// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
-#include "../include/proxmark3.h"
+#include "proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "../common/crc16.h"
-#include "../common/lfdemod.h"
+#include "hitag2.h"
+#include "crc16.h"
#include "string.h"
-#include "crapto1.h"
-#include "mifareutil.h"
-#include "../include/hitag2.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "usb_cdc.h"
-// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
-// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
-// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
-// T0 = TIMER_CLOCK1 / 125000 = 192
-#define T0 192
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
-void LFSetupFPGAForADC(int divisor, bool lf_field)
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else if (divisor == 0)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(150);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-}
-void AcquireRawAdcSamples125k(int divisor)
-{
- LFSetupFPGAForADC(divisor, true);
- DoAcquisition125k();
-}
+ int divisor_used = 95; // 125 KHz
+ // see if 'h' was specified
-void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
-{
- LFSetupFPGAForADC(divisor, false);
- DoAcquisition125k_threshold(trigger_threshold);
-}
+ if (command[strlen((char *) command) - 1] == 'h')
+ divisor_used = 88; // 134.8 KHz
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k_internal(int trigger_threshold, bool silent)
-{
- uint8_t *dest = (uint8_t *)BigBuf;
- uint16_t i = 0;
- memset(dest, 0x00, BIGBUF_SIZE);
+ sample_config sc = { 0,0,1, divisor_used, 0};
+ setSamplingConfig(&sc);
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- LED_D_OFF();
- if (trigger_threshold != -1 && dest[i] < trigger_threshold)
- continue;
- else
- trigger_threshold = -1;
- if (++i >= BIGBUF_SIZE) break;
- }
- }
- if (!silent){
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
- }
-}
-void DoAcquisition125k_threshold(int trigger_threshold) {
- DoAcquisition125k_internal(trigger_threshold, true);
-}
-void DoAcquisition125k() {
- DoAcquisition125k_internal(-1, true);
-}
-
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-
/* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
- int divisor = 95; // 125 KHz
- // see if 'h' was specified
- if (command[strlen((char *) command) - 1] == 'h')
- divisor = 88; // 134.8 KHz
+ LFSetupFPGAForADC(sc.divisor, 1);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
+ // And a little more time for the tag to fully power up
SpinDelay(2000);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition125k(-1);
+ DoAcquisition_config(false);
}
+
+
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
- #define FSAMPLE 2000000
- #define FREQLO 123200
- #define FREQHI 134200
-
- signed char *dest = (signed char *)BigBuf;
- int n = sizeof(BigBuf);
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+ signed char *dest = (signed char *)BigBuf_get_addr();
+ uint16_t n = BigBuf_max_traceLen();
// 128 bit shift register [shift3:shift2:shift1:shift0]
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
- shift0 = (shift0>>1) | (shift1 << 31);
- shift1 = (shift1>>1) | (shift2 << 31);
- shift2 = (shift2>>1) | (shift3 << 31);
- shift3 >>= 1;
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if (cycles!=0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
- // put 64 bit data into shift1 and shift0
- shift0 = (shift0>>24) | (shift1 << 8);
- shift1 = (shift1>>24) | (shift2 << 8);
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
- if ( shift3&(1<<15) ) {
+ if (shift3 & (1<<15) ) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
- if ( ((shift3>>16)^shift0)&0x7fff ) {
+ if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
// calculate CRC
uint32_t crc=0;
- crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0)&0xff);
crc = update_crc16(crc, (shift0>>8)&0xff);
crc = update_crc16(crc, (shift0>>16)&0xff);
crc = update_crc16(crc, (shift0>>24)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
Dbprintf("Info: Tag data: %x%08x, crc=%x",
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2&0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
{
if (b&(1<<i)) {
// stop modulating antenna
- SHORT_COIL();
+ LOW(GPIO_SSC_DOUT);
SpinDelayUs(1000);
// modulate antenna
- OPEN_COIL();
+ HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1000);
} else {
// stop modulating antenna
- SHORT_COIL();
+ LOW(GPIO_SSC_DOUT);
SpinDelayUs(300);
// modulate antenna
- OPEN_COIL();
+ HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1700);
}
}
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
- #define TIBUFLEN 1250
+ #define TIBUFLEN 1250
// clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
+ uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+ memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
- char *dest = (char *)BigBuf;
+ char *dest = (char *)BigBuf_get_addr();
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
- crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
crc = update_crc16(crc, (idlo>>16)&0xff);
crc = update_crc16(crc, (idlo>>24)&0xff);
crc = update_crc16(crc, (idhi>>24)&0xff);
}
Dbprintf("Writing to tag: %x%08x, crc=%x",
- (unsigned int) idhi, (unsigned int) idlo, crc);
+ (unsigned int) idhi, (unsigned int) idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use tiread to check");
+ DbpString("Now use 'lf ti read' to check");
}
-
-
-// PIO_CODR = Clear Output Data Register
-// PIO_SODR = Set Output Data Register
-//#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
-//#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
-void SimulateTagLowFrequency( uint16_t period, uint32_t gap, uint8_t ledcontrol)
+void SimulateTagLowFrequency(uint16_t period, uint32_t gap, uint8_t ledcontrol)
{
- LED_D_ON();
-
- uint16_t i = 0;
- uint8_t send = 0;
-
- //int overflow = 0;
- uint8_t *buf = (uint8_t *)BigBuf;
+ int i;
+ uint8_t *tab = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- RELAY_OFF();
-
- // Configure output pin that is connected to the FPGA (for modulating)
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
- AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
- SHORT_COIL();
+ AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
- // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
-
- // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
- AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
-
- // Disable timer during configuration
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
- // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
- // external trigger rising edge, load RA on rising edge of TIOA.
- AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
-
- // Enable and reset counter
- //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+ AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
- while(!BUTTON_PRESS()) {
- WDT_HIT();
-
- // Receive frame, watch for at most T0*EOF periods
- while (AT91C_BASE_TC1->TC_CV < T0 * 55) {
-
- // Check if rising edge in modulation is detected
- if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- // Retrieve the new timing values
- //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
- //Dbprintf("Timing value - %d %d", ra, overflow);
- //overflow = 0;
-
- // Reset timer every frame, we have to capture the last edge for timing
- AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- send = 1;
-
- LED_B_ON();
- }
- }
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
- if ( send ) {
- // Disable timer 1 with external trigger to avoid triggers during our own modulation
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
-
- // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
- // not that since the clock counts since the rising edge, but T_Wait1 is
- // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
- // periods. The gap time T_Low varies (4..10). All timer values are in
- // terms of T0 units
- while(AT91C_BASE_TC0->TC_CV < T0 * 16 );
-
- // datat kommer in som 1 bit för varje position i arrayn
- for(i = 0; i < period; ++i) {
-
- // Reset clock for the next bit
- AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
-
- if ( buf[i] > 0 )
- HIGH(GPIO_SSC_DOUT);
- else
- LOW(GPIO_SSC_DOUT);
-
- while(AT91C_BASE_TC0->TC_CV < T0 * 1 );
+ i = 0;
+ for(;;) {
+ //wait until SSC_CLK goes HIGH
+ while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
+ if(BUTTON_PRESS() || usb_poll()) {
+ DbpString("Stopped");
+ return;
}
- // Drop modulation
- LOW(GPIO_SSC_DOUT);
-
- // Enable and reset external trigger in timer for capturing future frames
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
- LED_B_OFF();
+ WDT_HIT();
}
-
- send = 0;
-
- // Save the timer overflow, will be 0 when frame was received
- //overflow += (AT91C_BASE_TC1->TC_CV/T0);
-
- // Reset the timer to restart while-loop that receives frames
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
- }
-
- LED_B_OFF();
- LED_D_OFF();
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-
- DbpString("Sim Stopped");
-}
-
+ if (ledcontrol)
+ LED_D_ON();
-void SimulateTagLowFrequencyA(int len, int gap)
-{
- uint8_t *buf = (uint8_t *)BigBuf;
+ if(tab[i])
+ OPEN_COIL();
+ else
+ SHORT_COIL();
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); // new izsh toggle mode!
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ if (ledcontrol)
+ LED_D_OFF();
+ //wait until SSC_CLK goes LOW
+ while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
+ if(BUTTON_PRESS()) {
+ DbpString("Stopped");
+ return;
+ }
+ WDT_HIT();
+ }
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
- SpinDelay(5);
-
- AT91C_BASE_SSC->SSC_THR = 0x00;
-
- int i = 0;
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-
- if ( buf[i] > 0 )
- AT91C_BASE_SSC->SSC_THR = 0x43;
- else
- AT91C_BASE_SSC->SSC_THR = 0x00;
+ i++;
+ if(i == period) {
- ++i;
- LED_A_ON();
- if (i >= len){
- i = 0;
+ i = 0;
+ if (gap) {
+ SHORT_COIL();
+ SpinDelayUs(gap);
}
}
-
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- LED_A_OFF();
- }
}
- DbpString("lf simulate stopped");
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
#define DEBUG_FRAME_CONTENTS 1
{
}
-// compose fc/8 fc/10 waveform
-static void fc(int c, uint16_t *n) {
- uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+ uint8_t *dest = BigBuf_get_addr();
int idx;
// for when we want an fc8 pattern every 4 logical bits
- if(c == 0) {
+ if(c==0) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c == 8) {
+
+ // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
+ if(c==8) {
for (idx=0; idx<6; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c == 10) {
- for (idx = 0; idx < 5; idx++) {
+ // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
+ if(c==10) {
+ for (idx=0; idx<5; idx++) {
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
}
}
}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfFC = fc/2;
+ uint8_t wavesPerClock = clock/fc;
+ uint8_t mod = clock % fc; //modifier
+ uint8_t modAdj = fc/mod; //how often to apply modifier
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+ // loop through clock - step field clock
+ for (uint8_t idx=0; idx < wavesPerClock; idx++){
+ // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+ memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ if (mod>0) (*modCnt)++;
+ if ((mod>0) && modAdjOk){ //fsk2
+ if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+ memset(dest+(*n), 0, fc-halfFC);
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ }
+ if (mod>0 && !modAdjOk){ //fsk1
+ memset(dest+(*n), 0, mod-(mod/2));
+ memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+ *n += mod;
+ }
+}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
-void CmdHIDsimTAG(int hi, int lo, uint8_t ledcontrol)
+void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
- uint16_t n = 0, i = 0;
+ int n=0, i=0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
- if (hi > 0xFFF) {
- DbpString("Tags can only have 44 bits.");
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
- fc(0, &n);
+ fc(0,&n);
// special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(8, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
fc(10, &n); fc(10, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
WDT_HIT();
// manchester encode bits 43 to 32
- for (i = 11; i >= 0; i--) {
- if ((i % 4) == 3) fc(0, &n);
- if ((hi >> i) & 1) {
- fc(10, &n); fc(8, &n); // low-high transition
+ for (i=11; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((hi>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
} else {
- fc(8, &n); fc(10, &n); // high-low transition
+ fc(8, &n); fc(10, &n); // high-low transition
}
}
WDT_HIT();
// manchester encode bits 31 to 0
- for (i = 31; i >= 0; i--) {
- if ((i % 4 ) == 3) fc(0, &n);
- if ((lo >> i ) & 1) {
- fc(10, &n); fc(8, &n); // low-high transition
+ for (i=31; i>=0; i--) {
+ if ((i%4)==3) fc(0,&n);
+ if ((lo>>i)&1) {
+ fc(10, &n); fc(8, &n); // low-high transition
+ } else {
+ fc(8, &n); fc(10, &n); // high-low transition
+ }
+ }
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t fcHigh = arg1 >> 8;
+ uint8_t fcLow = arg1 & 0xFF;
+ uint16_t modCnt = 0;
+ uint8_t clk = arg2 & 0xFF;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ for (i=0; i<size; i++){
+ if (BitStream[i] == invert){
+ fcAll(fcLow, &n, clk, &modCnt);
} else {
- fc(8, &n); fc(10, &n); // high-low transition
+ fcAll(fcHigh, &n, clk, &modCnt);
+ }
+ }
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+ /*Dbprintf("DEBUG: First 32:");
+ uint8_t *dest = BigBuf_get_addr();
+ i=0;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ i+=16;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ */
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ // c = current bit 1 or 0
+ if (manchester==1){
+ memset(dest+(*n), c, halfClk);
+ memset(dest+(*n) + halfClk, c^1, halfClk);
+ } else {
+ memset(dest+(*n), c, clock);
+ }
+ *n += clock;
+}
+
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ if (c){
+ memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+ memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+ } else {
+ memset(dest+(*n), c ^ *phase, clock);
+ *phase ^= 1;
+ }
+
+}
+
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol = 1;
+ int n=0, i=0;
+ uint8_t clk = (arg1 >> 8) & 0xFF;
+ uint8_t encoding = arg1 & 1;
+ uint8_t separator = arg2 & 1;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ if (encoding==2){ //biphase
+ uint8_t phase=0;
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ }
+ } else { // ask/manchester || ask/raw
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert, &n, clk, encoding);
+ }
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
+ }
}
}
+
+ if (separator==1) Dbprintf("sorry but separator option not yet available");
+
+ Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+ //DEBUG
+ //Dbprintf("First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
if (ledcontrol)
LED_A_ON();
LED_A_OFF();
}
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfWave = waveLen/2;
+ //uint8_t idx;
+ int i = 0;
+ if (phaseChg){
+ // write phase change
+ memset(dest+(*n), *curPhase^1, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase, halfWave);
+ *n += waveLen;
+ *curPhase ^= 1;
+ i += waveLen;
+ }
+ //write each normal clock wave for the clock duration
+ for (; i < clk; i+=waveLen){
+ memset(dest+(*n), *curPhase, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+ *n += waveLen;
+ }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t clk = arg1 >> 8;
+ uint8_t carrier = arg1 & 0xFF;
+ uint8_t invert = arg2 & 0xFF;
+ uint8_t curPhase = 0;
+ for (i=0; i<size; i++){
+ if (BitStream[i] == curPhase){
+ pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+ } else {
+ pskSimBit(carrier, &n, clk, &curPhase, TRUE);
+ }
+ }
+ Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+ //Dbprintf("DEBUG: First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- uint32_t hi2 = 0, hi = 0, lo = 0;
-
+ uint8_t *dest = BigBuf_get_addr();
+ //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+ size_t size = 0;
+ uint32_t hi2=0, hi=0, lo=0;
+ int idx=0;
// Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(0, true);
+ LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
-
+ DoAcquisition_default(-1,true);
// FSK demodulator
- int bitLen = HIDdemodFSK(dest,BIGBUF_SIZE,&hi2,&hi,&lo);
-
- WDT_HIT();
-
- if (bitLen > 0 && lo > 0){
-
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-
- if (hi2 != 0){
- //extra large HID tags
+ //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+
