r
-\r
-       // greg - If correlation is less than 1 then there's little point in continuing\r
-       if ((max/(arraylen(FrameSOF)/skip)) >= 1)       // THIS SHOULD BE 1\r
-       {\r
-\r
-       i = maxPos + arraylen(FrameSOF)/skip;\r
-\r
-       BYTE outBuf[20];\r
-       memset(outBuf, 0, sizeof(outBuf));\r
-       BYTE mask = 0x01;\r
-       for(;;) {\r
-               int corr0 = 0, corr1 = 0, corrEOF = 0;\r
-               for(j = 0; j < arraylen(Logic0); j += skip) {\r
-                       corr0 += Logic0[j]*dest[i+(j/skip)];\r
-               }\r
-               for(j = 0; j < arraylen(Logic1); j += skip) {\r
-                       corr1 += Logic1[j]*dest[i+(j/skip)];\r
-               }\r
-               for(j = 0; j < arraylen(FrameEOF); j += skip) {\r
-                       corrEOF += FrameEOF[j]*dest[i+(j/skip)];\r
-               }\r
-               // Even things out by the length of the target waveform.\r
-               corr0 *= 4;\r
-               corr1 *= 4;\r
-\r
-               if(corrEOF > corr1 && corrEOF > corr0) {\r
-//                     DbpString("EOF at %d", i);\r
-                       break;\r
-               } else if(corr1 > corr0) {\r
-                       i += arraylen(Logic1)/skip;\r
-                       outBuf[k] |= mask;\r
-               } else {\r
-                       i += arraylen(Logic0)/skip;\r
-               }\r
-               mask <<= 1;\r
-               if(mask == 0) {\r
-                       k++;\r
-                       mask = 0x01;\r
-               }\r
-               if((i+(int)arraylen(FrameEOF)) >= 2000) {\r
-                       DbpString("ran off end!");\r
-                       break;\r
-               }\r
-       }\r
-       if(mask != 0x01) {\r
-               DbpString("error, uneven octet! (discard extra bits!)");\r
-///            DbpString("   mask=%02x", mask);\r
-       }\r
-//     BYTE str1 [8];\r
-//     itoa(k,str1);\r
-//     strcat(str1," octets read");\r
-\r
-//     DbpString(  str1);    // DbpString("%d octets", k);\r
-\r
-//     for(i = 0; i < k; i+=3) {\r
-//             //DbpString("# %2d: %02x ", i, outBuf[i]);\r
-//             DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);\r
-//     }\r
-\r
-       for(i = 0; i < k; i++) {\r
-               receivedResponse[i] = outBuf[i];\r
-       }\r
-       } // "end if correlation > 0"   (max/(arraylen(FrameSOF)/skip))\r
-       return k; // return the number of bytes demodulated\r
-\r
-///    DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Start to read an ISO 15693 tag. We send an identify request, then wait\r
-// for the response. The response is not demodulated, just left in the buffer\r
-// so that it can be downloaded to a PC and processed there.\r
-//-----------------------------------------------------------------------------\r
-void AcquireRawAdcSamplesIso15693(void)\r
-{\r
-       int c = 0;\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int getNext = 0;\r
-\r
-       SBYTE prev = 0;\r
-\r
-       BuildIdentifyRequest();\r
-\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
-       // Give the tags time to energize\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       SpinDelay(100);\r
-\r
-       // Now send the command\r
-       FpgaSetupSsc();\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);\r
-\r
-       c = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = ToSend[c];\r
-                       c++;\r
-                       if(c == ToSendMax+3) {\r
-                               break;\r
-                       }\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       volatile DWORD r = SSC_RECEIVE_HOLDING;\r
-                       (void)r;\r
-               }\r
-               WDT_HIT();\r
-       }\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-\r
-       c = 0;\r
-       getNext = FALSE;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       SBYTE b;\r
-                       b = (SBYTE)SSC_RECEIVE_HOLDING;\r
-\r
-                       // The samples are correlations against I and Q versions of the\r
-                       // tone that the tag AM-modulates, so every other sample is I,\r
-                       // every other is Q. We just want power, so abs(I) + abs(Q) is\r
-                       // close to what we want.\r
-                       if(getNext) {\r
-                               SBYTE r;\r
-\r
-                               if(b < 0) {\r
-                                       r = -b;\r
-                               } else {\r
-                                       r = b;\r
-                               }\r
-                               if(prev < 0) {\r
-                                       r -= prev;\r
-                               } else {\r
-                                       r += prev;\r
-                               }\r
-\r
-                               dest[c++] = (BYTE)r;\r
-\r
-                               if(c >= 2000) {\r
-                                       break;\r
-                               }\r
-                       } else {\r
-                               prev = b;\r
-                       }\r
-\r
-                       getNext = !getNext;\r
-               }\r
-       }\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void ReaderIso15693(DWORD parameter)\r
-{\r
-       LED_A_ON();\r
-       LED_B_ON();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
-       BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
-       BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
-       BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
-       BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
-       //BYTE *TagUID= (((BYTE *)BigBuf) + 3960);              // where we hold the uid for hi15reader\r
-//     int responseLen0 = 0;\r
-       int responseLen1 = 0;\r
-       int responseLen2 = 0;\r
-       int responseLen3 = 0;\r
-\r
-       // Blank arrays\r
-       int j;\r
-       for(j = 0; j < 100; j++) {\r
-               receivedAnswer3[j] = 0;\r
-               receivedAnswer2[j] =0;\r
-               receivedAnswer1[j] = 0;\r
-               receivedAnswer0[j] = 0;\r
-       }\r
-\r
-       // Setup SSC\r
-       FpgaSetupSsc();\r
-\r
-       // Start from off (no field generated)\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-       SpinDelay(200);\r
-\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-       FpgaSetupSsc();\r
-\r
-       // Give the tags time to energize\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       SpinDelay(200);\r
-\r
-       LED_A_ON();\r
-       LED_B_OFF();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-\r
-       int samples = 0;\r
-       int tsamples = 0;\r
-       int wait = 0;\r
-       int elapsed = 0;\r
-\r
-       // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
-       // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
- BYTE TagUID[7];               // where we hold the uid for hi15reader\r
-\r
-//     BuildIdentifyRequest();\r
-//     //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
-//     TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);  // No longer ToSendMax+3\r
-//     // Now wait for a response\r
-//     responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ;\r
-//     if (responseLen0 >=12) // we should do a better check than this\r
-//     {\r
-//             // really we should check it is a valid mesg\r
-//             // but for now just grab what we think is the uid\r
-//             TagUID[0] = receivedAnswer0[2];\r
-//             TagUID[1] = receivedAnswer0[3];\r
-//             TagUID[2] = receivedAnswer0[4];\r
-//             TagUID[3] = receivedAnswer0[5];\r
-//             TagUID[4] = receivedAnswer0[6];\r
-//             TagUID[5] = receivedAnswer0[7];\r
-//             TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code\r
-//     DbpIntegers(TagUID[6],TagUID[5],TagUID[4]);\r
-//}\r
-\r
-       // Now send the IDENTIFY command\r
-       BuildIdentifyRequest();\r
-       //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
-       TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);  // No longer ToSendMax+3\r
-       // Now wait for a response\r
-       responseLen1 = GetIso15693AnswerFromTag(receivedAnswer1, 100, &samples, &elapsed) ;\r
-\r
-       if (responseLen1 >=12) // we should do a better check than this\r
-       {\r
-\r
-               TagUID[0] = receivedAnswer1[2];\r
-               TagUID[1] = receivedAnswer1[3];\r
-               TagUID[2] = receivedAnswer1[4];\r
-               TagUID[3] = receivedAnswer1[5];\r
