// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
+#include "iso14443a.h"
+
+#include <stdio.h>
+#include <string.h>
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "string.h"
#include "cmd.h"
-
#include "iso14443crc.h"
-#include "iso14443a.h"
-#include "crapto1.h"
+#include "crapto1/crapto1.h"
#include "mifareutil.h"
+#include "mifaresniff.h"
#include "BigBuf.h"
+#include "protocols.h"
+#include "parity.h"
+
+typedef struct {
+ enum {
+ DEMOD_UNSYNCD,
+ // DEMOD_HALF_SYNCD,
+ // DEMOD_MOD_FIRST_HALF,
+ // DEMOD_NOMOD_FIRST_HALF,
+ DEMOD_MANCHESTER_DATA
+ } state;
+ uint16_t twoBits;
+ uint16_t highCnt;
+ uint16_t bitCount;
+ uint16_t collisionPos;
+ uint16_t syncBit;
+ uint8_t parityBits;
+ uint8_t parityLen;
+ uint16_t shiftReg;
+ uint16_t samples;
+ uint16_t len;
+ uint32_t startTime, endTime;
+ uint8_t *output;
+ uint8_t *parity;
+} tDemod;
+
+typedef enum {
+ MOD_NOMOD = 0,
+ MOD_SECOND_HALF,
+ MOD_FIRST_HALF,
+ MOD_BOTH_HALVES
+ } Modulation_t;
+
+typedef struct {
+ enum {
+ STATE_UNSYNCD,
+ STATE_START_OF_COMMUNICATION,
+ STATE_MILLER_X,
+ STATE_MILLER_Y,
+ STATE_MILLER_Z,
+ // DROP_NONE,
+ // DROP_FIRST_HALF,
+ } state;
+ uint16_t shiftReg;
+ int16_t bitCount;
+ uint16_t len;
+ uint16_t byteCntMax;
+ uint16_t posCnt;
+ uint16_t syncBit;
+ uint8_t parityBits;
+ uint8_t parityLen;
+ uint32_t fourBits;
+ uint32_t startTime, endTime;
+ uint8_t *output;
+ uint8_t *parity;
+} tUart;
+
static uint32_t iso14a_timeout;
+#define MAX_ISO14A_TIMEOUT 524288
+
int rsamples = 0;
uint8_t trigger = 0;
// the block number for the ISO14443-4 PCB
#define REQUEST_GUARD_TIME (7000/16 + 1)
// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
-// bool LastCommandWasRequest = FALSE;
+// bool LastCommandWasRequest = false;
//
// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
// When the PM acts as tag and is sending, it takes
-// 4*16 ticks until we can write data to the sending hold register
+// 4*16 + 8 ticks until we can write data to the sending hold register
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
-// 8 ticks until the first transfer starts
-// 8 ticks later the FPGA samples the data
-// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+// 8 ticks later the FPGA samples the first data
+// + 16 ticks until assigned to mod_sig
// + 1 tick to assign mod_sig_coil
-#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
+// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
+#define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
// When the PM acts as sniffer and is receiving tag data, it takes
// 3 ticks A/D conversion
#define SEC_Y 0x00
#define SEC_Z 0xc0
-const uint8_t OddByteParity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
void iso14a_set_timeout(uint32_t timeout) {
- iso14a_timeout = timeout;
- if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+ iso14a_timeout = timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8);
+ if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", timeout, timeout / 106);
}
-void iso14a_set_ATS_timeout(uint8_t *ats) {
-
- uint8_t tb1;
- uint8_t fwi;
- uint32_t fwt;
-
- if (ats[0] > 1) { // there is a format byte T0
- if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
- if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
- tb1 = ats[3];
- } else {
- tb1 = ats[2];
- }
- fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
- fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
-
- iso14a_set_timeout(fwt/(8*16));
- }
- }
+uint32_t iso14a_get_timeout(void) {
+ return iso14a_timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8);
}
-
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
-{
- return OddByteParity[bt];
-}
-
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
uint16_t paritybit_cnt = 0;
for (uint16_t i = 0; i < iLen; i++) {
// Generate the parity bits
- parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
if (paritybit_cnt == 7) {
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
parityBits = 0; // and advance to next Parity Byte
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-void AppendCrc14443b(uint8_t* data, int len)
+static void AppendCrc14443b(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
}
// 0111 - a 2 tick wide pause shifted left
// 1001 - a 2 tick wide pause shifted right
const bool Mod_Miller_LUT[] = {
- FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
- FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
+ false, true, false, true, false, false, false, true,
+ false, true, false, false, false, false, false, false
};
#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
-void UartReset()
+static void UartReset()
{
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
Uart.endTime = 0;
}
-void UartInit(uint8_t *data, uint8_t *parity)
+static void UartInit(uint8_t *data, uint8_t *parity)
{
Uart.output = data;
Uart.parity = parity;
Uart.parityBits <<= 1; // add a (void) parity bit
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
- return TRUE;
+ return true;
} else if (Uart.len & 0x0007) { // there are some parity bits to store
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
}
if (Uart.len) {
- return TRUE; // we are finished with decoding the raw data sequence
+ return true; // we are finished with decoding the raw data sequence
} else {
UartReset(); // Nothing received - start over
}
}
- return FALSE; // not finished yet, need more data
+ return false; // not finished yet, need more data
}
// Lookup-Table to decide if 4 raw bits are a modulation.