+ if (idx>0 && lo>0 && (size==96 || size==192)){
+ // go over previously decoded manchester data and decode into usable tag ID
+ if (hi2 != 0){ //extra large HID tags 88/192 bits
Dbprintf("TAG ID: %x%08x%08x (%d)",
- (unsigned int) hi2,
- (unsigned int) hi,
- (unsigned int) lo,
- (unsigned int) (lo >> 1) & 0xFFFF);
-
- } else {
- //standard HID tags <38 bits
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }else { //standard HID tags 44/96 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
-
- if ((( hi >> 5 ) & 1) ==1){//if bit 38 is set then < 37 bit format is used
- uint32_t lo2 = 0;
- lo2 = (((hi & 31) << 12) | (lo >> 20)); //get bits 21-37 to check for format len bit
+ if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2 > 1){ //find last bit set to 1 (format len bit)
- lo2 = lo2 >> 1;
+ lo2=lo2 >> 1;
idx3++;
}
- bitlen =idx3 + 19;
- fc = 0;
- cardnum = 0;
+ bitlen = idx3+19;
+ fc =0;
+ cardnum=0;
if(bitlen == 26){
- cardnum = (lo >> 1) & 0xFFFF;
- fc = (lo >> 17) & 0xFF;
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
}
if(bitlen == 37){
- cardnum = (lo >> 1) & 0x7FFFF;
- fc = ((hi & 0xF) << 12)|( lo >> 20);
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen == 34){
- cardnum = (lo >> 1) & 0xFFFF;
- fc = ((hi & 1) << 15) | (lo >> 17);
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen == 35){
- cardnum = (lo >> 1 ) & 0xFFFFF;
- fc = ((hi & 1) << 11 ) | ( lo >> 21);
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
- bitlen = 37;
- fc = 0;
- cardnum = 0;
- if(bitlen == 37){
- cardnum = ( lo >> 1) & 0x7FFFF;
- fc = ((hi & 0xF) << 12 ) |(lo >> 20);
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
}
}
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
- (unsigned int) hi,
- (unsigned int) lo,
- (unsigned int) (lo >> 1) & 0xFFFF,
- (unsigned int) bitlen,
- (unsigned int) fc,
- (unsigned int) cardnum);
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
if (findone){
if (ledcontrol) LED_A_OFF();
+ *high = hi;
+ *low = lo;
return;
}
// reset
- hi2 = hi = lo = 0;
}
+ hi2 = hi = lo = idx = 0;
WDT_HIT();
- }
+ }
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- uint32_t bitLen = 0;
- int clk = 0, invert = 0, errCnt = 0;
- uint64_t lo = 0;
-
+ uint8_t *dest = BigBuf_get_addr();
+
+ size_t size=0, idx=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
+ uint32_t hi=0;
+ uint64_t lo=0;
// Configure to go in 125Khz listen mode
- LFSetupFPGAForADC(0, true);
+ LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition125k_internal(-1,true);
+ DoAcquisition_default(-1,true);
+ size = BigBuf_max_traceLen();
+ //askdemod and manchester decode
+ if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+ errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
+ WDT_HIT();
+
+ if (errCnt<0) continue;
- // FSK demodulator
- bitLen = BIGBUF_SIZE;
- errCnt = askmandemod(dest,&bitLen,&clk,&invert);
- if ( errCnt < 0 ) continue;
+ errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+ if (errCnt){
+ if (size>64){
+ Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+ hi,
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ } else {
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ }
- WDT_HIT();
-
- lo = Em410xDecode(dest,bitLen);
-
- if ( lo <= 0) continue;
-
- Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
- (uint32_t)(lo >> 32),
- (uint32_t)lo,
- (uint32_t)(lo & 0xFFFF),
- (uint32_t)((lo >> 16LL) & 0xFF),
- (uint32_t)(lo & 0xFFFFFF)
- );
-
- if (findone){
- if (ledcontrol) LED_A_OFF();
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high=lo>>32;
+ *low=lo & 0xFFFFFFFF;
return;
+ }
}
-
WDT_HIT();
- lo = clk = invert = errCnt = 0;
+ hi = lo = size = idx = 0;
+ clk = invert = errCnt = 0;
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
- uint8_t *dest = (uint8_t *)BigBuf;
- int idx = 0;
- uint32_t code = 0, code2 = 0;
- uint8_t version = 0;
- uint8_t facilitycode = 0;
- uint16_t number = 0;
-
- LFSetupFPGAForADC(0, true);
+ uint8_t *dest = BigBuf_get_addr();
+ int idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
+ uint8_t crc = 0;
+ uint16_t calccrc = 0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
-
WDT_HIT();
if (ledcontrol) LED_A_ON();
-
- DoAcquisition125k_internal(-1, true);
-
- idx = IOdemodFSK(dest, BIGBUF_SIZE);
-
- if ( idx < 0 )
- continue;
-
+ DoAcquisition_default(-1,true);
+ //fskdemod and get start index
WDT_HIT();
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+ if (idx<0) continue;
+ //valid tag found
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
+ //
+ //Checksum:
+ //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
+ //preamble F0 E0 01 03 B6 75
+ // How to calc checksum,
+ // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
+ // F0 + E0 + 01 + 03 + B6 = 28A
+ // 28A & FF = 8A
+ // FF - 8A = 75
+ // Checksum: 0x75
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+18,8);