-               TagUID[4] = receivedAnswer1[6];\r
-               TagUID[5] = receivedAnswer1[7];\r
-               TagUID[6] = receivedAnswer1[8]; // IC Manufacturer code\r
-\r
-               // Now send the SELECT command\r
-               BuildSelectRequest(TagUID);\r
-               TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);  // No longer ToSendMax+3\r
-               // Now wait for a response\r
-               responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
-               // Now send the MULTI READ command\r
-//             BuildArbitraryRequest(*TagUID,parameter);\r
-               BuildArbitraryCustomRequest(TagUID,parameter);\r
-//             BuildReadBlockRequest(*TagUID,parameter);\r
-//             BuildSysInfoRequest(*TagUID);\r
-               //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);\r
-               TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);  // No longer ToSendMax+3\r
-               // Now wait for a response\r
-               responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
-       }\r
-\r
-       char str1 [4];\r
-       //char str2 [200];\r
-       int i;\r
-\r
-       itoa(responseLen1,str1);\r
-       strcat(str1," octets read from IDENTIFY request");\r
-       DbpString(str1);\r
-       for(i = 0; i < responseLen1; i+=3) {\r
-               DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
-       }\r
-\r
-       itoa(responseLen2,str1);\r
-       strcat(str1," octets read from SELECT request");\r
-       DbpString(str1);\r
-       for(i = 0; i < responseLen2; i+=3) {\r
-               DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
-       }\r
-\r
-       itoa(responseLen3,str1);\r
-       strcat(str1," octets read from XXX request");\r
-       DbpString(str1);\r
-       for(i = 0; i < responseLen3; i+=3) {\r
-               DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
-       }\r
-\r
-//     str2[0]=0;\r
-//     for(i = 0; i < responseLen3; i++) {\r
-//             itoa(str1,receivedAnswer3[i]);\r
-//             strcat(str2,str1);\r
-//     }\r
-//     DbpString(str2);\r
-\r
-       LED_A_OFF();\r
-       LED_B_OFF();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands\r
-// all demodulation performed in arm rather than host. - greg\r
-//-----------------------------------------------------------------------------\r
-void SimTagIso15693(DWORD parameter)\r
-{\r
-       LED_A_ON();\r
-       LED_B_ON();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-\r
-//DbpString(parameter);\r
-\r
-       BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)\r
-       BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); //\r
-       BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760);\r
-       BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860);\r
-       //BYTE *TagUID= (((BYTE *)BigBuf) + 3960);              // where we hold the uid for hi15reader\r
-//     int responseLen0 = 0;\r
-       int responseLen1 = 0;\r
-//     int responseLen2 = 0;\r
-//     int responseLen3 = 0;\r
-\r
-       // Blank arrays\r
-       int j;\r
-       for(j = 0; j < 100; j++) {\r
-               receivedAnswer3[j] = 0;\r
-               receivedAnswer2[j] =0;\r
-               receivedAnswer1[j] = 0;\r
-               receivedAnswer0[j] = 0;\r
-       }\r
-\r
-       // Setup SSC\r
-       FpgaSetupSsc();\r
-\r
-       // Start from off (no field generated)\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-       SpinDelay(200);\r
-\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-       FpgaSetupSsc();\r
-\r
-       // Give the tags time to energize\r
-//     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);  // NO GOOD FOR SIM TAG!!!!\r
-       SpinDelay(200);\r
-\r
-       LED_A_OFF();\r
-       LED_B_OFF();\r
-       LED_C_ON();\r
-       LED_D_OFF();\r
-\r
-       int samples = 0;\r
-       int tsamples = 0;\r
-       int wait = 0;\r
-       int elapsed = 0;\r
-\r
-       // FIRST WE RUN AN INVENTORY TO GET THE TAG UID\r
-       // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME\r
-       // BYTE TagUID[7];              // where we hold the uid for hi15reader\r
-\r
-       // Now send the IDENTIFY command\r
-       //      BuildIdentifyRequest();\r
-       //      TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);  // No longer ToSendMax+3\r
-\r
-       // Now wait for a command from the reader\r
-       responseLen1=0;\r
-       //      while(responseLen1=0) {\r
-       //              if(BUTTON_PRESS()) break;\r
-               responseLen1 = GetIso15693AnswerFromSniff(receivedAnswer1, 100, &samples, &elapsed) ;\r
-       //              }\r
-\r
-       if (responseLen1 >=1) // we should do a better check than this\r
-       {\r
-               // Build a suitable reponse to the reader INVENTORY cocmmand\r
-               BuildInventoryResponse();\r
-               TransmitTo15693Reader(ToSend,ToSendMax,&tsamples, &wait);\r
-\r
-               // Now wait for a command from the reader\r
-//             responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed);\r
-\r
-               // Now wait for a command from the reader\r
-//             responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ;\r
-\r
-       }\r
-\r
-       char str1 [4];\r
-       //char str2 [200];\r
-       int i;\r
-\r
-       itoa(responseLen1,str1);\r
-       strcat(str1," octets read from reader command");\r
-       DbpString(str1);\r
-       for(i = 0; i < responseLen1; i+=3) {\r
-               DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]);\r
-       }\r
-\r
-//     itoa(responseLen2,str1);\r
-//     strcat(str1," octets read from SELECT request");\r
-//     DbpString(str1);\r
-//     for(i = 0; i < responseLen2; i+=3) {\r
-//             DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]);\r
-//     }\r
-//\r
-//     itoa(responseLen3,str1);\r
-//     strcat(str1," octets read from XXX request");\r
-//     DbpString(str1);\r
-//     for(i = 0; i < responseLen3; i+=3) {\r
-//             DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]);\r
-//     }\r
-\r
-//     str2[0]=0;\r
-//     for(i = 0; i < responseLen3; i++) {\r
-//             itoa(str1,receivedAnswer3[i]);\r
-//             strcat(str2,str1);\r
-//     }\r
-//     DbpString(str2);\r
-\r
-       LED_A_OFF();\r
-       LED_B_OFF();\r
-       LED_C_OFF();\r
-       LED_D_OFF();\r
-}\r
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, split Nov 2006
+// Modified by Greg Jones, Jan 2009
+// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
+// Modified by piwi, Oct 2018
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 15693. This includes both the reader software and
+// the `fake tag' modes.
+//-----------------------------------------------------------------------------
+
+// The ISO 15693 describes two transmission modes from reader to tag, and four
+// transmission modes from tag to reader. As of Oct 2018 this code supports
+// both reader modes and the high speed variant with one subcarrier from card to reader.
+// As long as the card fully support ISO 15693 this is no problem, since the
+// reader chooses both data rates, but some non-standard tags do not.
+// For card simulation, the code supports both high and low speed modes with one subcarrier.
+//
+// VCD (reader) -> VICC (tag)
+// 1 out of 256:
+//  data rate: 1,66 kbit/s (fc/8192)
+//  used for long range
+// 1 out of 4:
+//  data rate: 26,48 kbit/s (fc/512)
+//  used for short range, high speed
+//
+// VICC (tag) -> VCD (reader)
+// Modulation:
+//      ASK / one subcarrier (423,75 khz)
+//      FSK / two subcarriers (423,75 khz && 484,28 khz)
+// Data Rates / Modes:
+//  low ASK: 6,62 kbit/s
+//  low FSK: 6.67 kbit/s
+//  high ASK: 26,48 kbit/s
+//  high FSK: 26,69 kbit/s
+//-----------------------------------------------------------------------------
+
+
+// Random Remarks:
+// *) UID is always used "transmission order" (LSB), which is reverse to display order
+
+// TODO / BUGS / ISSUES:
+// *) signal decoding is unable to detect collisions.
+// *) add anti-collision support for inventory-commands
+// *) read security status of a block
+// *) sniffing and simulation do not support two subcarrier modes.
+// *) remove or refactor code under "deprecated"
+// *) document all the functions
+
+#include "iso15693.h"
+
+#include "proxmark3.h"
+#include "util.h"
+#include "apps.h"
+#include "string.h"
+#include "iso15693tools.h"
+#include "protocols.h"
+#include "cmd.h"
+#include "BigBuf.h"
+#include "fpgaloader.h"
+
+#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+
+// Delays in SSP_CLK ticks.
+// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
+#define DELAY_READER_TO_ARM               8
+#define DELAY_ARM_TO_READER               0
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
+#define DELAY_ARM_TO_TAG                 16
+#define DELAY_TAG_TO_ARM                 32
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
+#define DELAY_TAG_TO_ARM_SNOOP           32
+#define DELAY_READER_TO_ARM_SNOOP        32
+
+static int DEBUG = 0;
+
+
+// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
+       uint32_t duration = timestamp_end - timestamp_start;
+       duration /= 32;
+       timestamp_end = timestamp_start + duration;
+       return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
+}
+
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 2 - Air Interface
+// This section basically contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+// buffers
+#define ISO15693_DMA_BUFFER_SIZE       2048 // must be a power of 2
+#define ISO15693_MAX_RESPONSE_LENGTH     36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
+#define ISO15693_MAX_COMMAND_LENGTH      45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
+
+// ---------------------------
+// Signal Processing
+// ---------------------------
+
+// prepare data using "1 out of 4" code for later transmission
+// resulting data rate is 26.48 kbit/s (fc/512)
+// cmd ... data
+// n ... length of data
+void CodeIso15693AsReader(uint8_t *cmd, int n) {
+
+       ToSendReset();
+
+       // SOF for 1of4
+       ToSend[++ToSendMax] = 0x84; //10000100
+
+       // data
+       for (int i = 0; i < n; i++) {
+               for (int j = 0; j < 8; j += 2) {
+                       int these = (cmd[i] >> j) & 0x03;
+                       switch(these) {
+                               case 0:
+                                       ToSend[++ToSendMax] = 0x40; //01000000
+                                       break;
+                               case 1:
+                                       ToSend[++ToSendMax] = 0x10; //00010000
+                                       break;
+                               case 2:
+                                       ToSend[++ToSendMax] = 0x04; //00000100
+                                       break;
+                               case 3:
+                                       ToSend[++ToSendMax] = 0x01; //00000001
+                                       break;
+                       }
+               }
+       }
+
+       // EOF
+       ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
+       ToSendMax++;
+}
+
+// encode data using "1 out of 256" scheme
+// data rate is 1,66 kbit/s (fc/8192)
+// is designed for more robust communication over longer distances
+static void CodeIso15693AsReader256(uint8_t *cmd, int n)
+{
+       ToSendReset();
+
+       // SOF for 1of256
+       ToSend[++ToSendMax] = 0x81; //10000001
+
+       // data
+       for(int i = 0; i < n; i++) {
+               for (int j = 0; j <= 255; j++) {
+                       if (cmd[i] == j) {
+                               ToSendStuffBit(0);
+                               ToSendStuffBit(1);
+                       } else {
+                               ToSendStuffBit(0);
+                               ToSendStuffBit(0);
+                       }
+               }
+       }
+
+       // EOF
+       ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
+       ToSendMax++;
+}
+
+
+// static uint8_t encode4Bits(const uint8_t b) {
+       // uint8_t c = b & 0xF;
+       // // OTA, the least significant bits first
+       // //         The columns are
+       // //               1 - Bit value to send
+       // //               2 - Reversed (big-endian)
+       // //               3 - Manchester Encoded
+       // //               4 - Hex values
+
+       // switch(c){
+       // //                          1       2         3         4
+         // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
+         // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
+         // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
+         // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
+         // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
+         // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
+         // case 9:  return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
+         // case 8:  return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
+         // case 7:  return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
+         // case 6:  return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
+         // case 5:  return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
+         // case 4:  return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
+         // case 3:  return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
+         // case 2:  return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
+         // case 1:  return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
+         // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
+
+       // }
+// }
+
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
+void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
+       /*
+        * SOF comprises 3 parts;
+        * * An unmodulated time of 56.64 us
+        * * 24 pulses of 423.75 kHz (fc/32)
+        * * A logic 1, which starts with an unmodulated time of 18.88us
+        *   followed by 8 pulses of 423.75kHz (fc/32)
+        *
+        * EOF comprises 3 parts:
+        * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
+        *   time of 18.88us.
+        * - 24 pulses of fc/32
+        * - An unmodulated time of 56.64 us
+        *
+        * A logic 0 starts with 8 pulses of fc/32
+        * followed by an unmodulated time of 256/fc (~18,88us).
+        *
+        * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
+        * 8 pulses of fc/32 (also 18.88us)
+        *
+        * A bit here becomes 8 pulses of fc/32. Therefore:
+        * The SOF can be written as 00011101 = 0x1D
+        * The EOF can be written as 10111000 = 0xb8
+        * A logic 1 is 01
+        * A logic 0 is 10
+        *
+        * */
+
+       ToSendReset();
+
+       // SOF
+       ToSend[++ToSendMax] = 0x1D;  // 00011101
+
+       // data
+       for (int i = 0; i < len; i++) {
+               ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+               ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
+       }
+
+       // EOF
+       ToSend[++ToSendMax] = 0xB8; // 10111000
+
+       ToSendMax++;
+}
+
+
+// Transmit the command (to the tag) that was placed in cmd[].
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
+
+       if (*start_time < DELAY_ARM_TO_TAG) {
+               *start_time = DELAY_ARM_TO_TAG;
+       }
+
+       *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
+
+       if (GetCountSspClk() > *start_time) { // we may miss the intended time
+               *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
+       }
+
+       while (GetCountSspClk() < *start_time)
+               /* wait */ ;
+
+       LED_B_ON();
+       for (int c = 0; c < len; c++) {
+               uint8_t data = cmd[c];
+               for (int i = 0; i < 8; i++) {
+                       uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
+                       while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+                       AT91C_BASE_SSC->SSC_THR = send_word;
+                       while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
+                       AT91C_BASE_SSC->SSC_THR = send_word;
+
+                       data <<= 1;
+               }
+               WDT_HIT();
+       }
+       LED_B_OFF();
+
+       *start_time = *start_time + DELAY_ARM_TO_TAG;
+
+}
+
+
+//-----------------------------------------------------------------------------
+// Transmit the tag response (to the reader) that was placed in cmd[].
+//-----------------------------------------------------------------------------
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
+       // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
+
+       uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8;  // no need to transfer the unmodulated start of SOF
+
+       while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+               if (slot_time) {
+                       modulation_start_time += slot_time; // use next available slot
+               } else {
+                       modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+               }
+       }
+
+       while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+               /* wait */ ;
+
+       uint8_t shift_delay = modulation_start_time & 0x00000007;
+
+       *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
+
+       LED_C_ON();
+       uint8_t bits_to_shift = 0x00;
+       uint8_t bits_to_send = 0x00;
+       for (size_t c = 0; c < len; c++) {
+               for (int i = (c==0?4:7); i >= 0; i--) {
+                       uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
+                       for (int j = 0; j < (slow?4:1); ) {
+                               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+                                       bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
+                                       AT91C_BASE_SSC->SSC_THR = bits_to_send;
+                                       bits_to_shift = cmd_bits;
+                                       j++;
+                               }
+                       }
+               }
+               WDT_HIT();
+       }
+       // send the remaining bits, padded with 0:
+       bits_to_send = bits_to_shift << (8 - shift_delay);
+       for ( ; ; ) {
+               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+                       AT91C_BASE_SSC->SSC_THR = bits_to_send;
+                       break;
+               }
+       }
+       LED_C_OFF();
+}
+
+
+//=============================================================================
+// An ISO 15693 decoder for tag responses (one subcarrier only).
+// Uses cross correlation to identify each bit and EOF.
+// This function is called 8 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
+// i.e. function is called every 4,72us
+// LED handling:
+//    LED C -> ON once we have received the SOF and are expecting the rest.
+//    LED C -> OFF once we have received EOF or are unsynced
+//
+// Returns: true if we received a EOF
+//          false if we are still waiting for some more
+//=============================================================================
+
+#define NOISE_THRESHOLD          160                   // don't try to correlate noise
+#define MAX_PREVIOUS_AMPLITUDE   (-1 - NOISE_THRESHOLD)
+
+typedef struct DecodeTag {
+       enum {
+               STATE_TAG_SOF_LOW,
+               STATE_TAG_SOF_RISING_EDGE,
+               STATE_TAG_SOF_HIGH,
+               STATE_TAG_SOF_HIGH_END,
+               STATE_TAG_RECEIVING_DATA,
+               STATE_TAG_EOF,
+               STATE_TAG_EOF_TAIL
+       }         state;
+       int       bitCount;
+       int       posCount;
+       enum {
+               LOGIC0,
+               LOGIC1,
+               SOF_PART1,
+               SOF_PART2
+       }         lastBit;
+       uint16_t  shiftReg;
+       uint16_t  max_len;
+       uint8_t   *output;
+       int       len;
+       int       sum1, sum2;
+       int       threshold_sof;
+       int       threshold_half;
+       uint16_t  previous_amplitude;
+} DecodeTag_t;
+
+
+static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) {
+       switch(DecodeTag->state) {
+               case STATE_TAG_SOF_LOW:
+                       // waiting for a rising edge
+                       if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
+                               if (DecodeTag->posCount > 10) {
+                                       DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude; // to be divided by 2
+                                       DecodeTag->threshold_half = 0;
+                                       DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
+                               } else {
+                                       DecodeTag->posCount = 0;
+                               }
+                       } else {
+                               DecodeTag->posCount++;
+                               DecodeTag->previous_amplitude = amplitude;
+                       }
+                       break;
+
+               case STATE_TAG_SOF_RISING_EDGE:
+                       if (amplitude > DecodeTag->threshold_sof + DecodeTag->previous_amplitude) { // edge still rising
+                               if (amplitude > DecodeTag->threshold_sof + DecodeTag->threshold_sof) { // steeper edge, take this as time reference
+                                       DecodeTag->posCount = 1;
+                               } else {
+                                       DecodeTag->posCount = 2;
+                               }
+                               DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
+                       } else {
+                               DecodeTag->posCount = 2;
+                               DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
+                       }
+                       // DecodeTag->posCount = 2;
+                       DecodeTag->state = STATE_TAG_SOF_HIGH;
+                       break;
+
+               case STATE_TAG_SOF_HIGH:
+                       // waiting for 10 times high. Take average over the last 8
+                       if (amplitude > DecodeTag->threshold_sof) {
+                               DecodeTag->posCount++;
+                               if (DecodeTag->posCount > 2) {
+                                       DecodeTag->threshold_half += amplitude; // keep track of average high value
+                               }
+                               if (DecodeTag->posCount == 10) {
+                                       DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
+                                       DecodeTag->state = STATE_TAG_SOF_HIGH_END;
+                               }
+                       } else { // high phase was too short
+                               DecodeTag->posCount = 1;
+                               DecodeTag->previous_amplitude = amplitude;
+                               DecodeTag->state = STATE_TAG_SOF_LOW;
+                       }