// We accept three or four "1" in any position
const bool Mod_Manchester_LUT[] = {
- FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
- FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
+ false, false, false, false, false, false, false, true,
+ false, false, false, true, false, true, true, true
};
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
-void DemodReset()
+static void DemodReset()
{
Demod.state = DEMOD_UNSYNCD;
Demod.len = 0; // number of decoded data bytes
Demod.endTime = 0;
}
-void DemodInit(uint8_t *data, uint8_t *parity)
+static void DemodInit(uint8_t *data, uint8_t *parity)
{
Demod.output = data;
Demod.parity = parity;
Demod.parityBits <<= 1; // add a (void) parity bit
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
- return TRUE;
+ return true;
} else if (Demod.len & 0x0007) { // there are some parity bits to store
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
}
if (Demod.len) {
- return TRUE; // we are finished with decoding the raw data sequence
+ return true; // we are finished with decoding the raw data sequence
} else { // nothing received. Start over
DemodReset();
}
}
- return FALSE; // not finished yet, need more data
+ return false; // not finished yet, need more data
}
//=============================================================================
// init trace buffer
clear_trace();
- set_tracing(TRUE);
+ set_tracing(true);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
- bool TagIsActive = FALSE;
- bool ReaderIsActive = FALSE;
+ bool TagIsActive = false;
+ bool ReaderIsActive = false;
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
- // triggered == FALSE -- to wait first for card
+ // triggered == false -- to wait first for card
bool triggered = !(param & 0x03);
// And now we loop, receiving samples.
- for(uint32_t rsamples = 0; TRUE; ) {
+ for(uint32_t rsamples = 0; true; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
LED_C_ON();
// check - if there is a short 7bit request from reader
- if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
+ if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
if(triggered) {
if (!LogTrace(receivedCmd,
Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
Uart.parity,
- TRUE)) break;
+ true)) break;
}
/* And ready to receive another command. */
UartReset();
Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
Demod.parity,
- FALSE)) break;
+ false)) break;
- if ((!triggered) && (param & 0x01)) triggered = TRUE;
+ if ((!triggered) && (param & 0x01)) triggered = true;
// And ready to receive another response.
DemodReset();
ToSendMax++;
}
-static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
-{
- uint8_t par[MAX_PARITY_SIZE];
-
- GetParity(cmd, len, par);
- CodeIso14443aAsTagPar(cmd, len, par);
-}
-
static void Code4bitAnswerAsTag(uint8_t cmd)
{
ToSendMax++;
}
+
+static uint8_t *LastReaderTraceTime = NULL;
+
+static void EmLogTraceReader(void) {
+ // remember last reader trace start to fix timing info later
+ LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen();
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
+}
+
+
+static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
+ uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG;
+ uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG;
+ uint16_t reader_modlen = reader_EndTime - reader_StartTime;
+ uint16_t approx_fdt = tag_StartTime - reader_EndTime;
+ uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
+ reader_StartTime = tag_StartTime - exact_fdt - reader_modlen;
+ LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff;
+ LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff;
+ LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff;
+ LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
+}
+
+
+static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
+ uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
+ uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
+ LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false);
+ FixLastReaderTraceTime(tag_StartTime);
+}
+
+
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
-// Or return TRUE when command is captured
+// Or return true when command is captured
//-----------------------------------------------------------------------------
static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
{
for(;;) {
WDT_HIT();
- if(BUTTON_PRESS()) return FALSE;
+ if(BUTTON_PRESS()) return false;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
- return TRUE;
+ EmLogTraceReader();
+ return true;
}
}
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
+
+static int EmSend4bitEx(uint8_t resp);
int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, uint16_t respLen);
-int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
+static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
+int EmSendPrecompiledCmd(tag_response_info_t *response_info);
-static uint8_t* free_buffer_pointer;
-typedef struct {
- uint8_t* response;
- size_t response_n;
- uint8_t* modulation;
- size_t modulation_n;
- uint32_t ProxToAirDuration;
-} tag_response_info_t;
-
-bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
+static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// 144 data bits (18 * 8)
// Prepare the tag modulation bits from the message
- CodeIso14443aAsTag(response_info->response,response_info->response_n);
+ GetParity(response_info->response, response_info->response_n, &(response_info->par));
+ CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
// Make sure we do not exceed the free buffer space
if (ToSendMax > max_buffer_size) {
Dbprintf("Out of memory, when modulating bits for tag answer:");
- Dbhexdump(response_info->response_n,response_info->response,false);
+ Dbhexdump(response_info->response_n, response_info->response, false);
return false;
}
// Copy the byte array, used for this modulation to the buffer position
- memcpy(response_info->modulation,ToSend,ToSendMax);
+ memcpy(response_info->modulation, ToSend, ToSendMax);
// Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
response_info->modulation_n = ToSendMax;
// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
-// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
// -> need 273 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
-bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
+bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) {
+
// Retrieve and store the current buffer index
- response_info->modulation = free_buffer_pointer;
-
- // Determine the maximum size we can use from our buffer
- size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
+ response_info->modulation = *buffer;
// Forward the prepare tag modulation function to the inner function
- if (prepare_tag_modulation(response_info, max_buffer_size)) {
- // Update the free buffer offset
- free_buffer_pointer += ToSendMax;
+ if (prepare_tag_modulation(response_info, *max_buffer_size)) {
+ // Update the free buffer offset and the remaining buffer size
+ *buffer += ToSendMax;
+ *max_buffer_size -= ToSendMax;
return true;
} else {
return false;
// allocate buffers:
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
- free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
-
+ uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+ size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
// clear trace
clear_trace();
- set_tracing(TRUE);
+ set_tracing(true);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
- prepare_allocated_tag_modulation(&responses[i]);
+ prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size);
}
int len = 0;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
- EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
+ EmSendCmdEx(data+(4*receivedCmd[1]),16);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
p_response = &responses[5]; order = 7;
p_response = &responses[6]; order = 70;
}
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
default: {
// Never seen this command before
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
- if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
break;
}
p_response = &dynamic_response_info;
cmdsRecvd++;
if (p_response != NULL) {
- EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
- // do the tracing for the previous reader request and this tag answer:
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(p_response->response, p_response->response_n, par);
-
- EmLogTrace(Uart.output,
- Uart.len,
- Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parity,
- p_response->response,
- p_response->response_n,
- LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
- (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- par);
+ EmSendPrecompiledCmd(p_response);
}
if (!tracing) {
// prepare a delayed transfer. This simply shifts ToSend[] by a number
// of bits specified in the delay parameter.