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ crc = bytebits_to_byte(dest+idx+54,8);
+ for (uint8_t i=1; i<6; ++i)
+ calccrc += bytebits_to_byte(dest+idx+9*i,8);
+ calccrc &= 0xff;
+ calccrc = 0xff - calccrc;
+
+ char *crcStr = (crc == calccrc) ? "ok":"!crc";
- //Index map
- //0 10 20 30 40 50 60
- //| | | | | | |
- //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
- //-----------------------------------------------------------------------------
- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
- //
- //XSF(version)facility:codeone+codetwo
- //Handle the data
-
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
-
- code = bytebits_to_byte(dest+idx,32);
- code2 = bytebits_to_byte(dest+idx+32,32);
- version = bytebits_to_byte(dest+idx+27,8); //14,4
- facilitycode = bytebits_to_byte(dest+idx+18,8) ;
- number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
-
- Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)", version, facilitycode, number, code, code2);
- if (findone){
- if (ledcontrol) LED_A_OFF();
+ Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ *high=code;
+ *low=code2;
return;
- }
- code = code2 = 0;
- version = facilitycode = 0;
- number = 0;
- idx = 0;
- }
+ }
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
+ idx=0;
- DbpString("Stopped");
+ WDT_HIT();
+ }
+ DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
*/
/* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY 0x00000001
-#define T55x7_ST_TERMINATOR 0x00000008
-#define T55x7_PWD 0x00000010
+#define T55x7_POR_DELAY 0x00000001
+#define T55x7_ST_TERMINATOR 0x00000008
+#define T55x7_PWD 0x00000010
#define T55x7_MAXBLOCK_SHIFT 5
-#define T55x7_AOR 0x00000200
-#define T55x7_PSKCF_RF_2 0
-#define T55x7_PSKCF_RF_4 0x00000400
-#define T55x7_PSKCF_RF_8 0x00000800
+#define T55x7_AOR 0x00000200
+#define T55x7_PSKCF_RF_2 0
+#define T55x7_PSKCF_RF_4 0x00000400
+#define T55x7_PSKCF_RF_8 0x00000800
#define T55x7_MODULATION_DIRECT 0
#define T55x7_MODULATION_PSK1 0x00001000
#define T55x7_MODULATION_PSK2 0x00002000
#define T55x7_MODULATION_FSK2a 0x00007000
#define T55x7_MODULATION_MANCHESTER 0x00008000
#define T55x7_MODULATION_BIPHASE 0x00010000
-#define T55x7_BITRATE_RF_8 0
-#define T55x7_BITRATE_RF_16 0x00040000
-#define T55x7_BITRATE_RF_32 0x00080000
-#define T55x7_BITRATE_RF_40 0x000C0000
-#define T55x7_BITRATE_RF_50 0x00100000
-#define T55x7_BITRATE_RF_64 0x00140000
+#define T55x7_BITRATE_RF_8 0
+#define T55x7_BITRATE_RF_16 0x00040000
+#define T55x7_BITRATE_RF_32 0x00080000
+#define T55x7_BITRATE_RF_40 0x000C0000
+#define T55x7_BITRATE_RF_50 0x00100000
+#define T55x7_BITRATE_RF_64 0x00140000
#define T55x7_BITRATE_RF_100 0x00180000
#define T55x7_BITRATE_RF_128 0x001C0000
/* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR 0x00000001
+#define T5555_ST_TERMINATOR 0x00000001
#define T5555_MAXBLOCK_SHIFT 0x00000001
#define T5555_MODULATION_MANCHESTER 0
#define T5555_MODULATION_PSK1 0x00000010
#define T5555_MODULATION_FSK2 0x00000050
#define T5555_MODULATION_BIPHASE 0x00000060
#define T5555_MODULATION_DIRECT 0x00000070
-#define T5555_INVERT_OUTPUT 0x00000080
-#define T5555_PSK_RF_2 0
-#define T5555_PSK_RF_4 0x00000100
-#define T5555_PSK_RF_8 0x00000200
-#define T5555_USE_PWD 0x00000400
-#define T5555_USE_AOR 0x00000800
-#define T5555_BITRATE_SHIFT 12
-#define T5555_FAST_WRITE 0x00004000
-#define T5555_PAGE_SELECT 0x00008000
+#define T5555_INVERT_OUTPUT 0x00000080
+#define T5555_PSK_RF_2 0
+#define T5555_PSK_RF_4 0x00000100
+#define T5555_PSK_RF_8 0x00000200
+#define T5555_USE_PWD 0x00000400
+#define T5555_USE_AOR 0x00000800
+#define T5555_BITRATE_SHIFT 12
+#define T5555_FAST_WRITE 0x00004000
+#define T5555_PAGE_SELECT 0x00008000
/*
* Relevant times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
*/
-#define START_GAP 30*8 // 10 - 50fc 250
+#define START_GAP 50*8 // 10 - 50fc 250
#define WRITE_GAP 20*8 // 8 - 30fc
#define WRITE_0 24*8 // 16 - 31fc 24fc 192
#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
// These timings work for 4469/4269/4305 (with the 55*8 above)
// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
-#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
+// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
+// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
+// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
+// T0 = TIMER_CLOCK1 / 125000 = 192
+// 1 Cycle = 8 microseconds(us)
+
+#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
// Write one bit to card
void T55xxWriteBit(int bit)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
+void TurnReadLFOn(){
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelayUs(8*150);
+}
+
+
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
- uint8_t *dest = get_bigbufptr_recvrespbuf();
- uint16_t bufferlength = T55xx_SAMPLES_SIZE;
uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength = T55xx_SAMPLES_SIZE;
- // Clear destination buffer before sending the command 0x80 = average.
