// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
+#include "iso14443a.h"
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "cmd.h"
-
#include "iso14443crc.h"
-#include "iso14443a.h"
-#include "crapto1.h"
+#include "crapto1/crapto1.h"
#include "mifareutil.h"
+#include "mifaresniff.h"
+#include "BigBuf.h"
+#include "protocols.h"
+#include "parity.h"
+
+typedef struct {
+ enum {
+ DEMOD_UNSYNCD,
+ // DEMOD_HALF_SYNCD,
+ // DEMOD_MOD_FIRST_HALF,
+ // DEMOD_NOMOD_FIRST_HALF,
+ DEMOD_MANCHESTER_DATA
+ } state;
+ uint16_t twoBits;
+ uint16_t highCnt;
+ uint16_t bitCount;
+ uint16_t collisionPos;
+ uint16_t syncBit;
+ uint8_t parityBits;
+ uint8_t parityLen;
+ uint16_t shiftReg;
+ uint16_t samples;
+ uint16_t len;
+ uint32_t startTime, endTime;
+ uint8_t *output;
+ uint8_t *parity;
+} tDemod;
+
+typedef enum {
+ MOD_NOMOD = 0,
+ MOD_SECOND_HALF,
+ MOD_FIRST_HALF,
+ MOD_BOTH_HALVES
+ } Modulation_t;
+
+typedef struct {
+ enum {
+ STATE_UNSYNCD,
+ STATE_START_OF_COMMUNICATION,
+ STATE_MILLER_X,
+ STATE_MILLER_Y,
+ STATE_MILLER_Z,
+ // DROP_NONE,
+ // DROP_FIRST_HALF,
+ } state;
+ uint16_t shiftReg;
+ int16_t bitCount;
+ uint16_t len;
+ uint16_t byteCntMax;
+ uint16_t posCnt;
+ uint16_t syncBit;
+ uint8_t parityBits;
+ uint8_t parityLen;
+ uint32_t fourBits;
+ uint32_t startTime, endTime;
+ uint8_t *output;
+ uint8_t *parity;
+} tUart;
static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
int rsamples = 0;
-int traceLen = 0;
-int tracing = TRUE;
uint8_t trigger = 0;
// the block number for the ISO14443-4 PCB
static uint8_t iso14_pcb_blocknum = 0;
#define REQUEST_GUARD_TIME (7000/16 + 1)
// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
-// bool LastCommandWasRequest = FALSE;
+// bool LastCommandWasRequest = false;
//
// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
//
-// When the PM acts as reader and is receiving, it takes
-// 3 ticks for the A/D conversion
-// 10 ticks ( 16 on average) delay in the modulation detector.
-// 6 ticks until the SSC samples the first data
-// 7*16 ticks to complete the transfer from FPGA to ARM
-// 8 ticks to the next ssp_clk rising edge
+// When the PM acts as reader and is receiving tag data, it takes
+// 3 ticks delay in the AD converter
+// 16 ticks until the modulation detector completes and sets curbit
+// 8 ticks until bit_to_arm is assigned from curbit
+// 8*16 ticks for the transfer from FPGA to ARM
// 4*16 ticks until we measure the time
// - 8*16 ticks because we measure the time of the previous transfer
-#define DELAY_AIR2ARM_AS_READER (3 + 10 + 6 + 7*16 + 8 + 4*16 - 8*16)
+#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
// When the PM acts as a reader and is sending, it takes
// 4*16 ticks until we can write data to the sending hold register
#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
// When the PM acts as tag and is receiving it takes
-// 12 ticks delay in the RF part,
+// 2 ticks delay in the RF part (for the first falling edge),
// 3 ticks for the A/D conversion,
// 8 ticks on average until the start of the SSC transfer,
// 8 ticks until the SSC samples the first data
// 7*16 ticks to complete the transfer from FPGA to ARM
// 8 ticks until the next ssp_clk rising edge
-// 3*16 ticks until we measure the time
+// 4*16 ticks until we measure the time
// - 8*16 ticks because we measure the time of the previous transfer
-#define DELAY_AIR2ARM_AS_TAG (12 + 3 + 8 + 8 + 7*16 + 8 + 3*16 - 8*16)
+#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
// The FPGA will report its internal sending delay in
uint16_t FpgaSendQueueDelay;
#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
// When the PM acts as tag and is sending, it takes
-// 5*16 ticks until we can write data to the sending hold register
+// 4*16 ticks until we can write data to the sending hold register
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
// 8 ticks until the first transfer starts
// 8 ticks later the FPGA samples the data
// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
// + 1 tick to assign mod_sig_coil
-#define DELAY_ARM2AIR_AS_TAG (5*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
+#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
// When the PM acts as sniffer and is receiving tag data, it takes
// 3 ticks A/D conversion
-// 16 ticks delay in the modulation detector (on average).