-void PrepareDelayedTransfer(uint16_t delay)
+static void PrepareDelayedTransfer(uint16_t delay)
{
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
// Transmit the command (to the tag) that was placed in ToSend[].
// Parameter timing:
// if NULL: transfer at next possible time, taking into account
-// request guard time and frame delay time
+// request guard time, startup frame guard time and frame delay time
// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
+static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
int last;
ToSendMax++;
}
-//-----------------------------------------------------------------------------
-// Prepare reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
-{
- CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
-}
-
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
+int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{
*len = 0;
int analogCnt = 0;
int analogAVG = 0;
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
- // Now run a 'software UART' on the stream of incoming samples.
+ // Run a 'software UART' on the stream of incoming samples.
UartInit(received, parity);
- // Clear RXRDY:
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+ // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
+ do {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = SEC_F;
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
+ }
+ } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
+
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
for(;;) {
WDT_HIT();
// receive and test the miller decoding
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
+ EmLogTraceReader();
return 0;
}
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
{
uint8_t b;
uint16_t i = 0;
- uint32_t ThisTransferTime;
-
+ bool correctionNeeded;
+
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
// include correction bit if necessary
- if (Uart.parityBits & 0x01) {
- correctionNeeded = TRUE;
+ if (Uart.bitCount == 7)
+ {
+ // Short tags (7 bits) don't have parity, determine the correct value from MSB
+ correctionNeeded = Uart.output[0] & 0x40;
}
+ else
+ {
+ // Look at the last parity bit
+ correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
+ }
+
if(correctionNeeded) {
// 1236, so correction bit needed
i = 0;
if (AT91C_BASE_SSC->SSC_RHR) break;
}
- while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
-
- // Clear TXRDY:
- AT91C_BASE_SSC->SSC_THR = SEC_F;
+ LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
// send cycle
for(; i < respLen; ) {
}
}
- // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
- uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
- for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = SEC_F;
- FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- i++;
- }
- }
-
- LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
-
return 0;
}
-int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
+
+static int EmSend4bitEx(uint8_t resp){
Code4bitAnswerAsTag(resp);
- int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer:
- uint8_t par[1];
- GetParity(&resp, 1, par);
- EmLogTrace(Uart.output,
- Uart.len,
- Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parity,
- &resp,
- 1,
- LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
- (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- par);
+ EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
return res;
}
+
int EmSend4bit(uint8_t resp){
- return EmSend4bitEx(resp, false);
+ return EmSend4bitEx(resp);
}
-int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
+
+static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
- int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
// do the tracing for the previous reader request and this tag answer:
- EmLogTrace(Uart.output,
- Uart.len,
- Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parity,
- resp,
- respLen,
- LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
- (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- par);
+ EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
return res;
}
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
- return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
+ return EmSendCmdExPar(resp, respLen, par);
}
+
int EmSendCmd(uint8_t *resp, uint16_t respLen){
uint8_t par[MAX_PARITY_SIZE];
GetParity(resp, respLen, par);
- return EmSendCmdExPar(resp, respLen, false, par);
+ return EmSendCmdExPar(resp, respLen, par);
}
+
int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
- return EmSendCmdExPar(resp, respLen, false, par);
+ return EmSendCmdExPar(resp, respLen, par);
}
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
-{
- if (tracing) {
- // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
- // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
- // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
- uint16_t reader_modlen = reader_EndTime - reader_StartTime;
- uint16_t approx_fdt = tag_StartTime - reader_EndTime;
- uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
- reader_EndTime = tag_StartTime - exact_fdt;
- reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
- return FALSE;
- } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
- } else {
- return TRUE;
- }
+
+int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
+ int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
+ // do the tracing for the previous reader request and this tag answer:
+ EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
+ return ret;
}
+
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
-// If a response is captured return TRUE
-// If it takes too long return FALSE
+// If a response is captured return true
+// If it takes too long return false
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding(b, offset, 0)) {
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
- return TRUE;
+ return true;
} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
- return FALSE;
+ return false;
}
}
}
// Log reader command in trace buffer
if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
}
}
}
-void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
+static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
uint8_t par[MAX_PARITY_SIZE];
ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
+
+static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
}
return Demod.len;
}
+
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
}
return Demod.len;
}
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+
+static void iso14a_set_ATS_times(uint8_t *ats) {
+
+ uint8_t tb1;
+ uint8_t fwi, sfgi;
+ uint32_t fwt, sfgt;
+
+ if (ats[0] > 1) { // there is a format byte T0
+ if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
+ if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+ tb1 = ats[3];
+ } else {
+ tb1 = ats[2];
+ }
+ fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
+ if (fwi != 15) {
+ fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+ iso14a_set_timeout(fwt/(8*16));
+ }
+ sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
+ if (sfgi != 0 && sfgi != 15) {
+ sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
+ NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
+ }
+ }
+ }
+}
+
+
+static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
+
+#define WUPA_RETRY_TIMEOUT 10 // 10ms
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
+
+ uint32_t save_iso14a_timeout = iso14a_get_timeout();
+ iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
+
+ uint32_t start_time = GetTickCount();
+ int len;
+
+ // we may need several tries if we did send an unknown command or a wrong authentication before...