+ // Clear destination buffer before sending the command
memset(dest, 0x80, bufferlength);
// Set up FPGA, 125kHz
// Wait for config.. (192+8190xPOW)x8 == 67ms
LFSetupFPGAForADC(0, true);
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
-
+
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
// Block
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
-
+
// Turn field on to read the response
TurnReadLFOn();
-
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
- //AT91C_BASE_SSC->SSC_THR = 0xff;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- ++i;
+ i++;
LED_D_OFF();
if (i >= bufferlength) break;
}
}
-
- cmd_send(CMD_ACK,0,0,0,0,0);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
// Read card traceability data (page 1)
void T55xxReadTrace(void){
- uint8_t *dest = get_bigbufptr_recvrespbuf();
- uint16_t bufferlength = T55xx_SAMPLES_SIZE;
- uint32_t i = 0;
- // Clear destination buffer before sending the command 0x80 = average
- memset(dest, 0x80, bufferlength);
-
+ uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength= T55xx_SAMPLES_SIZE;
+
+ // Clear destination buffer before sending the command
+ memset(dest, 0x80, bufferlength);
+
LFSetupFPGAForADC(0, true);
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
-
+
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(1); //Page 1
-
+
// Turn field on to read the response
TurnReadLFOn();
-
+
// Now do the acquisition
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- ++i;
+ i++;
LED_D_OFF();
-
+
if (i >= bufferlength) break;
}
}
-
+
cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
-void TurnReadLFOn(){
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
- //SpinDelay(30);
- SpinDelayUs(8*150);
-}
-
/*-------------- Cloning routines -----------*/
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
{
int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
int last_block = 0;
-
- if (longFMT){
- // Ensure no more than 84 bits supplied
- if (hi2>0xFFFFF) {
- DbpString("Tags can only have 84 bits.");
- return;
- }
- // Build the 6 data blocks for supplied 84bit ID
- last_block = 6;
- data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
- for (int i=0;i<4;i++) {
- if (hi2 & (1<<(19-i)))
- data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((3-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (hi2 & (1<<(15-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(31-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data4 = 0;
- for (int i=0;i<16;i++) {
- if (hi & (1<<(15-i)))
- data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data4 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data5 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data5 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data6 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data6 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
- else {
- // Ensure no more than 44 bits supplied
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
-
- // Build the 3 data blocks for supplied 44bit ID
- last_block = 3;
-
- data1 = 0x1D000000; // load preamble
-
- for (int i=0;i<12;i++) {
- if (hi & (1<<(11-i)))
- data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
- else
- data1 |= (1<<((11-i)*2)); // 0 -> 01
- }
-
- data2 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(31-i)))
- data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data2 |= (1<<((15-i)*2)); // 0 -> 01
- }
-
- data3 = 0;
- for (int i=0;i<16;i++) {
- if (lo & (1<<(15-i)))
- data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
- else
- data3 |= (1<<((15-i)*2)); // 0 -> 01
- }
- }
-
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+ for (int i=0;i<4;i++) {
+ if (hi2 & (1<<(19-i)))
+ data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((3-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi2 & (1<<(15-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(31-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data4 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(15-i)))
+ data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data4 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data5 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data5 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data6 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data6 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+ else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+
+ data1 = 0x1D000000; // load preamble
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data1,1,0,0);
T55xxWriteBlock(data2,2,0,0);
T55xxWriteBlock(data3,3,0,0);
-
+
if (longFMT) { // if long format there are 6 blocks
- T55xxWriteBlock(data4,4,0,0);
- T55xxWriteBlock(data5,5,0,0);
- T55xxWriteBlock(data6,6,0,0);
- }
-
+ T55xxWriteBlock(data4,4,0,0);
+ T55xxWriteBlock(data5,5,0,0);
+ T55xxWriteBlock(data6,6,0,0);
+ }
+
// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
- T55xxWriteBlock(T55x7_BITRATE_RF_50 |
- T55x7_MODULATION_FSK2a |
- last_block << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
-
+ T55xxWriteBlock(T55x7_BITRATE_RF_50 |
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+
LED_D_OFF();
-
+
DbpString("DONE!");
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
{
- int data1=0, data2=0; //up to six blocks for long format
-
- data1 = hi; // load preamble
- data2 = lo;
-
- LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
- T55xxWriteBlock(data1,1,0,0);
- T55xxWriteBlock(data2,2,0,0);
-
- //Config Block
- T55xxWriteBlock(0x00147040,0,0,0);
- LED_D_OFF();
-
- DbpString("DONE!");
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
}
// Define 9bit header for EM410x tags
Dbprintf("Clock rate: %d", clock);
switch (clock)
{
- case 32:
- clock = T55x7_BITRATE_RF_32;
- break;
- case 16:
- clock = T55x7_BITRATE_RF_16;
- break;
- case 0:
- // A value of 0 is assumed to be 64 for backwards-compatibility
- // Fall through...
- case 64:
- clock = T55x7_BITRATE_RF_64;
- break;
- default:
- Dbprintf("Invalid clock rate: %d", clock);
- return;
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
}
// Writing configuration for T55x7 tag
T55xxWriteBlock(clock |
