// The A/D samples at that same rate and the result is serialized.
//
// Jonathan Westhues, April 2006
+// iZsh <izsh at fail0verflow.com>, June 2014
//-----------------------------------------------------------------------------
module lo_read(
- pck0, ck_1356meg, ck_1356megb,
- pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
- adc_d, adc_clk,
- ssp_frame, ssp_din, ssp_dout, ssp_clk,
- cross_hi, cross_lo,
- dbg,
- lo_is_125khz, divisor
+ input pck0, input [7:0] pck_cnt, input pck_divclk,
+ output pwr_lo, output pwr_hi,
+ output pwr_oe1, output pwr_oe2, output pwr_oe3, output pwr_oe4,
+ input [7:0] adc_d, output adc_clk,
+ output ssp_frame, output ssp_din, output ssp_clk,
+ output dbg,
+ input lf_field
);
- input pck0, ck_1356meg, ck_1356megb;
- output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
- input [7:0] adc_d;
- output adc_clk;
- input ssp_dout;
- output ssp_frame, ssp_din, ssp_clk;
- input cross_hi, cross_lo;
- output dbg;
- input lo_is_125khz; // redundant signal, no longer used anywhere
- input [7:0] divisor;
reg [7:0] to_arm_shiftreg;
-reg [7:0] pck_divider;
-reg ant_lo;
-
-// this task runs on the rising egde of pck0 clock (24Mhz) and creates ant_lo
-// which is high for (divisor+1) pck0 cycles and low for the same duration
-// ant_lo is therefore a 50% duty cycle clock signal with a frequency of
-// 12Mhz/(divisor+1) which drives the antenna as well as the ADC clock adc_clk
-always @(posedge pck0)
-begin
- if(pck_divider == divisor[7:0])
- begin
- pck_divider <= 8'd0;
- ant_lo = !ant_lo;
- end
- else
- begin
- pck_divider <= pck_divider + 1;
- end
-end
// this task also runs at pck0 frequency (24Mhz) and is used to serialize
// the ADC output which is then clocked into the ARM SSP.
-// because ant_lo always transitions when pck_divider = 0 we use the
-// pck_divider counter to sync our other signals off it
-// we read the ADC value when pck_divider=7 and shift it out on counts 8..15
+// because pck_divclk always transitions when pck_cnt = 0 we use the
+// pck_div counter to sync our other signals off it
+// we read the ADC value when pck_cnt=7 and shift it out on counts 8..15
always @(posedge pck0)
begin
- if((pck_divider == 8'd7) && !ant_lo)
- to_arm_shiftreg <= adc_d;
- else
- begin
- to_arm_shiftreg[7:1] <= to_arm_shiftreg[6:0];
+ if((pck_cnt == 8'd7) && !pck_divclk)
+ to_arm_shiftreg <= adc_d;
+ else begin
+ to_arm_shiftreg[7:1] <= to_arm_shiftreg[6:0];
// simulation showed a glitch occuring due to the LSB of the shifter
// not being set as we shift bits out
// this ensures the ssp_din remains low after a transfer and suppresses
// the glitch that would occur when the last data shifted out ended in
// a 1 bit and the next data shifted out started with a 0 bit
- to_arm_shiftreg[0] <= 1'b0;
+ to_arm_shiftreg[0] <= 1'b0;
end
end
// ssp_clk |_| |_| |_| |_| |_| |_| |_| |_| |_| |_
// serialized SSP data is gated by ant_lo to suppress unwanted signal
-assign ssp_din = to_arm_shiftreg[7] && !ant_lo;
+assign ssp_din = to_arm_shiftreg[7] && !pck_divclk;
// SSP clock always runs at 24Mhz
assign ssp_clk = pck0;
// SSP frame is gated by ant_lo and goes high when pck_divider=8..15
-assign ssp_frame = (pck_divider[7:3] == 5'd1) && !ant_lo;
+assign ssp_frame = (pck_cnt[7:3] == 5'd1) && !pck_divclk;
// unused signals tied low
assign pwr_hi = 1'b0;
assign pwr_oe1 = 1'b0;
assign pwr_oe3 = 1'b0;
assign pwr_oe4 = 1'b0;
// this is the antenna driver signal
-assign pwr_lo = ant_lo;
+assign pwr_lo = lf_field & pck_divclk;
// ADC clock out of phase with antenna driver
-assign adc_clk = ~ant_lo;
+assign adc_clk = ~pck_divclk;
// ADC clock also routed to debug pin
assign dbg = adc_clk;
endmodule