-// + 16 ticks until it's result is sampled.
+// 14 ticks to complete the modulation detection
+// 8 ticks (on average) until the result is stored in to_arm
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
-#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 16 + 16)
+#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
-// When the PM acts as sniffer and is receiving tag data, it takes
-// 12 ticks delay in analogue RF receiver
+// When the PM acts as sniffer and is receiving reader data, it takes
+// 2 ticks delay in analogue RF receiver (for the falling edge of the
+// start bit, which marks the start of the communication)
// 3 ticks A/D conversion
-// 8 ticks on average until we sample the data.
+// 8 ticks on average until the data is stored in to_arm.
// + the delays in transferring data - which is the same for
// sniffing reader and tag data and therefore not relevant
-#define DELAY_READER_AIR2ARM_AS_SNIFFER (12 + 3 + 8)
+#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
//variables used for timing purposes:
//these are in ssp_clk cycles:
-uint32_t NextTransferTime;
-uint32_t LastTimeProxToAirStart;
-uint32_t LastProxToAirDuration;
+static uint32_t NextTransferTime;
+static uint32_t LastTimeProxToAirStart;
+static uint32_t LastProxToAirDuration;
#define SEC_Y 0x00
#define SEC_Z 0xc0
-const uint8_t OddByteParity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-
void iso14a_set_trigger(bool enable) {
trigger = enable;
}
-void iso14a_clear_trace() {
- memset(trace, 0x44, TRACE_SIZE);
- traceLen = 0;
-}
-
-void iso14a_set_tracing(bool enable) {
- tracing = enable;
-}
void iso14a_set_timeout(uint32_t timeout) {
iso14a_timeout = timeout;
+ if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
}
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+ uint8_t tb1;
+ uint8_t fwi;
+ uint32_t fwt;
+
+ if (ats[0] > 1) { // there is a format byte T0
+ if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
+ if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
+ tb1 = ats[3];
+ } else {
+ tb1 = ats[2];
+ }
+ fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
+ fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
+
+ iso14a_set_timeout(fwt/(8*16));
+ }
+ }
+}
+
+
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-byte_t oddparity (const byte_t bt)
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
{
- return OddByteParity[bt];
-}
-
-uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
-{
- int i;
- uint32_t dwPar = 0;
-
- // Generate the parity bits
- for (i = 0; i < iLen; i++) {
- // and save them to a 32Bit word
- dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+ uint16_t paritybit_cnt = 0;
+ uint16_t paritybyte_cnt = 0;
+ uint8_t parityBits = 0;
+
+ for (uint16_t i = 0; i < iLen; i++) {
+ // Generate the parity bits
+ parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
+ if (paritybit_cnt == 7) {
+ par[paritybyte_cnt] = parityBits; // save 8 Bits parity
+ parityBits = 0; // and advance to next Parity Byte
+ paritybyte_cnt++;
+ paritybit_cnt = 0;
+ } else {
+ paritybit_cnt++;
+ }
}
- return dwPar;
+
+ // save remaining parity bits
+ par[paritybyte_cnt] = parityBits;
+
}
void AppendCrc14443a(uint8_t* data, int len)
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool bReader)
+void AppendCrc14443b(uint8_t* data, int len)
{
- // Return when trace is full
- if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
- tracing = FALSE; // don't trace any more
- return FALSE;
- }
-
- // Trace the random, i'm curious
- trace[traceLen++] = ((timestamp >> 0) & 0xff);
- trace[traceLen++] = ((timestamp >> 8) & 0xff);
- trace[traceLen++] = ((timestamp >> 16) & 0xff);
- trace[traceLen++] = ((timestamp >> 24) & 0xff);
- if (!bReader) {
- trace[traceLen - 1] |= 0x80;
- }
- trace[traceLen++] = ((dwParity >> 0) & 0xff);
- trace[traceLen++] = ((dwParity >> 8) & 0xff);
- trace[traceLen++] = ((dwParity >> 16) & 0xff);
- trace[traceLen++] = ((dwParity >> 24) & 0xff);
- trace[traceLen++] = iLen;
- if (btBytes != NULL && iLen != 0) {
- memcpy(trace + traceLen, btBytes, iLen);
- }
- traceLen += iLen;
- return TRUE;
+ ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
}
+
//=============================================================================
// ISO 14443 Type A - Miller decoder
//=============================================================================
static tUart Uart;
// Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001 - a 3 tick wide pause
+// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111 - a 2 tick wide pause shifted left
+// 1001 - a 2 tick wide pause shifted right
const bool Mod_Miller_LUT[] = {
- TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
- TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
+ false, true, false, true, false, false, false, true,
+ false, true, false, false, false, false, false, false
};
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
void UartReset()
{
Uart.state = STATE_UNSYNCD;
Uart.bitCount = 0;
Uart.len = 0; // number of decoded data bytes
+ Uart.parityLen = 0; // number of decoded parity bytes
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
- Uart.parityBits = 0; //
- Uart.twoBits = 0x0000; // buffer for 2 Bits
- Uart.highCnt = 0;
+ Uart.parityBits = 0; // holds 8 parity bits
Uart.startTime = 0;
Uart.endTime = 0;
}
-/* inline RAMFUNC Modulation_t MillerModulation(uint8_t b)
+void UartInit(uint8_t *data, uint8_t *parity)
{
- // switch (b & 0x88) {
- // case 0x00: return MILLER_MOD_BOTH_HALVES;
- // case 0x08: return MILLER_MOD_FIRST_HALF;
- // case 0x80: return MILLER_MOD_SECOND_HALF;
- // case 0x88: return MILLER_MOD_NOMOD;
- // }
- // test the second cycle for a pause. For whatever reason the startbit tends to appear earlier than the rest.
- switch (b & 0x44) {
- case 0x00: return MOD_BOTH_HALVES;
- case 0x04: return MOD_FIRST_HALF;
- case 0x40: return MOD_SECOND_HALF;
- default: return MOD_NOMOD;
- }
+ Uart.output = data;
+ Uart.parity = parity;
+ Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
+ UartReset();
}
- */
+
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
{
- Uart.twoBits = (Uart.twoBits << 8) | bit;
+ Uart.fourBits = (Uart.fourBits << 8) | bit;
- if (Uart.state == STATE_UNSYNCD) { // not yet synced
- if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
- if (Uart.twoBits == 0xffff) {
- Uart.highCnt++;
- } else {
- Uart.highCnt = 0;
- }
- } else {
- Uart.syncBit = 0xFFFF; // not set
- // look for 00xx1111 (the start bit)
- if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
- else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
- else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
- else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
- else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
- else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
- else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
- else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
- if (Uart.syncBit != 0xFFFF) {
- Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
- Uart.startTime -= Uart.syncBit;
- Uart.endTime = Uart.startTime;
- Uart.state = STATE_START_OF_COMMUNICATION;
- }
+ if (Uart.state == STATE_UNSYNCD) { // not yet synced
+
+ Uart.syncBit = 9999; // not set
+ // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+ // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
+ // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
+ // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+ #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
+ #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
+ if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+ else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+ if (Uart.syncBit != 9999) { // found a sync bit
+ Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
+ Uart.startTime -= Uart.syncBit;
+ Uart.endTime = Uart.startTime;
+ Uart.state = STATE_START_OF_COMMUNICATION;
}
} else {
- if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
+ if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
UartReset();
- Uart.highCnt = 6;
} else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
UartReset();
- Uart.highCnt = 6;
} else {
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
}
}
} else {
- if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
+ if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
} else { // no modulation in both halves - Sequence Y
if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
Uart.state = STATE_UNSYNCD;
- if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
- Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
- Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
- Uart.parityBits <<= 1; // no parity bit - add "0"
- Uart.bitCount--; // last "0" was part of the EOC sequence
