]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - common/crapto1/crapto1.c
Code cleanup: deduplicate crapto1 library (#228)
[proxmark3-svn] / common / crapto1 / crapto1.c
diff --git a/common/crapto1/crapto1.c b/common/crapto1/crapto1.c
new file mode 100644 (file)
index 0000000..6a194c4
--- /dev/null
@@ -0,0 +1,584 @@
+/*  crapto1.c
+
+       This program is free software; you can redistribute it and/or
+       modify it under the terms of the GNU General Public License
+       as published by the Free Software Foundation; either version 2
+       of the License, or (at your option) any later version.
+
+       This program is distributed in the hope that it will be useful,
+       but WITHOUT ANY WARRANTY; without even the implied warranty of
+       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+       GNU General Public License for more details.
+
+       You should have received a copy of the GNU General Public License
+       along with this program; if not, write to the Free Software
+       Foundation, Inc., 51 Franklin Street, Fifth Floor,
+       Boston, MA  02110-1301, US$
+
+       Copyright (C) 2008-2008 bla <blapost@gmail.com>
+*/
+#include "crapto1.h"
+#include <stdlib.h>
+#include <stdbool.h>
+
+#if !defined LOWMEM && defined __GNUC__
+static uint8_t filterlut[1 << 20];
+static void __attribute__((constructor)) fill_lut()
+{
+               uint32_t i;
+               for(i = 0; i < 1 << 20; ++i)
+                               filterlut[i] = filter(i);
+}
+#define filter(x) (filterlut[(x) & 0xfffff])
+#endif
+
+
+
+typedef struct bucket {
+       uint32_t *head;
+       uint32_t *bp;
+} bucket_t;
+
+typedef bucket_t bucket_array_t[2][0x100];
+
+typedef struct bucket_info {
+       struct {
+               uint32_t *head, *tail;
+               } bucket_info[2][0x100];
+               uint32_t numbuckets;
+       } bucket_info_t;
+
+
+static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
+                                                                 uint32_t* const ostart, uint32_t* const ostop,
+                                                                 bucket_info_t *bucket_info, bucket_array_t bucket)
+{
+       uint32_t *p1, *p2;
+       uint32_t *start[2];
+       uint32_t *stop[2];
+
+       start[0] = estart;
+       stop[0] = estop;
+       start[1] = ostart;
+       stop[1] = ostop;
+
+       // init buckets to be empty
+       for (uint32_t i = 0; i < 2; i++) {
+               for (uint32_t j = 0x00; j <= 0xff; j++) {
+                       bucket[i][j].bp = bucket[i][j].head;
+               }
+       }
+
+       // sort the lists into the buckets based on the MSB (contribution bits)
+       for (uint32_t i = 0; i < 2; i++) {
+               for (p1 = start[i]; p1 <= stop[i]; p1++) {
+                       uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
+                       *(bucket[i][bucket_index].bp++) = *p1;
+               }
+       }
+
+
+       // write back intersecting buckets as sorted list.
+       // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
+       uint32_t nonempty_bucket;
+       for (uint32_t i = 0; i < 2; i++) {
+               p1 = start[i];
+               nonempty_bucket = 0;
+               for (uint32_t j = 0x00; j <= 0xff; j++) {
+                       if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
+                               bucket_info->bucket_info[i][nonempty_bucket].head = p1;
+                               for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
+                               bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
+                               nonempty_bucket++;
+                       }
+               }
+               bucket_info->numbuckets = nonempty_bucket;
+               }
+}
+
+/** binsearch
+ * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
+ */
+static inline uint32_t*
+binsearch(uint32_t *start, uint32_t *stop)
+{
+       uint32_t mid, val = *stop & 0xff000000;
+       while(start != stop)
+               if(start[mid = (stop - start) >> 1] > val)
+                       stop = &start[mid];
+               else
+                       start += mid + 1;
+
+       return start;
+}
+
+/** update_contribution
+ * helper, calculates the partial linear feedback contributions and puts in MSB
+ */
+static inline void
+update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
+{
+       uint32_t p = *item >> 25;
+
+       p = p << 1 | parity(*item & mask1);
+       p = p << 1 | parity(*item & mask2);
+       *item = p << 24 | (*item & 0xffffff);
+}
+
+/** extend_table
+ * using a bit of the keystream extend the table of possible lfsr states
+ */
+static inline void
+extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
+{
+       in <<= 24;
+
+       for(uint32_t *p = tbl; p <= *end; p++) {
+               *p <<= 1;
+               if(filter(*p) != filter(*p | 1)) {                              // replace
+                       *p |= filter(*p) ^ bit;
+                       update_contribution(p, m1, m2);
+                       *p ^= in;