+                       break;
+
+               case STATE_TAG_SOF_HIGH_END:
+                       // check for falling edge
+                       if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
+                               DecodeTag->lastBit = SOF_PART1;  // detected 1st part of SOF (12 samples low and 12 samples high)
+                               DecodeTag->shiftReg = 0;
+                               DecodeTag->bitCount = 0;
+                               DecodeTag->len = 0;
+                               DecodeTag->sum1 = amplitude;
+                               DecodeTag->sum2 = 0;
+                               DecodeTag->posCount = 2;
+                               DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+                               // FpgaDisableTracing(); // DEBUGGING
+                               // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+                                       // amplitude,
+                                       // DecodeTag->threshold_sof,
+                                       // DecodeTag->threshold_half/4,
+                                       // DecodeTag->previous_amplitude); // DEBUGGING
+                               LED_C_ON();
+                       } else {
+                               DecodeTag->posCount++;
+                               if (DecodeTag->posCount > 13) { // high phase too long
+                                       DecodeTag->posCount = 0;
+                                       DecodeTag->previous_amplitude = amplitude;
+                                       DecodeTag->state = STATE_TAG_SOF_LOW;
+                                       LED_C_OFF();
+                               }
+                       }
+                       break;
+
+               case STATE_TAG_RECEIVING_DATA:
+                               // FpgaDisableTracing(); // DEBUGGING
+                               // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+                                       // amplitude,
+                                       // DecodeTag->threshold_sof,
+                                       // DecodeTag->threshold_half/4,
+                                       // DecodeTag->previous_amplitude); // DEBUGGING
+                       if (DecodeTag->posCount == 1) {
+                               DecodeTag->sum1 = 0;
+                               DecodeTag->sum2 = 0;
+                       }
+                       if (DecodeTag->posCount <= 4) {
+                               DecodeTag->sum1 += amplitude;
+                       } else {
+                               DecodeTag->sum2 += amplitude;
+                       }
+                       if (DecodeTag->posCount == 8) {
+                               if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
+                                       if (DecodeTag->lastBit == LOGIC0) {  // this was already part of EOF
+                                               DecodeTag->state = STATE_TAG_EOF;
+                                       } else {
+                                               DecodeTag->posCount = 0;
+                                               DecodeTag->previous_amplitude = amplitude;
+                                               DecodeTag->state = STATE_TAG_SOF_LOW;
+                                               LED_C_OFF();
+                                       }
+                               } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
+                                       // logic 1
+                                       if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
+                                               DecodeTag->lastBit = SOF_PART2;    // SOF completed
+                                       } else {
+                                               DecodeTag->lastBit = LOGIC1;
+                                               DecodeTag->shiftReg >>= 1;
+                                               DecodeTag->shiftReg |= 0x80;
+                                               DecodeTag->bitCount++;
+                                               if (DecodeTag->bitCount == 8) {
+                                                       DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+                                                       DecodeTag->len++;
+                                                       // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
+                                                       if (DecodeTag->len > DecodeTag->max_len) {
+                                                               // buffer overflow, give up
+                                                               LED_C_OFF();
+                                                               return true;
+                                                       }
+                                                       DecodeTag->bitCount = 0;
+                                                       DecodeTag->shiftReg = 0;
+                                               }
+                                       }
+                               } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
+                                       // logic 0
+                                       if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
+                                               DecodeTag->posCount = 0;
+                                               DecodeTag->previous_amplitude = amplitude;
+                                               DecodeTag->state = STATE_TAG_SOF_LOW;
+                                               LED_C_OFF();
+                                       } else {
+                                               DecodeTag->lastBit = LOGIC0;
+                                               DecodeTag->shiftReg >>= 1;
+                                               DecodeTag->bitCount++;
+                                               if (DecodeTag->bitCount == 8) {
+                                                       DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
+                                                       DecodeTag->len++;
+                                                       // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
+                                                       if (DecodeTag->len > DecodeTag->max_len) {
+                                                               // buffer overflow, give up
+                                                               DecodeTag->posCount = 0;
+                                                               DecodeTag->previous_amplitude = amplitude;
+                                                               DecodeTag->state = STATE_TAG_SOF_LOW;
+                                                               LED_C_OFF();
+                                                       }
+                                                       DecodeTag->bitCount = 0;
+                                                       DecodeTag->shiftReg = 0;
+                                               }
+                                       }
+                               } else { // no modulation
+                                       if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
+                                               LED_C_OFF();
+                                               return true;
+                                       } else {
+                                               DecodeTag->posCount = 0;
+                                               DecodeTag->state = STATE_TAG_SOF_LOW;
+                                               LED_C_OFF();
+                                       }
+                               }
+                               DecodeTag->posCount = 0;
+                       }
+                       DecodeTag->posCount++;
+                       break;
+
+               case STATE_TAG_EOF:
+                       if (DecodeTag->posCount == 1) {
+                               DecodeTag->sum1 = 0;
+                               DecodeTag->sum2 = 0;
+                       }
+                       if (DecodeTag->posCount <= 4) {
+                               DecodeTag->sum1 += amplitude;
+                       } else {
+                               DecodeTag->sum2 += amplitude;
+                       }
+                       if (DecodeTag->posCount == 8) {
+                               if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
+                                       DecodeTag->posCount = 0;
+                                       DecodeTag->state = STATE_TAG_EOF_TAIL;
+                               } else {
+                                       DecodeTag->posCount = 0;
+                                       DecodeTag->previous_amplitude = amplitude;
+                                       DecodeTag->state = STATE_TAG_SOF_LOW;
+                                       LED_C_OFF();
+                               }
+                       }
+                       DecodeTag->posCount++;
+                       break;
+
+               case STATE_TAG_EOF_TAIL:
+                       if (DecodeTag->posCount == 1) {
+                               DecodeTag->sum1 = 0;
+                               DecodeTag->sum2 = 0;
+                       }
+                       if (DecodeTag->posCount <= 4) {
+                               DecodeTag->sum1 += amplitude;
+                       } else {
+                               DecodeTag->sum2 += amplitude;
+                       }
+                       if (DecodeTag->posCount == 8) {
+                               if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
+                                       LED_C_OFF();
+                                       return true;
+                               } else {
+                                       DecodeTag->posCount = 0;
+                                       DecodeTag->previous_amplitude = amplitude;
+                                       DecodeTag->state = STATE_TAG_SOF_LOW;
+                                       LED_C_OFF();
+                               }
+                       }
+                       DecodeTag->posCount++;
+                       break;
+       }
+
+       return false;
+}
+
+
+static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) {
+       DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+       DecodeTag->posCount = 0;
+       DecodeTag->state = STATE_TAG_SOF_LOW;
+       DecodeTag->output = data;
+       DecodeTag->max_len = max_len;
+}
+
+
+static void DecodeTagReset(DecodeTag_t *DecodeTag) {
+       DecodeTag->posCount = 0;
+       DecodeTag->state = STATE_TAG_SOF_LOW;
+       DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
+}
+
+
+/*
+ *  Receive and decode the tag response, also log to tracebuffer
+ */
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
+
+       int samples = 0;
+       int ret = 0;
+
+       uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+       // the Decoder data structure
+       DecodeTag_t DecodeTag = { 0 };
+       DecodeTagInit(&DecodeTag, response, max_len);
+
+       // wait for last transfer to complete
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+       // And put the FPGA in the appropriate mode
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
+
+       // Setup and start DMA.
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+       FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+       uint32_t dma_start_time = 0;
+       uint16_t *upTo = dmaBuf;
+
+       for(;;) {
+               uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+               if (behindBy == 0) continue;
+
+               samples++;
+               if (samples == 1) {
+                       // DMA has transferred the very first data
+                       dma_start_time = GetCountSspClk() & 0xfffffff0;
+               }
+
+               uint16_t tagdata = *upTo++;
+
+               if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) {                // we have read all of the DMA buffer content.
+                       upTo = dmaBuf;                                             // start reading the circular buffer from the beginning
+                       if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+                               Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+                               ret = -1;
+                               break;
+                       }
+               }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {              // DMA Counter Register had reached 0, already rotated.
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;          // refresh the DMA Next Buffer and
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE;   // DMA Next Counter registers
+               }
+
+               if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
+                       *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
+                       if (DecodeTag.lastBit == SOF_PART2) {
+                               *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+                       }
+                       if (DecodeTag.len > DecodeTag.max_len) {
+                               ret = -2; // buffer overflow
+                       }
+                       break;
+               }
+
+               if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
+                       ret = -1;   // timeout
+                       break;
+               }
+
+       }
+
+       FpgaDisableSscDma();
+
+       if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
+                                               samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+
+       if (ret < 0) {
+               return ret;
+       }
+
+       uint32_t sof_time = *eof_time
+                                               - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+                                               - 32 * 16  // time for SOF transfer
+                                               - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+
+       if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
+
+       LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
+
+       return DecodeTag.len;
+}
+
+
+//=============================================================================
+// An ISO15693 decoder for reader commands.