- T55x7_MODULATION_MANCHESTER |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
- }
+ T55x7_MODULATION_MANCHESTER |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ }
else
// Writing configuration for T5555(Q5) tag
T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
- T5555_MODULATION_MANCHESTER |
- 2 << T5555_MAXBLOCK_SHIFT,
- 0, 0, 0);
+ T5555_MODULATION_MANCHESTER |
+ 2 << T5555_MAXBLOCK_SHIFT,
+ 0, 0, 0);
LED_D_OFF();
Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
- (uint32_t)(id >> 32), (uint32_t)id);
+ (uint32_t)(id >> 32), (uint32_t)id);
}
// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(int hi, int lo)
{
+
//Program the 2 data blocks for supplied 64bit UID
// and the block 0 for Indala64 format
T55xxWriteBlock(hi,1,0,0);
T55xxWriteBlock(lo,2,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 2 << T55x7_MAXBLOCK_SHIFT,
- 0, 0, 0);
+ T55x7_MODULATION_PSK1 |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
DbpString("DONE!");
-}
+
+}
void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
{
+
//Program the 7 data blocks for supplied 224bit UID
// and the block 0 for Indala224 format
T55xxWriteBlock(uid1,1,0,0);
T55xxWriteBlock(uid7,7,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
- T55x7_MODULATION_PSK1 |
- 7 << T55x7_MAXBLOCK_SHIFT,
- 0,0,0);
+ T55x7_MODULATION_PSK1 |
+ 7 << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
DbpString("DONE!");
+
}
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
- uint8_t BitStream[256];
- uint8_t Blocks[8][16];
- uint8_t *GraphBuffer = (uint8_t *)BigBuf;
- int GraphTraceLen = sizeof(BigBuf);
+
+ uint8_t bits[256] = {0x00};
+ uint8_t blocks[8][16];
+ uint8_t *dest = BigBuf_get_addr();
+
+ int GraphTraceLen = BigBuf_max_traceLen();
+ if ( GraphTraceLen > 18000 )
+ GraphTraceLen = 18000;
+
+
int i, j, lastval, bitidx, half_switch;
int clock = 64;
int tolerance = clock / 8;
int num_blocks = 0;
int lmin=128, lmax=128;
uint8_t dir;
-
- AcquireRawAdcSamples125k(0);
-
+
+ LFSetupFPGAForADC(95, true);
+ DoAcquisition_default(0, true);
+
lmin = 64;
lmax = 192;
-
+
i = 2;
-
+
/* Find first local max/min */
- if(GraphBuffer[1] > GraphBuffer[0]) {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
- break;
- i++;
- }
- dir = 0;
+ if(dest[1] > dest[0]) {
+ while(i < GraphTraceLen) {
+ if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
+ break;
+ i++;
+ }
+ dir = 0;
}
else {
- while(i < GraphTraceLen) {
- if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
- break;
- i++;
- }
- dir = 1;
+ while(i < GraphTraceLen) {
+ if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
+ break;
+ i++;
+ }
+ dir = 1;
}
-
+
lastval = i++;
half_switch = 0;
pmc = 0;
block_done = 0;
-
+
for (bitidx = 0; i < GraphTraceLen; i++)
{
- if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
- {
- lc = i - lastval;
- lastval = i;
-
- // Switch depending on lc length:
- // Tolerance is 1/8 of clock rate (arbitrary)
- if (abs(lc-clock/4) < tolerance) {
- // 16T0
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33+16)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else {
- pmc = i;
- }
- } else if (abs(lc-clock/2) < tolerance) {
- // 32TO
- if((i - pmc) == lc) { /* 16T0 was previous one */
- /* It's a PMC ! */
- i += (128+127+16+32+33)-1;
- lastval = i;
- pmc = 0;
- block_done = 1;
- }
- else if(half_switch == 1) {
- BitStream[bitidx++] = 0;
- half_switch = 0;
- }
- else
- half_switch++;
- } else if (abs(lc-clock) < tolerance) {
- // 64TO
- BitStream[bitidx++] = 1;
- } else {
- // Error
- warnings++;
- if (warnings > 10)
- {
- Dbprintf("Error: too many detection errors, aborting.");
- return 0;
- }
- }
-
- if(block_done == 1) {
- if(bitidx == 128) {
- for(j=0; j<16; j++) {
- Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
- 64*BitStream[j*8+6]+
- 32*BitStream[j*8+5]+
- 16*BitStream[j*8+4]+
- 8*BitStream[j*8+3]+
- 4*BitStream[j*8+2]+
- 2*BitStream[j*8+1]+
- BitStream[j*8];
- }
- num_blocks++;
- }
- bitidx = 0;
- block_done = 0;
- half_switch = 0;
- }
- if(i < GraphTraceLen)
- {
- if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
- else dir = 1;
- }
- }
- if(bitidx==255)
- bitidx=0;
- warnings = 0;
- if(num_blocks == 4) break;
+ if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
+ {
+ lc = i - lastval;
+ lastval = i;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ bits[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ bits[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
+ }
+ }
+
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ blocks[num_blocks][j] = 128*bits[j*8+7]+
+ 64*bits[j*8+6]+
+ 32*bits[j*8+5]+
+ 16*bits[j*8+4]+
+ 8*bits[j*8+3]+
+ 4*bits[j*8+2]+
+ 2*bits[j*8+1]+
+ bits[j*8];
+
+ }
+ num_blocks++;
+ }
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
+ }
+ if(i < GraphTraceLen)
+ dir =(dest[i-1] > dest[i]) ? 0 : 1;
+ }
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
}
- memcpy(outBlocks, Blocks, 16*num_blocks);
+ memcpy(outBlocks, blocks, 16*num_blocks);
return num_blocks;
}
int IsBlock0PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
- return 1;
+ return 1;
if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
- return 1;
+ return 1;
return 0;
}
int IsBlock1PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
- if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
- return 1;
-
+ if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+ return 1;
+
return 0;
}
+
#define ALLOC 16
void ReadPCF7931() {
int ident = 0;
int error = 0;
int tries = 0;
-
+
memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
+
do {
- memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
- n = DemodPCF7931((uint8_t**)tmpBlocks);
- if(!n)
- error++;
- if(error==10 && num_blocks == 0) {
- Dbprintf("Error, no tag or bad tag");
- return;
- }
- else if (tries==20 || error==10) {
- Dbprintf("Error reading the tag");
- Dbprintf("Here is the partial content");
- goto end;
- }
-
- for(i=0; i<n; i++)
- Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
- tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
- if(!ident) {
- for(i=0; i<n; i++) {
- if(IsBlock0PCF7931(tmpBlocks[i])) {
- // Found block 0 ?
- if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
- // Found block 1!