+               } else if(filter(*p) == bit) {                                  // insert
+                       *++*end = p[1];
+                       p[1] = p[0] | 1;
+                       update_contribution(p, m1, m2);
+                       *p++ ^= in;
+                       update_contribution(p, m1, m2);
+                       *p ^= in;
+               } else {                                                                                // drop
+                       *p-- = *(*end)--;
+               }
+       }
+
+}
+
+
+/** extend_table_simple
+ * using a bit of the keystream extend the table of possible lfsr states
+ */
+static inline void
+extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
+{
+       for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
+               if(filter(*tbl) ^ filter(*tbl | 1)) {   // replace
+                       *tbl |= filter(*tbl) ^ bit;
+               } else if(filter(*tbl) == bit) {                // insert
+                       *++*end = *++tbl;
+                       *tbl = tbl[-1] | 1;
+               } else                                                                  // drop
+                       *tbl-- = *(*end)--;
+}
+
+
+/** recover
+ * recursively narrow down the search space, 4 bits of keystream at a time
+ */
+static struct Crypto1State*
+recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
+       uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
+       struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
+{
+       uint32_t *o, *e;
+       bucket_info_t bucket_info;
+
+       if(rem == -1) {
+               for(e = e_head; e <= e_tail; ++e) {
+                       *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
+                       for(o = o_head; o <= o_tail; ++o, ++sl) {
+                               sl->even = *o;
+                               sl->odd = *e ^ parity(*o & LF_POLY_ODD);
+                       }
+               }
+               sl->odd = sl->even = 0;
+               return sl;
+       }
+
+       for(uint32_t i = 0; i < 4 && rem--; i++) {
+               extend_table(o_head, &o_tail, (oks >>= 1) & 1,
+                       LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
+               if(o_head > o_tail)
+                       return sl;
+
+               extend_table(e_head, &e_tail, (eks >>= 1) & 1,
+                       LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
+               if(e_head > e_tail)
+                       return sl;
+       }
+
+       bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
+
+       for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
+               sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
+                                        bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
+                                        rem, sl, in, bucket);
+       }
+
+       return sl;
+}
+/** lfsr_recovery
+ * recover the state of the lfsr given 32 bits of the keystream
+ * additionally you can use the in parameter to specify the value
+ * that was fed into the lfsr at the time the keystream was generated
+ */
+struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
+{
+       struct Crypto1State *statelist;
+       uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
+       uint32_t *even_head = 0, *even_tail = 0, eks = 0;
+       int i;
+
+       // split the keystream into an odd and even part
+       for(i = 31; i >= 0; i -= 2)
+               oks = oks << 1 | BEBIT(ks2, i);
+       for(i = 30; i >= 0; i -= 2)
+               eks = eks << 1 | BEBIT(ks2, i);
+
+       odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
+       even_head = even_tail = malloc(sizeof(uint32_t) << 21);
+       statelist =  malloc(sizeof(struct Crypto1State) << 18);
+       if(!odd_tail-- || !even_tail-- || !statelist) {
+               goto out;
+       }
+       statelist->odd = statelist->even = 0;
+
+       // allocate memory for out of place bucket_sort
+       bucket_array_t bucket;
+       for (uint32_t i = 0; i < 2; i++)
+               for (uint32_t j = 0; j <= 0xff; j++) {
+                       bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
+                       if (!bucket[i][j].head) {
+                               goto out;
+                       }
+               }
+
+
+       // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
+       for(i = 1 << 20; i >= 0; --i) {
+               if(filter(i) == (oks & 1))
+                       *++odd_tail = i;
+               if(filter(i) == (eks & 1))
+                       *++even_tail = i;
+       }
+
+       // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
+       for(i = 0; i < 4; i++) {
+               extend_table_simple(odd_head,  &odd_tail, (oks >>= 1) & 1);
+               extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
+       }
+
+       // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
+       // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
+       // parameter into account.