+ do {
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
+ // Receive the ATQA
+ len = ReaderReceive(resp, resp_par);
+ } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
+
+ iso14a_set_timeout(save_iso14a_timeout);
+ return len;
+}
+
+
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+// requests ATS unless no_rats is true
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
int cascade_level = 0;
int len;
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
-
- // Receive the ATQA
- if(!ReaderReceive(resp, resp_par)) return 0;
+ // init card struct
+ if(p_hi14a_card) {
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid, 0, 10);
+ p_hi14a_card->ats_len = 0;
+ }
+
+ if (!GetATQA(resp, resp_par)) {
+ return 0;
+ }
if(p_hi14a_card) {
memcpy(p_hi14a_card->atqa, resp, 2);
- p_hi14a_card->uidlen = 0;
- memset(p_hi14a_card->uid,0,10);
}
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
+ if (anticollision) {
+ // clear uid
+ if (uid_ptr) {
+ memset(uid_ptr,0,10);
+ }
}
// check for proprietary anticollision:
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
- // SELECT_ALL
- ReaderTransmit(sel_all, sizeof(sel_all), NULL);
- if (!ReaderReceive(resp, resp_par)) return 0;
-
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
- memset(uid_resp, 0, 4);
- uint16_t uid_resp_bits = 0;
- uint16_t collision_answer_offset = 0;
- // anti-collision-loop:
- while (Demod.collisionPos) {
- Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
- uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ if (anticollision) {
+ // SELECT_ALL
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
- uid_resp_bits++;
- // construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
- for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
- sel_uid[2+i] = uid_resp[i];
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
}
- collision_answer_offset = uid_resp_bits%8;
- ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
}
- // finally, add the last bits and BCC of the UID
- for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
- uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
- uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
}
-
- } else { // no collision, use the response to SELECT_ALL as current uid
- memcpy(uid_resp, resp, 4);
}
uid_resp_len = 4;
// Construct SELECT UID command
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2, uid_resp, 4); // the UID
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp, resp_par)) return 0;
sak = resp[0];
-
- // Test if more parts of the uid are coming
+
+ // Test if more parts of the uid are coming
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
// http://www.nxp.com/documents/application_note/AN10927.pdf
uid_resp[0] = uid_resp[1];
uid_resp[1] = uid_resp[2];
uid_resp[2] = uid_resp[3];
-
uid_resp_len = 3;
}
- if(uid_ptr) {
+ if(uid_ptr && anticollision) {
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
}
if(p_hi14a_card) {
p_hi14a_card->sak = sak;
- p_hi14a_card->ats_len = 0;
}
- // non iso14443a compliant tag
+ // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
if( (sak & 0x20) == 0) return 2;
- // Request for answer to select
- AppendCrc14443a(rats, 2);
- ReaderTransmit(rats, sizeof(rats), NULL);
+ if (!no_rats) {
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats), NULL);
- if (!(len = ReaderReceive(resp, resp_par))) return 0;
+ if (!(len = ReaderReceive(resp, resp_par))) return 0;
-
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
- p_hi14a_card->ats_len = len;
- }
-
- // reset the PCB block number
- iso14_pcb_blocknum = 0;
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, len);
+ p_hi14a_card->ats_len = len;
+ }
- // set default timeout based on ATS
- iso14a_set_ATS_timeout(resp);
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
+ // set default timeout and delay next transfer based on ATS
+ iso14a_set_ATS_times(resp);
+
+ }
return 1;
}
+
void iso14443a_setup(uint8_t fpga_minor_mode) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
DemodReset();
UartReset();
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
- iso14a_set_timeout(1050); // 10ms default
+ iso14a_set_timeout(1060); // 10ms default
}
+/* Peter Fillmore 2015
+Added card id field to the function
+ info from ISO14443A standard
+b1 = Block Number
+b2 = RFU (always 1)
+b3 = depends on block
+b4 = Card ID following if set to 1
+b5 = depends on block type
+b6 = depends on block type
+b7,b8 = block type.
