- uint16_t loopCnt = 4096; //don't need to loop through entire array...
- if (size == 0) return -1;
- if (*size<loopCnt) loopCnt = *size;
-
- uint8_t curPhase = *invert;
- size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
- uint8_t fc=0, fullWaveLen=0, tol=1;
- uint16_t errCnt=0, waveLenCnt=0;
- fc = countPSK_FC(dest, *size);
- if (fc!=2 && fc!=4 && fc!=8) return -1;
- //PrintAndLog("DEBUG: FC: %d",fc);
- *clock = DetectPSKClock(dest, *size, *clock);
- if (*clock==0) return -1;
- int avgWaveVal=0, lastAvgWaveVal=0;
- //find first phase shift
- for (i=0; i<loopCnt; i++){
- if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
- waveEnd = i+1;
- //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
- waveLenCnt = waveEnd-waveStart;
- if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
- lastAvgWaveVal = avgWaveVal/(waveLenCnt);
- firstFullWave = waveStart;
- fullWaveLen=waveLenCnt;
- //if average wave value is > graph 0 then it is an up wave or a 1
- if (lastAvgWaveVal > 123) curPhase^=1; //fudge graph 0 a little 123 vs 128
- break;
- }
- waveStart = i+1;
- avgWaveVal = 0;
- }
- avgWaveVal+=dest[i+2];
- }
- //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
- lastClkBit = firstFullWave; //set start of wave as clock align
- //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
- waveStart = 0;
- errCnt=0;
- size_t numBits=0;
- //set skipped bits
- memset(dest,curPhase^1,firstFullWave / *clock);
- numBits += (firstFullWave / *clock);
- dest[numBits++] = curPhase; //set first read bit
- for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
- //top edge of wave = start of new wave
- if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
- if (waveStart == 0) {
- waveStart = i+1;
- waveLenCnt=0;
- avgWaveVal = dest[i+1];
- } else { //waveEnd
- waveEnd = i+1;
- waveLenCnt = waveEnd-waveStart;
- lastAvgWaveVal = avgWaveVal/waveLenCnt;
- if (waveLenCnt > fc){
- //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
- //if this wave is a phase shift
- //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
- if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
- curPhase^=1;
- dest[numBits++] = curPhase;
- lastClkBit += *clock;
- } else if (i<lastClkBit+10+fc){
- //noise after a phase shift - ignore
- } else { //phase shift before supposed to based on clock
- errCnt++;
- dest[numBits++] = 77;
- }
- } else if (i+1 > lastClkBit + *clock + tol + fc){
- lastClkBit += *clock; //no phase shift but clock bit
- dest[numBits++] = curPhase;
- }
- avgWaveVal=0;
- waveStart=i+1;
- }
- }
- avgWaveVal+=dest[i+1];
- }
- *size = numBits;
- return errCnt;
+ if (size == 0) return -1;
+ uint16_t loopCnt = 4096; //don't need to loop through entire array...
+ if (*size<loopCnt) loopCnt = *size;
+
+ size_t numBits=0;
+ uint8_t curPhase = *invert;
+ size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint8_t fc=0, fullWaveLen=0, tol=1;
+ uint16_t errCnt=0, waveLenCnt=0;
+ fc = countFC(dest, *size, 0);
+ if (fc!=2 && fc!=4 && fc!=8) return -1;
+ //PrintAndLog("DEBUG: FC: %d",fc);
+ *clock = DetectPSKClock(dest, *size, *clock);
+ if (*clock == 0) return -1;
+ int avgWaveVal=0, lastAvgWaveVal=0;
+ //find first phase shift
+ for (i=0; i<loopCnt; i++){
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
+ lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ //if average wave value is > graph 0 then it is an up wave or a 1
+ if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
+ break;
+ }
+ waveStart = i+1;
+ avgWaveVal = 0;
+ }
+ avgWaveVal += dest[i+2];
+ }
+ if (firstFullWave == 0) {
+ // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+ // so skip a little to ensure we are past any Start Signal
+ firstFullWave = 160;
+ memset(dest, curPhase, firstFullWave / *clock);
+ } else {
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ }
+ //advance bits
+ numBits += (firstFullWave / *clock);
+ //set start of wave as clock align
+ lastClkBit = firstFullWave;
+ //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+ waveStart = 0;
+ dest[numBits++] = curPhase; //set first read bit
+ for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
+ //top edge of wave = start of new wave
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt = 0;
+ avgWaveVal = dest[i+1];
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ lastAvgWaveVal = avgWaveVal/waveLenCnt;
+ if (waveLenCnt > fc){
+ //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+ //this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+ if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+ curPhase ^= 1;
+ dest[numBits++] = curPhase;
+ lastClkBit += *clock;
+ } else if (i < lastClkBit+10+fc){
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ dest[numBits++] = 7;