+//
+// This function is called 4 times per bit (every 2 subcarrier cycles).
+// Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
+// LED handling:
+//    LED B -> ON once we have received the SOF and are expecting the rest.
+//    LED B -> OFF once we have received EOF or are in error state or unsynced
+//
+// Returns: true  if we received a EOF
+//          false if we are still waiting for some more
+//=============================================================================
+
+typedef struct DecodeReader {
+       enum {
+               STATE_READER_UNSYNCD,
+               STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
+               STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
+               STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
+               STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
+               STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
+               STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
+               STATE_READER_RECEIVE_DATA_1_OUT_OF_256
+       }           state;
+       enum {
+               CODING_1_OUT_OF_4,
+               CODING_1_OUT_OF_256
+       }           Coding;
+       uint8_t     shiftReg;
+       uint8_t     bitCount;
+       int         byteCount;
+       int         byteCountMax;
+       int         posCount;
+       int         sum1, sum2;
+       uint8_t     *output;
+} DecodeReader_t;
+
+
+static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
+{
+       DecodeReader->output = data;
+       DecodeReader->byteCountMax = max_len;
+       DecodeReader->state = STATE_READER_UNSYNCD;
+       DecodeReader->byteCount = 0;
+       DecodeReader->bitCount = 0;
+       DecodeReader->posCount = 1;
+       DecodeReader->shiftReg = 0;
+}
+
+
+static void DecodeReaderReset(DecodeReader_t* DecodeReader)
+{
+       DecodeReader->state = STATE_READER_UNSYNCD;
+}
+
+
+static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
+{
+       switch (DecodeReader->state) {
+               case STATE_READER_UNSYNCD:
+                       // wait for unmodulated carrier
+                       if (bit) {
+                               DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+                       }
+                       break;
+
+               case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
+                       if (!bit) {
+                               // we went low, so this could be the beginning of a SOF
+                               DecodeReader->posCount = 1;
+                               DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
+                       }
+                       break;
+
+               case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
+                       DecodeReader->posCount++;
+                       if (bit) { // detected rising edge
+                               if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
+                                       DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+                               } else { // SOF
+                                       DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
+                               }
+                       } else {
+                               if (DecodeReader->posCount > 5) { // stayed low for too long
+                                       DecodeReaderReset(DecodeReader);
+                               } else {
+                                       // do nothing, keep waiting
+                               }
+                       }
+                       break;
+
+               case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
+                       DecodeReader->posCount++;
+                       if (!bit) { // detected a falling edge
+                               if (DecodeReader->posCount < 20) {         // falling edge too early (nominally expected at 21 earliest)
+                                       DecodeReaderReset(DecodeReader);
+                               } else if (DecodeReader->posCount < 23) {  // SOF for 1 out of 4 coding
+                                       DecodeReader->Coding = CODING_1_OUT_OF_4;
+                                       DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+                               } else if (DecodeReader->posCount < 28) {  // falling edge too early (nominally expected at 29 latest)
+                                       DecodeReaderReset(DecodeReader);
+                               } else {                                   // SOF for 1 out of 256 coding
+                                       DecodeReader->Coding = CODING_1_OUT_OF_256;
+                                       DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
+                               }
+                       } else {
+                               if (DecodeReader->posCount > 29) { // stayed high for too long
+                                       DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+                               } else {
+                                       // do nothing, keep waiting
+                               }
+                       }
+                       break;
+
+               case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
+                       DecodeReader->posCount++;
+                       if (bit) { // detected rising edge
+                               if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+                                       if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
+                                               DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+                                       } else {
+                                               DecodeReader->posCount = 1;
+                                               DecodeReader->bitCount = 0;
+                                               DecodeReader->byteCount = 0;
+                                               DecodeReader->sum1 = 1;
+                                               DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
+                                               LED_B_ON();
+                                       }
+                               } else { // CODING_1_OUT_OF_4
+                                       if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
+                                               DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
+                                       } else {
+                                               DecodeReader->posCount = 1;
+                                               DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
+                                       }
+                               }
+                       } else {
+                               if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
+                                       if (DecodeReader->posCount > 34) { // signal stayed low for too long
+                                               DecodeReaderReset(DecodeReader);
+                                       } else {
+                                               // do nothing, keep waiting
+                                       }
+                               } else { // CODING_1_OUT_OF_4
+                                       if (DecodeReader->posCount > 26) { // signal stayed low for too long
+                                               DecodeReaderReset(DecodeReader);
+                                       } else {
+                                               // do nothing, keep waiting
+                                       }
+                               }
+                       }
+                       break;
+
+               case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
+                       DecodeReader->posCount++;
+                       if (bit) {
+                               if (DecodeReader->posCount == 9) {
+                                       DecodeReader->posCount = 1;
+                                       DecodeReader->bitCount = 0;
+                                       DecodeReader->byteCount = 0;
+                                       DecodeReader->sum1 = 1;
+                                       DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
+                                       LED_B_ON();
+                               } else {
+                                       // do nothing, keep waiting
+                               }
+                       } else { // unexpected falling edge
+                                       DecodeReaderReset(DecodeReader);
+                       }
+                       break;
+
+               case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
+                       bit = !!bit;
+                       DecodeReader->posCount++;
+                       if (DecodeReader->posCount == 1) {
+                               DecodeReader->sum1 = bit;
+                       } else if (DecodeReader->posCount <= 4) {
+                               DecodeReader->sum1 += bit;
+                       } else if (DecodeReader->posCount == 5) {
+                               DecodeReader->sum2 = bit;
+                       } else {
+                               DecodeReader->sum2 += bit;
+                       }
+                       if (DecodeReader->posCount == 8) {
+                               DecodeReader->posCount = 0;
+                               if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
+                                       LED_B_OFF(); // Finished receiving
+                                       DecodeReaderReset(DecodeReader);
+                                       if (DecodeReader->byteCount != 0) {
+                                               return true;
+                                       }
+                               }
+                               if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
+                                       DecodeReader->shiftReg >>= 2;
+                                       DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
+                               }
+                               if (DecodeReader->bitCount == 15) { // we have a full byte
+                                       DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+                                       if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+                                               // buffer overflow, give up
+                                               LED_B_OFF();
+                                               DecodeReaderReset(DecodeReader);
+                                       }
+                                       DecodeReader->bitCount = 0;
+                                       DecodeReader->shiftReg = 0;
+                               } else {
+                                       DecodeReader->bitCount++;
+                               }
+                       }
+                       break;
+
+               case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
+                       bit = !!bit;
+                       DecodeReader->posCount++;
+                       if (DecodeReader->posCount == 1) {
+                               DecodeReader->sum1 = bit;
+                       } else if (DecodeReader->posCount <= 4) {
+                               DecodeReader->sum1 += bit;
+                       } else if (DecodeReader->posCount == 5) {
+                               DecodeReader->sum2 = bit;
+                       } else {
+                               DecodeReader->sum2 += bit;
+                       }
+                       if (DecodeReader->posCount == 8) {
+                               DecodeReader->posCount = 0;
+                               if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
+                                       LED_B_OFF(); // Finished receiving
+                                       DecodeReaderReset(DecodeReader);
+                                       if (DecodeReader->byteCount != 0) {
+                                               return true;
+                                       }
+                               }
+                               if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
+                                       DecodeReader->shiftReg = DecodeReader->bitCount;
+                               }
+                               if (DecodeReader->bitCount == 255) { // we have a full byte
+                                       DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
+                                       if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
+                                               // buffer overflow, give up
+                                               LED_B_OFF();
+                                               DecodeReaderReset(DecodeReader);
+                                       }
+                               }
+                               DecodeReader->bitCount++;
+                       }
+                       break;
+
+               default:
+                       LED_B_OFF();
+                       DecodeReaderReset(DecodeReader);
+                       break;
+       }
+
+       return false;
+}
+
+
+//-----------------------------------------------------------------------------
+// Receive a command (from the reader to us, where we are the simulated tag),
+// and store it in the given buffer, up to the given maximum length. Keeps
+// spinning, waiting for a well-framed command, until either we get one
+// (returns len) or someone presses the pushbutton on the board (returns -1).
+//
+// Assume that we're called with the SSC (to the FPGA) and ADC path set
+// correctly.
+//-----------------------------------------------------------------------------
+
+int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
+       int samples = 0;
+       bool gotFrame = false;
+       uint8_t b;
+
+       uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+       // the decoder data structure
+       DecodeReader_t DecodeReader = {0};
+       DecodeReaderInit(&DecodeReader, received, max_len);
+
+       // wait for last transfer to complete
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
+
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+
+       // clear receive register and wait for next transfer
+       uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
+       (void) temp;
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
+
+       uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
+
+       // Setup and start DMA.