- // \o/
- ident = 1;
- memcpy(Blocks[0], tmpBlocks[i], 16);
- Blocks[0][ALLOC] = 1;
- memcpy(Blocks[1], tmpBlocks[i+1], 16);
- Blocks[1][ALLOC] = 1;
- max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
- // Debug print
- Dbprintf("(dbg) Max blocks: %d", max_blocks);
- num_blocks = 2;
- // Handle following blocks
- for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
- if(j==n) j=0;
- if(j==i) break;
- memcpy(Blocks[ind2], tmpBlocks[j], 16);
- Blocks[ind2][ALLOC] = 1;
- }
- break;
- }
- }
- }
- }
- else {
- for(i=0; i<n; i++) { // Look for identical block in known blocks
- if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
- for(j=0; j<max_blocks; j++) {
- if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
- // Found an identical block
- for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
- if(ind2 < 0)
- ind2 = max_blocks;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
- if(ind2 > max_blocks)
- ind2 = 0;
- if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
- // Dbprintf("Tmp %d -> Block %d", ind, ind2);
- memcpy(Blocks[ind2], tmpBlocks[ind], 16);
- Blocks[ind2][ALLOC] = 1;
- num_blocks++;
- if(num_blocks == max_blocks) goto end;
- }
- }
- }
- }
- }
- }
- }
- tries++;
- if (BUTTON_PRESS()) return;
+ memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+ n = DemodPCF7931((uint8_t**)tmpBlocks);
+ if(!n)
+ error++;
+ if(error==10 && num_blocks == 0) {
+ Dbprintf("Error, no tag or bad tag");
+ return;
+ }
+ else if (tries==20 || error==10) {
+ Dbprintf("Error reading the tag");
+ Dbprintf("Here is the partial content");
+ goto end;
+ }
+
+ for(i=0; i<n; i++)
+ Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ if(!ident) {
+ for(i=0; i<n; i++) {
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
+ }
+ }
+ }
+ else {
+ for(i=0; i<n; i++) { // Look for identical block in known blocks
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ tries++;
+ if (BUTTON_PRESS()) return;
} while (num_blocks != max_blocks);
-end:
+ end:
Dbprintf("-----------------------------------------");
Dbprintf("Memory content:");
Dbprintf("-----------------------------------------");
for(i=0; i<max_blocks; i++) {
- if(Blocks[i][ALLOC]==1)
- Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
- Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
- Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
- else
- Dbprintf("<missing block %d>", i);
+ if(Blocks[i][ALLOC]==1)
+ Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ else
+ Dbprintf("<missing block %d>", i);
}
Dbprintf("-----------------------------------------");
-
+
return ;
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Cmd( uint8_t cmd ) {
- //--------------------------------------------------------------------
-
- *forward_ptr++ = 0; //start bit
- *forward_ptr++ = 0; //second pause for 4050 code
-
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
- cmd >>= 1;
- *forward_ptr++ = cmd;
-
- return 6; //return number of emited bits
+ //--------------------------------------------------------------------
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
- //--------------------------------------------------------------------
-
- register uint8_t line_parity;
-
- uint8_t i;
- line_parity = 0;
- for(i=0;i<6;i++) {
- *forward_ptr++ = addr;
- line_parity ^= addr;
- addr >>= 1;
- }
-
- *forward_ptr++ = (line_parity & 1);
-
- return 7; //return number of emited bits
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
}
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
- //--------------------------------------------------------------------
-
- register uint8_t line_parity;
- register uint8_t column_parity;
- register uint8_t i, j;
- register uint16_t data;
-
- data = data_low;
- column_parity = 0;
-
- for(i=0; i<4; i++) {
- line_parity = 0;
- for(j=0; j<8; j++) {
- line_parity ^= data;
- column_parity ^= (data & 1) << j;
- *forward_ptr++ = data;
- data >>= 1;
- }
- *forward_ptr++ = line_parity;
- if(i == 1)
- data = data_hi;
- }
-
- for(j=0; j<8; j++) {
- *forward_ptr++ = column_parity;
- column_parity >>= 1;
- }
- *forward_ptr = 0;
-
- return 45; //return number of emited bits
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
}
//====================================================================
// fwd_bit_count set with number of bits to be sent
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
-
- fwd_write_ptr = forwardLink_data;
- fwd_bit_sz = fwd_bit_count;
-
- LED_D_ON();
-
- //Field on
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
- // Give it a bit of time for the resonant antenna to settle.
- // And for the tag to fully power up
- SpinDelay(150);
-
- // force 1st mod pulse (start gap must be longer for 4305)
- fwd_bit_sz--; //prepare next bit modulation
- fwd_write_ptr++;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
-
- // now start writting
- while(fwd_bit_sz-- > 0) { //prepare next bit modulation
- if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
- else {
- //These timings work for 4469/4269/4305 (with the 55*8 above)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
- }
- }
-}
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
+ }
+}
void EM4xLogin(uint32_t Password) {
-
- uint8_t fwd_bit_count;
-
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
- fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-
- SendForward(fwd_bit_count);
-
- //Wait for command to complete
- SpinDelay(20);
-
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
- uint8_t *dest = (uint8_t *)BigBuf;
- uint16_t bufferlength = 12000;
+
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
uint32_t i = 0;
// Clear destination buffer before sending the command 0x80 = average.
memset(dest, 0x80, bufferlength);
- uint8_t fwd_bit_count;
-
+ uint8_t fwd_bit_count;
+
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
-
+
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
-
+
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
-
+
SendForward(fwd_bit_count);
-
- // // Turn field on to read the response
- // TurnReadLFOn();
-
+
// Now do the acquisition
i = 0;
for(;;) {
}
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
- uint8_t fwd_bit_count;
-
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
-
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
- fwd_bit_count += Prepare_Addr( Address );
- fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
-
- SendForward(fwd_bit_count);
-
- //Wait for write to complete
- SpinDelay(20);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
}