+ }
+ } else if (i+1 > lastClkBit + *clock + tol + fc){
+ lastClkBit += *clock; //no phase shift but clock bit
+ dest[numBits++] = curPhase;
+ }
+ avgWaveVal = 0;
+ waveStart = i+1;
+ }
+ }
+ avgWaveVal += dest[i+1];
+ }
+ *size = numBits;
+ return errCnt;
+}
+
+//by marshmellow
+//attempt to identify a Sequence Terminator in ASK modulated raw wave
+bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
+ size_t bufsize = *size;
+ //need to loop through all samples and identify our clock, look for the ST pattern
+ uint8_t fndClk[] = {8,16,32,40,50,64,128};
+ int clk = 0;
+ int tol = 0;
+ int i, j, skip, start, end, low, high, minClk, waveStart;
+ bool complete = false;
+ int tmpbuff[bufsize / 64];
+ int waveLen[bufsize / 64];
+ size_t testsize = (bufsize < 512) ? bufsize : 512;
+ int phaseoff = 0;
+ high = low = 128;
+ memset(tmpbuff, 0, sizeof(tmpbuff));
+
+ if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
+ if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
+ return false; //just noise
+ }
+ i = 0;
+ j = 0;
+ minClk = 255;
+ // get to first full low to prime loop and skip incomplete first pulse
+ while ((buffer[i] < high) && (i < bufsize))
+ ++i;
+ while ((buffer[i] > low) && (i < bufsize))
+ ++i;
+ skip = i;
+
+ // populate tmpbuff buffer with pulse lengths
+ while (i < bufsize) {
+ // measure from low to low
+ while ((buffer[i] > low) && (i < bufsize))
+ ++i;
+ start= i;
+ while ((buffer[i] < high) && (i < bufsize))
+ ++i;
+ //first high point for this wave
+ waveStart = i;
+ while ((buffer[i] > low) && (i < bufsize))
+ ++i;
+ if (j >= (bufsize/64)) {
+ break;
+ }
+ waveLen[j] = i - waveStart; //first high to first low
+ tmpbuff[j++] = i - start;
+ if (i-start < minClk && i < bufsize) {
+ minClk = i - start;
+ }
+ }
+ // set clock - might be able to get this externally and remove this work...
+ if (!clk) {
+ for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
+ tol = fndClk[clkCnt]/8;
+ if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
+ clk=fndClk[clkCnt];
+ break;
+ }
+ }
+ // clock not found - ERROR
+ if (!clk) {
+ if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
+ return false;
+ }
+ } else tol = clk/8;
+
+ *foundclock = clk;
+
+ // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
+ start = -1;
+ for (i = 0; i < j - 4; ++i) {
+ skip += tmpbuff[i];
+ if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
+ if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
+ if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
+ if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
+ start = i + 3;
+ break;
+ }
+ }
+ }
+ }
+ }
+ // first ST not found - ERROR
+ if (start < 0) {
+ if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
+ return false;
+ }
+ if (waveLen[i+2] > clk*1+tol)
+ phaseoff = 0;
+ else
+ phaseoff = clk/2;
+
+ // skip over the remainder of ST
+ skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
+
+ // now do it again to find the end
+ end = skip;
+ for (i += 3; i < j - 4; ++i) {
+ end += tmpbuff[i];
+ if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
+ if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
+ if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
+ if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
+ complete = true;
+ break;
+ }
+ }
+ }
+ }
+ }
+ end -= phaseoff;
+ //didn't find second ST - ERROR
+ if (!complete) {
+ if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
+ return false;
+ }
+ if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
+ //now begin to trim out ST so we can use normal demod cmds
+ start = skip;
+ size_t datalen = end - start;
+ // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
+ if (datalen % clk > clk/8) {
+ if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
+ return false;
+ } else {
+ // padd the amount off - could be problematic... but shouldn't happen often
+ datalen += datalen % clk;
+ }
+ // if datalen is less than one t55xx block - ERROR
+ if (datalen/clk < 8*4) {
+ if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
+ return false;
+ }
+ size_t dataloc = start;
+ size_t newloc = 0;
+ i=0;
+ // warning - overwriting buffer given with raw wave data with ST removed...
+ while ( dataloc < bufsize-(clk/2) ) {
+ //compensate for long high at end of ST not being high... (we cut out the high part)
+ if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
+ for(i=0; i < clk/2-tol; ++i) {
+ buffer[dataloc+i] = high+5;
+ }
+ }
+ for (i=0; i<datalen; ++i) {
+ if (i+newloc < bufsize) {
+ if (i+newloc < dataloc)
+ buffer[i+newloc] = buffer[dataloc];
+
+ dataloc++;
+ }
+ }
+ newloc += i;
+ //skip next ST
+ dataloc += clk*4;
+ }
+ *size = newloc;
+ return true;