+       FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+       uint8_t *upTo = dmaBuf;
+
+       for (;;) {
+               uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+               if (behindBy == 0) continue;
+
+               b = *upTo++;
+               if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) {               // we have read all of the DMA buffer content.
+                       upTo = dmaBuf;                                             // start reading the circular buffer from the beginning
+                       if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+                               Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+                               break;
+                       }
+               }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {              // DMA Counter Register had reached 0, already rotated.
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;          // refresh the DMA Next Buffer and
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE;   // DMA Next Counter registers
+               }
+
+               for (int i = 7; i >= 0; i--) {
+                       if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
+                               *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
+                               gotFrame = true;
+                               break;
+                       }
+                       samples++;
+               }
+
+               if (gotFrame) {
+                       break;
+               }
+
+               if (BUTTON_PRESS()) {
+                       DecodeReader.byteCount = -1;
+                       break;
+               }
+
+               WDT_HIT();
+       }
+
+       FpgaDisableSscDma();
+
+       if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
+                                               samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
+
+       if (DecodeReader.byteCount > 0) {
+               uint32_t sof_time = *eof_time
+                                               - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
+                                               - 32  // time for SOF transfer
+                                               - 16; // time for EOF transfer
+               LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
+       }
+
+       return DecodeReader.byteCount;
+}
+
+
+// Encode (into the ToSend buffers) an identify request, which is the first
+// thing that you must send to a tag to get a response.
+static void BuildIdentifyRequest(void)
+{
+       uint8_t cmd[5];
+
+       uint16_t crc;
+       // one sub-carrier, inventory, 1 slot, fast rate
+       // AFI is at bit 5 (1<<4) when doing an INVENTORY
+       cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
+       // inventory command code
+       cmd[1] = 0x01;
+       // no mask
+       cmd[2] = 0x00;
+       //Now the CRC
+       crc = Iso15693Crc(cmd, 3);
+       cmd[3] = crc & 0xff;
+       cmd[4] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+//-----------------------------------------------------------------------------
+// Start to read an ISO 15693 tag. We send an identify request, then wait
+// for the response. The response is not demodulated, just left in the buffer
+// so that it can be downloaded to a PC and processed there.
+//-----------------------------------------------------------------------------
+void AcquireRawAdcSamplesIso15693(void)
+{
+       LED_A_ON();
+
+       uint8_t *dest = BigBuf_get_addr();
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+       LED_D_ON();
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       BuildIdentifyRequest();
+
+       // Give the tags time to energize
+       SpinDelay(100);
+
+       // Now send the command
+       uint32_t start_time = 0;
+       TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+
+       // wait for last transfer to complete
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
+
+       for(int c = 0; c < 4000; ) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       uint16_t r = AT91C_BASE_SSC->SSC_RHR;
+                       dest[c++] = r >> 5;
+               }
+       }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LEDsoff();
+}
+
+
+void SnoopIso15693(void) {
+
+       LED_A_ON();
+       
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       clear_trace();
+       set_tracing(true);
+
+       // The DMA buffer, used to stream samples from the FPGA
+       uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
+
+       // Count of samples received so far, so that we can include timing
+       // information in the trace buffer.
+       int samples = 0;
+
+       DecodeTag_t DecodeTag = {0};
+       uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
+       DecodeTagInit(&DecodeTag, response, sizeof(response));
+
+       DecodeReader_t DecodeReader = {0};;
+       uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+       DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
+
+       // Print some debug information about the buffer sizes
+       if (DEBUG) {
+               Dbprintf("Snooping buffers initialized:");
+               Dbprintf("  Trace:         %i bytes", BigBuf_max_traceLen());
+               Dbprintf("  Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
+               Dbprintf("  tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
+               Dbprintf("  DMA:           %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
+       }
+       Dbprintf("Snoop started. Press PM3 Button to stop.");
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
+       LED_D_OFF();
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+       StartCountSspClk();
+       FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+       
+       bool TagIsActive = false;
+       bool ReaderIsActive = false;
+       bool ExpectTagAnswer = false;
+       uint32_t dma_start_time = 0;
+       uint16_t *upTo = dmaBuf;
+       
+       // And now we loop, receiving samples.
+       for(;;) {
+               uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
+
+               if (behindBy == 0) continue;
+
+               samples++;
+               if (samples == 1) {
+                       // DMA has transferred the very first data
+                       dma_start_time = GetCountSspClk() & 0xfffffff0;
+               }
+               
+               uint16_t snoopdata = *upTo++;
+
+               if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) {                   // we have read all of the DMA buffer content.
+                       upTo = dmaBuf;                                                 // start reading the circular buffer from the beginning
+                       if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+                               Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
+                               break;
+                       }
+                       if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {              // DMA Counter Register had reached 0, already rotated.
+                               AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;          // refresh the DMA Next Buffer and
+                               AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE;   // DMA Next Counter registers
+                               WDT_HIT();
+                               if (BUTTON_PRESS()) {
+                                       DbpString("Snoop stopped.");
+                                       break;
+                               }
+                       }
+               }
+
+               if (!TagIsActive) {                                            // no need to try decoding reader data if the tag is sending
+                       if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
+                               // FpgaDisableSscDma();
+                               uint32_t eof_time = dma_start_time + samples*16 + 8 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+                               if (DecodeReader.byteCount > 0) {
+                                       uint32_t sof_time = eof_time
+                                                                       - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+                                                                       - 32*16  // time for SOF transfer
+                                                                       - 16*16; // time for EOF transfer
+                                       LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+                               }
+                               /* And ready to receive another command. */
+                               DecodeReaderReset(&DecodeReader);
+                               /* And also reset the demod code, which might have been */
+                               /* false-triggered by the commands from the reader. */
+                               DecodeTagReset(&DecodeTag);
+                               ReaderIsActive = false;
+                               ExpectTagAnswer = true;
+                               // upTo = dmaBuf;
+                               // samples = 0;
+                               // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+                               // continue;
+                       } else if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
+                               // FpgaDisableSscDma();
+                               uint32_t eof_time = dma_start_time + samples*16 + 16 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+                               if (DecodeReader.byteCount > 0) {
+                                       uint32_t sof_time = eof_time
+                                                                       - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+                                                                       - 32*16  // time for SOF transfer
+                                                                       - 16*16; // time for EOF transfer
+                                       LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+                               }
+                               /* And ready to receive another command. */
+                               DecodeReaderReset(&DecodeReader);
+                               /* And also reset the demod code, which might have been */
+                               /* false-triggered by the commands from the reader. */
+                               DecodeTagReset(&DecodeTag);
+                               ReaderIsActive = false;
+                               ExpectTagAnswer = true;
+                               // upTo = dmaBuf;
+                               // samples = 0;
+                               // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+                               // continue;
+                       } else {
+                               ReaderIsActive = (DecodeReader.state >= STATE_READER_RECEIVE_DATA_1_OUT_OF_4);
+                       }
+               }
+
+               if (!ReaderIsActive && ExpectTagAnswer) {                       // no need to try decoding tag data if the reader is currently sending or no answer expected yet
+                       if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
+                               // FpgaDisableSscDma();
+                               uint32_t eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM_SNOOP; // end of EOF
+                               if (DecodeTag.lastBit == SOF_PART2) {
+                                       eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+                               }
+                               uint32_t sof_time = eof_time
+                                                                       - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+                                                                       - 32 * 16  // time for SOF transfer
+                                                                       - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+                               LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, eof_time*4, NULL, false);
+                               // And ready to receive another response.