+ Uart.bitCount--; // last "0" was part of EOC sequence
+ Uart.shiftReg <<= 1; // drop it
+ if(Uart.bitCount > 0) { // if we decoded some bits
+ Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
+ Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
+ Uart.parityBits <<= 1; // add a (void) parity bit
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
+ return true;
+ } else if (Uart.len & 0x0007) { // there are some parity bits to store
+ Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
+ }
+ if (Uart.len) {
+ return true; // we are finished with decoding the raw data sequence
+ } else {
+ UartReset(); // Nothing received - start over
}
- return TRUE;
}
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
UartReset();
- Uart.highCnt = 6;
} else { // a logic "0"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
Uart.bitCount = 0;
Uart.shiftReg = 0;
+ if ((Uart.len&0x0007) == 0) { // every 8 data bytes
+ Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
+ Uart.parityBits = 0;
+ }
}
}
}
}
- return FALSE; // not finished yet, need more data
+ return false; // not finished yet, need more data
}
static tDemod Demod;
// Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept three or four consecutive "1" in any position
+// We accept three or four "1" in any position
const bool Mod_Manchester_LUT[] = {
- FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
- FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE
+ false, false, false, false, false, false, false, true,
+ false, false, false, true, false, true, true, true
};
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
{
Demod.state = DEMOD_UNSYNCD;
Demod.len = 0; // number of decoded data bytes
+ Demod.parityLen = 0;
Demod.shiftReg = 0; // shiftreg to hold decoded data bits
Demod.parityBits = 0; //
Demod.collisionPos = 0; // Position of collision bit
Demod.endTime = 0;
}
+void DemodInit(uint8_t *data, uint8_t *parity)
+{
+ Demod.output = data;
+ Demod.parity = parity;
+ DemodReset();
+}
+
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
{
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
+ if((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
+ Demod.parityBits = 0;
+ }
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
} else { // no modulation in first half
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
Demod.bitCount = 0;
Demod.shiftReg = 0;
+ if ((Demod.len&0x0007) == 0) { // every 8 data bytes
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
+ Demod.parityBits = 0;
+ }
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
} else { // no modulation in both halves - End of communication
- if (Demod.len > 0 || Demod.bitCount > 0) { // received something
- if(Demod.bitCount > 0) { // if we decoded bits
- Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
- Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
- // No parity bit, so just shift a 0
- Demod.parityBits <<= 1;
- }
- return TRUE; // we are finished with decoding the raw data sequence
+ if(Demod.bitCount > 0) { // there are some remaining data bits
+ Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
+ Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
+ Demod.parityBits <<= 1; // add a (void) parity bit
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ return true;
+ } else if (Demod.len & 0x0007) { // there are some parity bits to store
+ Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
+ Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
+ }
+ if (Demod.len) {
+ return true; // we are finished with decoding the raw data sequence
} else { // nothing received. Start over
DemodReset();
}
}
- return FALSE; // not finished yet, need more data
+ return false; // not finished yet, need more data
}
//=============================================================================
// bit 1 - trigger from first reader 7-bit request
LEDsoff();
- // init trace buffer
- iso14a_clear_trace();
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- // triggered == FALSE -- to wait first for card
- bool triggered = !(param & 0x03);
-
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+ // Allocate memory from BigBuf for some buffers
+ // free all previous allocations first
+ BigBuf_free();
+
// The command (reader -> tag) that we're receiving.
- // The length of a received command will in most cases be no more than 18 bytes.