+Coding of I-BLOCK:
+b8 b7 b6 b5 b4 b3 b2 b1
+0 0 0 x x x 1 x
+b5 = chaining bit
+Coding of R-block:
+b8 b7 b6 b5 b4 b3 b2 b1
+1 0 1 x x 0 1 x
+b5 = ACK/NACK
+Coding of S-block:
+b8 b7 b6 b5 b4 b3 b2 b1
+1 1 x x x 0 1 0
+b5,b6 = 00 - DESELECT
+ 11 - WTX
+*/
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
uint8_t parity[MAX_PARITY_SIZE];
- uint8_t real_cmd[cmd_len+4];
- real_cmd[0] = 0x0a; //I-Block
+ uint8_t real_cmd[cmd_len + 4];
+
+ // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
+ real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
// put block number into the PCB
real_cmd[0] |= iso14_pcb_blocknum;
- real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
- memcpy(real_cmd+2, cmd, cmd_len);
- AppendCrc14443a(real_cmd,cmd_len+2);
+ memcpy(real_cmd + 1, cmd, cmd_len);
+ AppendCrc14443a(real_cmd, cmd_len + 1);
- ReaderTransmit(real_cmd, cmd_len+4, NULL);
+ ReaderTransmit(real_cmd, cmd_len + 3, NULL);
+
size_t len = ReaderReceive(data, parity);
uint8_t *data_bytes = (uint8_t *) data;
- if (!len)
+
+ if (!len) {
return 0; //DATA LINK ERROR
- // if we received an I- or R(ACK)-Block with a block number equal to the
- // current block number, toggle the current block number
- else if (len >= 4 // PCB+CID+CRC = 4 bytes
+ } else{
+ // S-Block WTX
+ while((data_bytes[0] & 0xF2) == 0xF2) {
+ uint32_t save_iso14a_timeout = iso14a_timeout;
+ // temporarily increase timeout
+ iso14a_timeout = MAX((data_bytes[1] & 0x3f) * iso14a_timeout, MAX_ISO14A_TIMEOUT);
+ // Transmit WTX back
+ // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
+ data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
+ // now need to fix CRC.
+ AppendCrc14443a(data_bytes, len - 2);
+ // transmit S-Block
+ ReaderTransmit(data_bytes, len, NULL);
+ // retrieve the result again (with increased timeout)
+ len = ReaderReceive(data, parity);
+ data_bytes = data;
+ // restore timeout
+ iso14a_timeout = save_iso14a_timeout;
+ }
+
+ // if we received an I- or R(ACK)-Block with a block number equal to the
+ // current block number, toggle the current block number
+ if (len >= 3 // PCB+CRC = 3 bytes
&& ((data_bytes[0] & 0xC0) == 0 // I-Block
|| (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
&& (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
- {
- iso14_pcb_blocknum ^= 1;
- }
+ {
+ iso14_pcb_blocknum ^= 1;
+ }
+ // crc check
+ if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
+ return -1;
+ }
+
+ }
+
+ // cut frame byte
+ len -= 1;
+ // memmove(data_bytes, data_bytes + 1, len);
+ for (int i = 0; i < len; i++)
+ data_bytes[i] = data_bytes[i + 1];
+
return len;
}
+
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
size_t lenbits = c->arg[1] >> 16;
uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
- byte_t buf[USB_CMD_DATA_SIZE];
+ byte_t buf[USB_CMD_DATA_SIZE] = {0};
uint8_t par[MAX_PARITY_SIZE];
+ bool cantSELECT = false;
- if(param & ISO14A_CONNECT) {
+ set_tracing(true);
+
+ if(param & ISO14A_CLEAR_TRACE) {
clear_trace();
}
- set_tracing(TRUE);
-
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(TRUE);
+ iso14a_set_trigger(true);
}
if(param & ISO14A_CONNECT) {
+ LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
- arg0 = iso14443a_select_card(NULL,card,NULL);
+ arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
+
+ // if we cant select then we cant send data
+ if (arg0 != 1 && arg0 != 2) {
+ // 1 - all is OK with ATS, 2 - without ATS
+ cantSELECT = true;
+ }
+
+ LED_B_ON();
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+ LED_B_OFF();
}
}
iso14a_set_timeout(timeout);
}
- if(param & ISO14A_APDU) {
+ if(param & ISO14A_APDU && !cantSELECT) {
arg0 = iso14_apdu(cmd, len, buf);
- cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ LED_B_ON();
+ cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
+ LED_B_OFF();
}
- if(param & ISO14A_RAW) {
+ if(param & ISO14A_RAW && !cantSELECT) {
if(param & ISO14A_APPEND_CRC) {
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
}
}
arg0 = ReaderReceive(buf, par);
+
+ LED_B_ON();
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ LED_B_OFF();
}
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(FALSE);
+ iso14a_set_trigger(false);
}
if(param & ISO14A_NO_DISCONNECT) {
// Determine the distance between two nonces.
// Assume that the difference is small, but we don't know which is first.
// Therefore try in alternating directions.