+
+       in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);            // Byte swapping
+
+       recover(odd_head, odd_tail, oks,
+               even_head, even_tail, eks, 11, statelist, in << 1, bucket);
+
+
+out:
+       free(odd_head);
+       free(even_head);
+       for (uint32_t i = 0; i < 2; i++)
+               for (uint32_t j = 0; j <= 0xff; j++)
+                       free(bucket[i][j].head);
+
+       return statelist;
+}
+
+static const uint32_t S1[] = {     0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
+       0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
+       0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
+static const uint32_t S2[] = {  0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
+       0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
+       0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
+       0x7EC7EE90, 0x7F63F748, 0x79117020};
+static const uint32_t T1[] = {
+       0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
+       0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
+       0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
+       0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
+static const uint32_t T2[] = {  0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
+       0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
+       0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
+       0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
+       0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
+       0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
+static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
+static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
+/** Reverse 64 bits of keystream into possible cipher states
+ * Variation mentioned in the paper. Somewhat optimized version
+ */
+struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
+{
+       struct Crypto1State *statelist, *sl;
+       uint8_t oks[32], eks[32], hi[32];
+       uint32_t low = 0,  win = 0;
+       uint32_t *tail, table[1 << 16];
+       int i, j;
+
+       sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
+       if(!sl)
+               return 0;
+       sl->odd = sl->even = 0;
+
+       for(i = 30; i >= 0; i -= 2) {
+               oks[i >> 1] = BIT(ks2, i ^ 24);
+               oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
+       }
+       for(i = 31; i >= 0; i -= 2) {
+               eks[i >> 1] = BIT(ks2, i ^ 24);
+               eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
+       }
+
+       for(i = 0xfffff; i >= 0; --i) {
+               if (filter(i) != oks[0])
+                       continue;
+
+               *(tail = table) = i;
+               for(j = 1; tail >= table && j < 29; ++j)
+                       extend_table_simple(table, &tail, oks[j]);
+
+               if(tail < table)
+                       continue;
+
+               for(j = 0; j < 19; ++j)
+                       low = low << 1 | parity(i & S1[j]);
+               for(j = 0; j < 32; ++j)
+                       hi[j] = parity(i & T1[j]);
+
+               for(; tail >= table; --tail) {
+                       for(j = 0; j < 3; ++j) {
+                               *tail = *tail << 1;
+                               *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
+                               if(filter(*tail) != oks[29 + j])
+                                       goto continue2;
+                       }
+
+                       for(j = 0; j < 19; ++j)
+                               win = win << 1 | parity(*tail & S2[j]);
+
+                       win ^= low;
+                       for(j = 0; j < 32; ++j) {
+                               win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
+                               if(filter(win) != eks[j])
+                                       goto continue2;
+                       }
+
+                       *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
+                       sl->odd = *tail ^ parity(LF_POLY_ODD & win);
+                       sl->even = win;
+                       ++sl;
+                       sl->odd = sl->even = 0;
+                       continue2:;
+               }
+       }
+       return statelist;
+}
+
+/** lfsr_rollback_bit
+ * Rollback the shift register in order to get previous states
+ */
+void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
+{
+       int out;
+       uint32_t tmp;
+
+       s->odd &= 0xffffff;
+       tmp = s->odd;
+       s->odd = s->even;
+       s->even = tmp;
+
+       out = s->even & 1;
+       out ^= LF_POLY_EVEN & (s->even >>= 1);
+       out ^= LF_POLY_ODD & s->odd;
+       out ^= !!in;
+       out ^= filter(s->odd) & !!fb;
+
+       s->even |= parity(out) << 23;
+}
+/** lfsr_rollback_byte
+ * Rollback the shift register in order to get previous states
+ */
+void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
+{
+       int i;
+       for (i = 7; i >= 0; --i)
+               lfsr_rollback_bit(s, BEBIT(in, i), fb);
+}
+/** lfsr_rollback_word
+ * Rollback the shift register in order to get previous states
+ */
+void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
+{
+       int i;
+       for (i = 31; i >= 0; --i)
+               lfsr_rollback_bit(s, BEBIT(in, i), fb);
+}
+
+/** nonce_distance
+ * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
+ */
+static uint16_t *dist = 0;
+int nonce_distance(uint32_t from, uint32_t to)
+{
+       uint16_t x, i;
+       if(!dist) {
+               dist = malloc(2 << 16);
+               if(!dist)
+                       return -1;
+               for (x = i = 1; i; ++i) {
+                       dist[(x & 0xff) << 8 | x >> 8] = i;
+                       x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
+               }
+       }
+       return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
+}
+
+
+static uint32_t fastfwd[2][8] = {
+       { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
+       { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
+
+
+/** lfsr_prefix_ks
+ *
+ * Is an exported helper function from the common prefix attack
+ * Described in the "dark side" paper. It returns an -1 terminated array
+ * of possible partial(21 bit) secret state.