+                               DecodeTagReset(&DecodeTag);
+                               DecodeReaderReset(&DecodeReader);
+                               ExpectTagAnswer = false;
+                               TagIsActive = false;
+                               // upTo = dmaBuf;
+                               // samples = 0;
+                               // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+                               // continue;
+                       } else {
+                               TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
+                       }
+               }
+
+       }
+
+       FpgaDisableSscDma();
+
+       LEDsoff();
+
+       DbpString("Snoop statistics:");
+       Dbprintf("  ExpectTagAnswer: %d", ExpectTagAnswer);
+       Dbprintf("  DecodeTag State: %d", DecodeTag.state);
+       Dbprintf("  DecodeTag byteCnt: %d", DecodeTag.len);
+       Dbprintf("  DecodeReader State: %d", DecodeReader.state);
+       Dbprintf("  DecodeReader byteCnt: %d", DecodeReader.byteCount);
+       Dbprintf("  Trace length: %d", BigBuf_get_traceLen());
+}
+
+
+// Initialize the proxmark as iso15k reader
+void Iso15693InitReader() {
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       // Start from off (no field generated)
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       SpinDelay(10);
+
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+       // Give the tags time to energize
+       LED_D_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+       SpinDelay(250);
+}
+
+///////////////////////////////////////////////////////////////////////
+// ISO 15693 Part 3 - Air Interface
+// This section basically contains transmission and receiving of bits
+///////////////////////////////////////////////////////////////////////
+
+
+// uid is in transmission order (which is reverse of display order)
+static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
+{
+       uint8_t cmd[13];
+
+       uint16_t crc;
+       // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+       // followed by the block data
+       cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
+       // READ BLOCK command code
+       cmd[1] = ISO15693_READBLOCK;
+       // UID may be optionally specified here
+       // 64-bit UID
+       cmd[2] = uid[0];
+       cmd[3] = uid[1];
+       cmd[4] = uid[2];
+       cmd[5] = uid[3];
+       cmd[6] = uid[4];
+       cmd[7] = uid[5];
+       cmd[8] = uid[6];
+       cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
+       // Block number to read
+       cmd[10] = blockNumber;
+       //Now the CRC
+       crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
+       cmd[11] = crc & 0xff;
+       cmd[12] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+// Now the VICC>VCD responses when we are simulating a tag
+static void BuildInventoryResponse(uint8_t *uid)
+{
+       uint8_t cmd[12];
+
+       uint16_t crc;
+
+       cmd[0] = 0; // No error, no protocol format extension
+       cmd[1] = 0; // DSFID (data storage format identifier).  0x00 = not supported
+       // 64-bit UID
+       cmd[2] = uid[7]; //0x32;
+       cmd[3] = uid[6]; //0x4b;
+       cmd[4] = uid[5]; //0x03;
+       cmd[5] = uid[4]; //0x01;
+       cmd[6] = uid[3]; //0x00;
+       cmd[7] = uid[2]; //0x10;
+       cmd[8] = uid[1]; //0x05;
+       cmd[9] = uid[0]; //0xe0;
+       //Now the CRC
+       crc = Iso15693Crc(cmd, 10);
+       cmd[10] = crc & 0xff;
+       cmd[11] = crc >> 8;
+
+       CodeIso15693AsTag(cmd, sizeof(cmd));
+}
+
+// Universal Method for sending to and recv bytes from a tag
+//  init ... should we initialize the reader?
+//  speed ... 0 low speed, 1 hi speed
+//  *recv will contain the tag's answer
+//  return: length of received data, or -1 for timeout
+int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint32_t *eof_time) {
+
+       if (init) {
+               Iso15693InitReader();
+               StartCountSspClk();
+       }
+
+       int answerLen = 0;
+
+       if (!speed) {
+               // low speed (1 out of 256)
+               CodeIso15693AsReader256(send, sendlen);
+       } else {
+               // high speed (1 out of 4)
+               CodeIso15693AsReader(send, sendlen);
+       }
+
+       TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+
+       // Now wait for a response
+       if (recv != NULL) {
+               answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, ISO15693_READER_TIMEOUT, eof_time);
+       }
+
+       return answerLen;
+}
+
+
+// --------------------------------------------------------------------
+// Debug Functions
+// --------------------------------------------------------------------
+
+// Decodes a message from a tag and displays its metadata and content
+#define DBD15STATLEN 48
+void DbdecodeIso15693Answer(int len, uint8_t *d) {
+       char status[DBD15STATLEN+1]={0};
+       uint16_t crc;
+
+       if (len > 3) {
+               if (d[0] & ISO15693_RES_EXT)
+                       strncat(status,"ProtExt ", DBD15STATLEN);
+               if (d[0] & ISO15693_RES_ERROR) {
+                       // error
+                       strncat(status,"Error ", DBD15STATLEN);
+                       switch (d[1]) {
+                               case 0x01:
+                                       strncat(status,"01:notSupp", DBD15STATLEN);
+                                       break;
+                               case 0x02:
+                                       strncat(status,"02:notRecog", DBD15STATLEN);
+                                       break;
+                               case 0x03:
+                                       strncat(status,"03:optNotSupp", DBD15STATLEN);
+                                       break;
+                               case 0x0f:
+                                       strncat(status,"0f:noInfo", DBD15STATLEN);
+                                       break;
+                               case 0x10:
+                                       strncat(status,"10:doesn'tExist", DBD15STATLEN);
+                                       break;
+                               case 0x11:
+                                       strncat(status,"11:lockAgain", DBD15STATLEN);
+                                       break;
+                               case 0x12:
+                                       strncat(status,"12:locked", DBD15STATLEN);
+                                       break;
+                               case 0x13:
+                                       strncat(status,"13:progErr", DBD15STATLEN);
+                                       break;
+                               case 0x14:
+                                       strncat(status,"14:lockErr", DBD15STATLEN);
+                                       break;
+                               default:
+                                       strncat(status,"unknownErr", DBD15STATLEN);
+                       }
+                       strncat(status," ", DBD15STATLEN);
+               } else {
+                       strncat(status,"NoErr ", DBD15STATLEN);
+               }
+
+               crc=Iso15693Crc(d,len-2);
+               if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
+                       strncat(status,"CrcOK",DBD15STATLEN);
+               else
+                       strncat(status,"CrcFail!",DBD15STATLEN);
+
+               Dbprintf("%s",status);
+       }
+}
+
+
+
+///////////////////////////////////////////////////////////////////////
+// Functions called via USB/Client
+///////////////////////////////////////////////////////////////////////
+
+void SetDebugIso15693(uint32_t debug) {
+       DEBUG=debug;
+       Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
+       return;
+}
+
+
+//---------------------------------------------------------------------------------------
+// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
+// all demodulation performed in arm rather than host. - greg
+//---------------------------------------------------------------------------------------
+void ReaderIso15693(uint32_t parameter) {
+
+       LED_A_ON();
+
+       set_tracing(true);
+
+       int answerLen = 0;
+       uint8_t TagUID[8] = {0x00};
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
+
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       // Setup SSC
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+
+       // Start from off (no field generated)
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       SpinDelay(200);
+
+       // Give the tags time to energize
+       LED_D_ON();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+       SpinDelay(200);
+       StartCountSspClk();
+
+
+       // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
+       // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
+
+       // Now send the IDENTIFY command
+       BuildIdentifyRequest();
+       uint32_t start_time = 0;
+       TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+
+       // Now wait for a response
+       uint32_t eof_time;
+       answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time) ;
+       start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+
+       if (answerLen >=12) // we should do a better check than this
+       {
+               TagUID[0] = answer[2];
+               TagUID[1] = answer[3];
+               TagUID[2] = answer[4];
+               TagUID[3] = answer[5];
+               TagUID[4] = answer[6];
+               TagUID[5] = answer[7];
+               TagUID[6] = answer[8]; // IC Manufacturer code
+               TagUID[7] = answer[9]; // always E0
+
+       }
+
+       Dbprintf("%d octets read from IDENTIFY request:", answerLen);
+       DbdecodeIso15693Answer(answerLen, answer);
+       Dbhexdump(answerLen, answer, false);
+
+       // UID is reverse
+       if (answerLen >= 12)
+               Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
+                       TagUID[7],TagUID[6],TagUID[5],TagUID[4],
+                       TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
+
+
+       // Dbprintf("%d octets read from SELECT request:", answerLen2);
+       // DbdecodeIso15693Answer(answerLen2,answer2);
+       // Dbhexdump(answerLen2,answer2,true);
+
+       // Dbprintf("%d octets read from XXX request:", answerLen3);
+       // DbdecodeIso15693Answer(answerLen3,answer3);
+       // Dbhexdump(answerLen3,answer3,true);
+
+       // read all pages
+       if (answerLen >= 12 && DEBUG) {
+               for (int i = 0; i < 32; i++) {  // sanity check, assume max 32 pages
+                       BuildReadBlockRequest(TagUID, i);
+                       TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+                       int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time);
+                       start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+                       if (answerLen > 0) {
+                               Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
+                               DbdecodeIso15693Answer(answerLen, answer);
+                               Dbhexdump(answerLen, answer, false);
+                               if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
+                       }
+               }
+       }
+
+       // for the time being, switch field off to protect rdv4.0
+       // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+
+       LED_A_OFF();
+}
+
+
+// Simulate an ISO15693 TAG.