-int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
uint16_t i;
uint32_t nttmp1, nttmp2;
BigBuf_free();
clear_trace();
- set_tracing(TRUE);
+ set_tracing(true);
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
- bool led_on = TRUE;
+ bool led_on = true;
uint8_t uid[10] ={0};
uint32_t cuid;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
+ #define PRNG_SEQUENCE_LENGTH (1 << 16);
static uint32_t sync_time;
- static uint32_t sync_cycles;
+ static int32_t sync_cycles;
int catch_up_cycles = 0;
int last_catch_up = 0;
+ uint16_t elapsed_prng_sequences;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
if (first_try) {
mf_nr_ar3 = 0;
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
nt_attacked = 0;
- nt = 0;
par[0] = 0;
}
else {
LED_C_OFF();
- #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up.
- uint16_t unsuccessfull_tries = 0;
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ int16_t debug_info_nr = -1;
+ uint16_t strategy = 0;
+ int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+ uint32_t select_time;
+ uint32_t halt_time;
- for(uint16_t i = 0; TRUE; i++) {
+ for(uint16_t i = 0; true; i++) {
LED_C_ON();
WDT_HIT();
break;
}
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if (strategy == 2) {
+ // test with additional hlt command
+ halt_time = 0;
+ int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+ if (len && MF_DBGLEVEL >= 3) {
+ Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+ }
+ }
+
+ if (strategy == 3) {
+ // test with FPGA power off/on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(100);
+ }
+
+ if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
+ select_time = GetCountSspClk();
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
+ elapsed_prng_sequences = 1;
+ if (debug_info_nr == -1) {
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
- // if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- }
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountSspClk() > sync_time) {
+ elapsed_prng_sequences++;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ } else {
+ // collect some information on tag nonces for debugging:
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ if (strategy == 0) {
+ // nonce distances at fixed time after card select:
+ sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 1) {
+ // nonce distances at fixed time between authentications:
+ sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 2) {
+ // nonce distances at fixed time after halt:
+ sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else {
+ // nonce_distances at fixed time after power on
+ sync_time = DEBUG_FIXED_SYNC_CYCLES;
+ }
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ }
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
nt_attacked = nt;
- }
- else {
+ } else {
if (nt_distance == -99999) { // invalid nonce received
- unsuccessfull_tries++;
- if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) {
+ unexpected_random++;
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
isOK = -3; // Card has an unpredictable PRNG. Give up
break;
} else {
continue; // continue trying...
}
}
- sync_cycles = (sync_cycles - nt_distance);
- if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+ if (++sync_tries > MAX_SYNC_TRIES) {
+ if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
+ } else { // continue for a while, just to collect some debug info
+ debug_info[strategy][debug_info_nr] = nt_distance;
+ debug_info_nr++;
+ if (debug_info_nr == NUM_DEBUG_INFOS) {
+ strategy++;
+ debug_info_nr = 0;
+ }
+ continue;
+ }
+ }
+ sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ if (sync_cycles <= 0) {
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+ }
+ if (MF_DBGLEVEL >= 3) {
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
+ }
continue;
}
}
catch_up_cycles = 0;
continue;
}
+ catch_up_cycles /= elapsed_prng_sequences;
if (catch_up_cycles == last_catch_up) {
consecutive_resyncs++;
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer, receivedAnswerPar))
- {
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
- if (nt_diff == 0)
- {
+ if (nt_diff == 0) {
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
mf_nr_ar[3] &= 0x1F;
+
+ if (isOK == -4) {
+ if (MF_DBGLEVEL >= 3) {
+ for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+ Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+ }
+ }
+ }
+ }
byte_t buf[28];
memcpy(buf + 0, uid, 4);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- set_tracing(FALSE);
+ set_tracing(false);
}
-/**
- *MIFARE 1K simulate.
- *
- *@param flags :
- * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
- * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
- * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
- * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
- *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
- */
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
-{
- int cardSTATE = MFEMUL_NOFIELD;
- int _7BUID = 0;
- int vHf = 0; // in mV
- int res;
- uint32_t selTimer = 0;
- uint32_t authTimer = 0;
- uint16_t len = 0;
- uint8_t cardWRBL = 0;
- uint8_t cardAUTHSC = 0;
- uint8_t cardAUTHKEY = 0xff; // no authentication
- uint32_t cardRr = 0;
- uint32_t cuid = 0;
- //uint32_t rn_enc = 0;
- uint32_t ans = 0;
- uint32_t cardINTREG = 0;
- uint8_t cardINTBLOCK = 0;
- struct Crypto1State mpcs = {0, 0};
- struct Crypto1State *pcs;
- pcs = &mpcs;
- uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
- uint8_t response[MAX_MIFARE_FRAME_SIZE];
- uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
-
- uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
- uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
- uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
- uint8_t rSAK1[] = {0x04, 0xda, 0x17};
-
- uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
- uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
- // This can be used in a reader-only attack.
- // (it can also be retrieved via 'hf 14a list', but hey...