+ * The required keystream(ks) needs to contain the keystream that was used to
+ * encrypt the NACK which is observed when varying only the 4 last bits of Nr
+ * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
+ */
+uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
+{
+       uint32_t *candidates = malloc(4 << 21);
+       uint32_t c,  entry;
+       int size, i;
+
+       if(!candidates)
+               return 0;
+
+       size = (1 << 21) - 1;
+       for(i = 0; i <= size; ++i)
+               candidates[i] = i;
+
+       for(c = 0;  c < 8; ++c)
+               for(i = 0;i <= size; ++i) {
+                       entry = candidates[i] ^ fastfwd[isodd][c];
+
+                       if(filter(entry >> 1) == BIT(ks[c], isodd))
+                               if(filter(entry) == BIT(ks[c], isodd + 2))
+                                       continue;
+
+                       candidates[i--] = candidates[size--];
+               }
+
+       candidates[size + 1] = -1;
+
+       return candidates;
+}
+
+/** brute_top
+ * helper function which eliminates possible secret states using parity bits
+ */
+static struct Crypto1State*
+brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
+                 uint32_t odd, uint32_t even, struct Crypto1State* sl)
+{
+       struct Crypto1State s;
+       uint32_t ks1, nr, ks2, rr, ks3, good, c;
+
+       bool no_par = true;
+       for (int i = 0; i < 8; i++) {
+               for (int j = 0; j < 8; j++) {
+                       if (parities[i][j] != 0) {
+                               no_par = false;
+                               break;
+                       }
+               }
+       }
+
+       for(c = 0; c < 8; ++c) {
+               s.odd = odd ^ fastfwd[1][c];
+               s.even = even ^ fastfwd[0][c];
+
+               lfsr_rollback_bit(&s, 0, 0);
+               lfsr_rollback_bit(&s, 0, 0);
+               lfsr_rollback_bit(&s, 0, 0);
+
+               lfsr_rollback_word(&s, 0, 0);
+               lfsr_rollback_word(&s, prefix | c << 5, 1);
+
+               sl->odd = s.odd;
+               sl->even = s.even;
+
+               if (no_par)
+                       break;
+
+               ks1 = crypto1_word(&s, prefix | c << 5, 1);
+               ks2 = crypto1_word(&s,0,0);
+               ks3 = crypto1_word(&s, 0,0);
+               nr = ks1 ^ (prefix | c << 5);
+               rr = ks2 ^ rresp;
+
+               good = 1;
+               good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
+               good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
+               good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2,  8);
+               good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2,  0);
+               good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
+
+               if(!good)
+                       return sl;
+       }
+
+       return ++sl;
+}
+
+
+/** lfsr_common_prefix
+ * Implentation of the common prefix attack.
+ * Requires the 28 bit constant prefix used as reader nonce (pfx)
+ * The reader response used (rr)
+ * The keystream used to encrypt the observed NACK's (ks)
+ * The parity bits (par)
+ * It returns a zero terminated list of possible cipher states after the
+ * tag nonce was fed in
+ */
+struct Crypto1State*
+lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
+{
+       struct Crypto1State *statelist, *s;
+       uint32_t *odd, *even, *o, *e, top;
+
+       odd = lfsr_prefix_ks(ks, 1);
+       even = lfsr_prefix_ks(ks, 0);
+
+       statelist = malloc((sizeof *statelist) << 21);  //how large should be?
+       if(!statelist || !odd || !even)
+       {
+                               free(statelist);
+                               free(odd);
+                               free(even);
+                               return 0;
+       }
+
+       s = statelist;
+       for(o = odd; *o != -1; ++o)
+               for(e = even; *e != -1; ++e)
+                       for(top = 0; top < 64; ++top) {
+                               *o = (*o & 0x1fffff) | (top << 21);
+                               *e = (*e & 0x1fffff) | (top >> 3) << 21;
+                               s = brute_top(pfx, rr, par, *o, *e, s);
+                       }
+
+       s->odd = s->even = -1;
+       //printf("state count = %d\n",s-statelist);
+
+       free(odd);
+       free(even);
+
+       return statelist;
+}
Impressum, Datenschutz