+// For Inventory command: print command and send Inventory Response with given UID
+// TODO: interpret other reader commands and send appropriate response
+void SimTagIso15693(uint32_t parameter, uint8_t *uid) {
+
+       LED_A_ON();
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+
+       StartCountSspClk();
+
+       uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+
+       // Build a suitable response to the reader INVENTORY command
+       BuildInventoryResponse(uid);
+
+       // Listen to reader
+       while (!BUTTON_PRESS()) {
+               uint32_t eof_time = 0, start_time = 0;
+               int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
+
+               if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
+                       bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
+                       start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
+                       TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
+               }
+
+               Dbprintf("%d bytes read from reader:", cmd_len);
+               Dbhexdump(cmd_len, cmd, false);
+       }
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+       LED_A_OFF();
+}
+
+
+// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
+// (some manufactures offer a way to read the AFI, though)
+void BruteforceIso15693Afi(uint32_t speed)
+{
+       LED_A_ON();
+
+       uint8_t data[6];
+       uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
+       int datalen = 0, recvlen = 0;
+       uint32_t eof_time;
+
+       // first without AFI
+       // Tags should respond without AFI and with AFI=0 even when AFI is active
+
+       data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
+       data[1] = ISO15693_INVENTORY;
+       data[2] = 0; // mask length
+       datalen = Iso15693AddCrc(data,3);
+       uint32_t start_time = GetCountSspClk();
+       recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, &eof_time);
+       start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+       WDT_HIT();
+       if (recvlen>=12) {
+               Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
+       }
+
+       // now with AFI
+
+       data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
+       data[1] = ISO15693_INVENTORY;
+       data[2] = 0; // AFI
+       data[3] = 0; // mask length
+
+       for (int i = 0; i < 256; i++) {
+               data[2] = i & 0xFF;
+               datalen = Iso15693AddCrc(data,4);
+               recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, &eof_time);
+               start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
+               WDT_HIT();
+               if (recvlen >= 12) {
+                       Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
+               }
+       }
+       Dbprintf("AFI Bruteforcing done.");
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+       LED_A_OFF();
+
+}
+
+// Allows to directly send commands to the tag via the client
+void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
+
+       LED_A_ON();
+
+       int recvlen = 0;
+       uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+       uint32_t eof_time;
+
+       if (DEBUG) {
+               Dbprintf("SEND:");
+               Dbhexdump(datalen, data, false);
+       }
+
+       recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, &eof_time);
+
+       // for the time being, switch field off to protect rdv4.0
+       // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+
+       if (recv) {
+               if (DEBUG) {
+                       Dbprintf("RECV:");
+                       if (recvlen > 0) {
+                               Dbhexdump(recvlen, recvbuf, false);
+                               DbdecodeIso15693Answer(recvlen, recvbuf);
+                       }
+               }
+               if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
+                       recvlen = ISO15693_MAX_RESPONSE_LENGTH;
+               }
+               cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+       }
+
+       LED_A_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Work with "magic Chinese" card.
+//
+//-----------------------------------------------------------------------------
+
+// Set the UID to the tag (based on Iceman work).
+void SetTag15693Uid(uint8_t *uid) {
+
+       LED_A_ON();
+
+       uint8_t cmd[4][9] = {0x00};
+       uint16_t crc;
+
+       int recvlen = 0;
+       uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
+       uint32_t eof_time;
+
+       // Command 1 : 02213E00000000
+       cmd[0][0] = 0x02;
+       cmd[0][1] = 0x21;
+       cmd[0][2] = 0x3e;
+       cmd[0][3] = 0x00;
+       cmd[0][4] = 0x00;
+       cmd[0][5] = 0x00;
+       cmd[0][6] = 0x00;
+
+       // Command 2 : 02213F69960000
+       cmd[1][0] = 0x02;
+       cmd[1][1] = 0x21;
+       cmd[1][2] = 0x3f;
+       cmd[1][3] = 0x69;
+       cmd[1][4] = 0x96;
+       cmd[1][5] = 0x00;
+       cmd[1][6] = 0x00;
+
+       // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
+       cmd[2][0] = 0x02;
+       cmd[2][1] = 0x21;
+       cmd[2][2] = 0x38;
+       cmd[2][3] = uid[7];
+       cmd[2][4] = uid[6];
+       cmd[2][5] = uid[5];
+       cmd[2][6] = uid[4];
+
+       // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
+       cmd[3][0] = 0x02;
+       cmd[3][1] = 0x21;
+       cmd[3][2] = 0x39;
+       cmd[3][3] = uid[3];
+       cmd[3][4] = uid[2];
+       cmd[3][5] = uid[1];
+       cmd[3][6] = uid[0];
+
+       for (int i = 0; i < 4; i++) {
+               // Add the CRC
+               crc = Iso15693Crc(cmd[i], 7);
+               cmd[i][7] = crc & 0xff;
+               cmd[i][8] = crc >> 8;
+
+               if (DEBUG) {
+                       Dbprintf("SEND:");
+                       Dbhexdump(sizeof(cmd[i]), cmd[i], false);
+               }
+
+               recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0, &eof_time);
+
+               if (DEBUG) {
+                       Dbprintf("RECV:");
+                       if (recvlen > 0) {
+                               Dbhexdump(recvlen, recvbuf, false);
+                               DbdecodeIso15693Answer(recvlen, recvbuf);
+                       }
+               }
+
+               cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+       }
+
+       LED_A_OFF();
+}
+
+
+
+// --------------------------------------------------------------------
+// -- Misc & deprecated functions
+// --------------------------------------------------------------------
+
+/*
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
+{
+       uint8_t cmd[12];
+
+       uint16_t crc;
+       // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+       // followed by the block data
+       // one sub-carrier, inventory, 1 slot, fast rate
+       cmd[0] =  (1 << 5) | (1 << 1); // no SELECT bit
+       // System Information command code
+       cmd[1] = 0x2B;
+       // UID may be optionally specified here
+       // 64-bit UID
+       cmd[2] = 0x32;
+       cmd[3]= 0x4b;
+       cmd[4] = 0x03;
+       cmd[5] = 0x01;
+       cmd[6] = 0x00;
+       cmd[7] = 0x10;
+       cmd[8] = 0x05;
+       cmd[9]= 0xe0; // always e0 (not exactly unique)
+       //Now the CRC
+       crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
+       cmd[10] = crc & 0xff;
+       cmd[11] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
+{
+       uint8_t cmd[14];
+
+       uint16_t crc;
+       // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+       // followed by the block data
+       // one sub-carrier, inventory, 1 slot, fast rate
+       cmd[0] =  (1 << 5) | (1 << 1); // no SELECT bit
+       // READ Multi BLOCK command code
+       cmd[1] = 0x23;
+       // UID may be optionally specified here
+       // 64-bit UID
+       cmd[2] = 0x32;
+       cmd[3]= 0x4b;
+       cmd[4] = 0x03;
+       cmd[5] = 0x01;
+       cmd[6] = 0x00;
+       cmd[7] = 0x10;
+       cmd[8] = 0x05;
+       cmd[9]= 0xe0; // always e0 (not exactly unique)
+       // First Block number to read
+       cmd[10] = 0x00;
+       // Number of Blocks to read
+       cmd[11] = 0x2f; // read quite a few
+       //Now the CRC
+       crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+       cmd[12] = crc & 0xff;
+       cmd[13] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
+{
+       uint8_t cmd[14];
+
+       uint16_t crc;
+       // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+       // followed by the block data
+       // one sub-carrier, inventory, 1 slot, fast rate
+       cmd[0] =   (1 << 5) | (1 << 1); // no SELECT bit
+       // READ BLOCK command code
+       cmd[1] = CmdCode;
+       // UID may be optionally specified here
+       // 64-bit UID
+       cmd[2] = 0x32;
+       cmd[3]= 0x4b;
+       cmd[4] = 0x03;
+       cmd[5] = 0x01;
+       cmd[6] = 0x00;
+       cmd[7] = 0x10;
+       cmd[8] = 0x05;
+       cmd[9]= 0xe0; // always e0 (not exactly unique)
+       // Parameter
+       cmd[10] = 0x00;
+       cmd[11] = 0x0a;
+
+//  cmd[12] = 0x00;
+//  cmd[13] = 0x00; //Now the CRC
+       crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+       cmd[12] = crc & 0xff;
+       cmd[13] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+// do not use; has a fix UID
+static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
+{
+       uint8_t cmd[14];
+
+       uint16_t crc;
+       // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
+       // followed by the block data
+       // one sub-carrier, inventory, 1 slot, fast rate
+       cmd[0] =   (1 << 5) | (1 << 1); // no SELECT bit
+       // READ BLOCK command code
+       cmd[1] = CmdCode;
+       // UID may be optionally specified here
+       // 64-bit UID
+       cmd[2] = 0x32;
+       cmd[3]= 0x4b;
+       cmd[4] = 0x03;
+       cmd[5] = 0x01;
+       cmd[6] = 0x00;
+       cmd[7] = 0x10;
+       cmd[8] = 0x05;
+       cmd[9]= 0xe0; // always e0 (not exactly unique)
+       // Parameter
+       cmd[10] = 0x05; // for custom codes this must be manufacturer code
+       cmd[11] = 0x00;
+
+//  cmd[12] = 0x00;
+//  cmd[13] = 0x00; //Now the CRC
+       crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
+       cmd[12] = crc & 0xff;
+       cmd[13] = crc >> 8;
+
+       CodeIso15693AsReader(cmd, sizeof(cmd));
+}
+
+
+
+
+*/
+
+
Impressum, Datenschutz