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
- uint8_t ar_nr_collected = 0;
-
- // Authenticate response - nonce
- uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
-
- //-- Determine the UID
- // Can be set from emulator memory, incoming data
- // and can be 7 or 4 bytes long
- if (flags & FLAG_4B_UID_IN_DATA)
- {
- // 4B uid comes from data-portion of packet
- memcpy(rUIDBCC1,datain,4);
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
- } else if (flags & FLAG_7B_UID_IN_DATA) {
- // 7B uid comes from data-portion of packet
- memcpy(&rUIDBCC1[1],datain,3);
- memcpy(rUIDBCC2, datain+3, 4);
- _7BUID = true;
- } else {
- // get UID from emul memory
- emlGetMemBt(receivedCmd, 7, 1);
- _7BUID = !(receivedCmd[0] == 0x00);
- if (!_7BUID) { // ---------- 4BUID
- emlGetMemBt(rUIDBCC1, 0, 4);
- } else { // ---------- 7BUID
- emlGetMemBt(&rUIDBCC1[1], 0, 3);
- emlGetMemBt(rUIDBCC2, 3, 4);
- }
- }
-
- /*
- * Regardless of what method was used to set the UID, set fifth byte and modify
- * the ATQA for 4 or 7-byte UID
- */
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if (_7BUID) {
- rATQA[0] = 0x44;
- rUIDBCC1[0] = 0x88;
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
- }
-
- if (MF_DBGLEVEL >= 1) {
- if (!_7BUID) {
- Dbprintf("4B UID: %02x%02x%02x%02x",
- rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
- } else {
- Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
- rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
- rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
- }
- }
-
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
- // free eventually allocated BigBuf memory but keep Emulator Memory
- BigBuf_free_keep_EM();
-
- // clear trace
- clear_trace();
- set_tracing(TRUE);
-
-
- bool finished = FALSE;
- while (!BUTTON_PRESS() && !finished) {
- WDT_HIT();
-
- // find reader field
- if (cardSTATE == MFEMUL_NOFIELD) {
- vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
- if (vHf > MF_MINFIELDV) {
- cardSTATE_TO_IDLE();
- LED_A_ON();
- }
- }
- if(cardSTATE == MFEMUL_NOFIELD) continue;
-
- //Now, get data
-
- res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
- if (res == 2) { //Field is off!
- cardSTATE = MFEMUL_NOFIELD;
- LEDsoff();
- continue;
- } else if (res == 1) {
- break; //return value 1 means button press
- }
-
- // REQ or WUP request in ANY state and WUP in HALTED state
- if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
- selTimer = GetTickCount();
- EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
- cardSTATE = MFEMUL_SELECT1;
-
- // init crypto block
- LED_B_OFF();
- LED_C_OFF();
- crypto1_destroy(pcs);
- cardAUTHKEY = 0xff;
- continue;
- }
-
- switch (cardSTATE) {
- case MFEMUL_NOFIELD:
- case MFEMUL_HALTED:
- case MFEMUL_IDLE:{
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
- case MFEMUL_SELECT1:{
- // select all
- if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
- if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
- EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
- break;
- }
-
- if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
- {
- Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
- }
- // select card
- if (len == 9 &&
- (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
- EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
- cuid = bytes_to_num(rUIDBCC1, 4);
- if (!_7BUID) {
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
- break;
- } else {
- cardSTATE = MFEMUL_SELECT2;
- }
- }
- break;
- }
- case MFEMUL_AUTH1:{
- if( len != 8)
- {
- cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
-
- uint32_t ar = bytes_to_num(receivedCmd, 4);
- uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
-
- //Collect AR/NR
- if(ar_nr_collected < 2){
- if(ar_nr_responses[2] != ar)
- {// Avoid duplicates... probably not necessary, ar should vary.
- ar_nr_responses[ar_nr_collected*4] = cuid;
- ar_nr_responses[ar_nr_collected*4+1] = nonce;
- ar_nr_responses[ar_nr_collected*4+2] = ar;
- ar_nr_responses[ar_nr_collected*4+3] = nr;
- ar_nr_collected++;
- }
- }
-
- // --- crypto
- crypto1_word(pcs, ar , 1);
- cardRr = nr ^ crypto1_word(pcs, 0, 0);
-
- // test if auth OK
- if (cardRr != prng_successor(nonce, 64)){
- if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
- cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- cardRr, prng_successor(nonce, 64));
- // Shouldn't we respond anything here?
- // Right now, we don't nack or anything, which causes the
- // reader to do a WUPA after a while. /Martin
- // -- which is the correct response. /piwi
- cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
-
- ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
-
- num_to_bytes(ans, 4, rAUTH_AT);
- // --- crypto
- EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
- LED_C_ON();
- cardSTATE = MFEMUL_WORK;
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
- cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
- GetTickCount() - authTimer);
- break;
- }
- case MFEMUL_SELECT2:{
- if (!len) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
- if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
- EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
- break;
- }
-
- // select 2 card
- if (len == 9 &&
- (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
- EmSendCmd(rSAK, sizeof(rSAK));
- cuid = bytes_to_num(rUIDBCC2, 4);
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
- break;
- }
-
- // i guess there is a command). go into the work state.
- if (len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
- cardSTATE = MFEMUL_WORK;
- //goto lbWORK;
- //intentional fall-through to the next case-stmt
- }
-
- case MFEMUL_WORK:{
- if (len == 0) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
-
- bool encrypted_data = (cardAUTHKEY != 0xFF) ;
-
- if(encrypted_data) {
- // decrypt seqence
- mf_crypto1_decrypt(pcs, receivedCmd, len);
- }
-
- if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
- authTimer = GetTickCount();
- cardAUTHSC = receivedCmd[1] / 4; // received block num
- cardAUTHKEY = receivedCmd[0] - 0x60;
- crypto1_destroy(pcs);//Added by martin
- crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
-
- if (!encrypted_data) { // first authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
-
- crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
- num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
- } else { // nested authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
- ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
- num_to_bytes(ans, 4, rAUTH_AT);
- }
-
- EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
- //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
- cardSTATE = MFEMUL_AUTH1;
- break;
- }
-
- // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
- // BUT... ACK --> NACK
- if (len == 1 && receivedCmd[0] == CARD_ACK) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- break;
- }
-
- // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
- if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- break;
- }
-
- if(len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
-
- if(receivedCmd[0] == 0x30 // read block
- || receivedCmd[0] == 0xA0 // write block
- || receivedCmd[0] == 0xC0 // inc
- || receivedCmd[0] == 0xC1 // dec
- || receivedCmd[0] == 0xC2 // restore
- || receivedCmd[0] == 0xB0) { // transfer
- if (receivedCmd[1] >= 16 * 4) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
- break;
- }
-
- if (receivedCmd[1] / 4 != cardAUTHSC) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
- break;
- }
- }
- // read block
- if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 4) {
- Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
- }
- emlGetMem(response, receivedCmd[1], 1);
- AppendCrc14443a(response, 16);
- mf_crypto1_encrypt(pcs, response, 18, response_par);
- EmSendCmdPar(response, 18, response_par);
- numReads++;
- if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
- Dbprintf("%d reads done, exiting", numReads);
- finished = true;
- }
- break;
- }
- // write block
- if (receivedCmd[0] == 0xA0) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- cardSTATE = MFEMUL_WRITEBL2;
- cardWRBL = receivedCmd[1];
- break;
- }
- // increment, decrement, restore
- if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
- if (emlCheckValBl(receivedCmd[1])) {
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- break;
- }
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- if (receivedCmd[0] == 0xC1)
- cardSTATE = MFEMUL_INTREG_INC;
- if (receivedCmd[0] == 0xC0)
- cardSTATE = MFEMUL_INTREG_DEC;
- if (receivedCmd[0] == 0xC2)
- cardSTATE = MFEMUL_INTREG_REST;
- cardWRBL = receivedCmd[1];
- break;
- }
- // transfer
- if (receivedCmd[0] == 0xB0) {
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
- if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- else
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- break;
- }
- // halt
- if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
- LED_B_OFF();
- LED_C_OFF();
- cardSTATE = MFEMUL_HALTED;
- if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- break;
- }
- // RATS
- if (receivedCmd[0] == 0xe0) {//RATS
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- break;
- }
- // command not allowed
- if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- break;
- }
- case MFEMUL_WRITEBL2:{
- if (len == 18){
- mf_crypto1_decrypt(pcs, receivedCmd, len);
- emlSetMem(receivedCmd, cardWRBL, 1);
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- cardSTATE = MFEMUL_WORK;
- } else {
- cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- }
- break;
- }
-
- case MFEMUL_INTREG_INC:{
- mf_crypto1_decrypt(pcs, receivedCmd, len);
- memcpy(&ans, receivedCmd, 4);
- if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
- break;
- }
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- cardINTREG = cardINTREG + ans;
- cardSTATE = MFEMUL_WORK;
- break;
- }
- case MFEMUL_INTREG_DEC:{
- mf_crypto1_decrypt(pcs, receivedCmd, len);
- memcpy(&ans, receivedCmd, 4);
- if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
- break;
- }
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- cardINTREG = cardINTREG - ans;
- cardSTATE = MFEMUL_WORK;
- break;
- }
- case MFEMUL_INTREG_REST:{
- mf_crypto1_decrypt(pcs, receivedCmd, len);
- memcpy(&ans, receivedCmd, 4);
- if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
- break;
- }
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
- cardSTATE = MFEMUL_WORK;
- break;
- }
- }
- }
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
-
- if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
- {
- //May just aswell send the collected ar_nr in the response aswell
- cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
- }
-
- if(flags & FLAG_NR_AR_ATTACK)
- {
- if(ar_nr_collected > 1) {
- Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3], //NR1
- ar_nr_responses[6], //AR2
- ar_nr_responses[7] //NR2
- );
- } else {
- Dbprintf("Failed to obtain two AR/NR pairs!");
- if(ar_nr_collected >0) {
- Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3] //NR1
- );
- }
- }
- }
- if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
-
-}
-
-
//-----------------------------------------------------------------------------
// MIFARE sniffer.
LEDsoff();
// init trace buffer
clear_trace();
- set_tracing(TRUE);
+ set_tracing(true);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
- bool ReaderIsActive = FALSE;
- bool TagIsActive = FALSE;
+ bool ReaderIsActive = false;
+ bool TagIsActive = false;
// Set up the demodulator for tag -> reader responses.
DemodInit(receivedResponse, receivedResponsePar);
MfSniffInit();
// And now we loop, receiving samples.
- for(uint32_t sniffCounter = 0; TRUE; ) {
+ for(uint32_t sniffCounter = 0; true; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
sniffCounter = 0;
data = dmaBuf;
maxDataLen = 0;
- ReaderIsActive = FALSE;
- TagIsActive = FALSE;
+ ReaderIsActive = false;
+ TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
+ if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
/* And ready to receive another command. */
UartInit(receivedCmd, receivedCmdPar);
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
// And ready to receive another response.
DemodReset();