- // So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
+ uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
// The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+ // init trace buffer
+ clear_trace();
+ set_tracing(true);
+
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
- bool TagIsActive = FALSE;
- bool ReaderIsActive = FALSE;
+ bool TagIsActive = false;
+ bool ReaderIsActive = false;
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
-
// Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
-
+ DemodInit(receivedResponse, receivedResponsePar);
+
// Set up the demodulator for the reader -> tag commands
- Uart.output = receivedCmd;
-
+ UartInit(receivedCmd, receivedCmdPar);
+
// Setup and start DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == false -- to wait first for card
+ bool triggered = !(param & 0x03);
+
// And now we loop, receiving samples.
- for(uint32_t rsamples = 0; TRUE; ) {
+ for(uint32_t rsamples = 0; true; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
// test for length of buffer
if(dataLen > maxDataLen) {
maxDataLen = dataLen;
- if(dataLen > 400) {
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=%d", dataLen);
break;
}
LED_C_ON();
// check - if there is a short 7bit request from reader
- if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
+ if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = true;
if(triggered) {
- if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
- if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+ if (!LogTrace(receivedCmd,
+ Uart.len,
+ Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+ Uart.parity,
+ true)) break;
}
/* And ready to receive another command. */
UartReset();
if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
LED_B_ON();
- if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
- if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
+ if (!LogTrace(receivedResponse,
+ Demod.len,
+ Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+ Demod.parity,
+ false)) break;
- if ((!triggered) && (param & 0x01)) triggered = TRUE;
+ if ((!triggered) && (param & 0x01)) triggered = true;
// And ready to receive another response.
DemodReset();
+ // And reset the Miller decoder including itS (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
+
LED_C_OFF();
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
previous_data = *data;
rsamples++;
data++;
- if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}
} // main cycle
FpgaDisableSscDma();
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
- Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
+ Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
LEDsoff();
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
{
- int i;
-
ToSendReset();
// Correction bit, might be removed when not needed
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
- for(i = 0; i < len; i++) {
- int j;
+ for(uint16_t i = 0; i < len; i++) {
uint8_t b = cmd[i];
// Data bits
- for(j = 0; j < 8; j++) {
+ for(uint16_t j = 0; j < 8; j++) {
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
} else {
}
// Get the parity bit
- if ((dwParity >> i) & 0x01) {
+ if (parity[i>>3] & (0x80>>(i&0x0007))) {
ToSend[++ToSendMax] = SEC_D;
LastProxToAirDuration = 8 * ToSendMax - 4;
} else {
ToSendMax++;
}
-static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
- CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
+{
+ uint8_t par[MAX_PARITY_SIZE];
+
+ GetParity(cmd, len, par);
+ CodeIso14443aAsTagPar(cmd, len, par);
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
-// Or return TRUE when command is captured
+// Or return true when command is captured
//-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
- UartReset();
- Uart.output = received;
+ UartInit(received, parity);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for(;;) {
WDT_HIT();
- if(BUTTON_PRESS()) return FALSE;
+ if(BUTTON_PRESS()) return false;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding(b, 0)) {
*len = Uart.len;
- return TRUE;
+ return true;
}
}
}
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, int respLen);
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
typedef struct {
uint8_t* response;
uint32_t ProxToAirDuration;
} tag_response_info_t;
-void reset_free_buffer() {
- free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
// This will need the following byte array for a modulation sequence
// ----------- +
// 166 bytes, since every bit that needs to be send costs us a byte
//
-
+
+
// Prepare the tag modulation bits from the message
CodeIso14443aAsTag(response_info->response,response_info->response_n);
return true;
}
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
// Retrieve and store the current buffer index
response_info->modulation = free_buffer_pointer;
// Determine the maximum size we can use from our buffer
- size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+ size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
// Forward the prepare tag modulation function to the inner function
- if (prepare_tag_modulation(response_info,max_buffer_size)) {
+ if (prepare_tag_modulation(response_info, max_buffer_size)) {
// Update the free buffer offset
free_buffer_pointer += ToSendMax;
return true;
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
{
- // Enable and clear the trace
- iso14a_clear_trace();
- iso14a_set_tracing(TRUE);
-
uint8_t sak;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
response1[1] = 0x00;
sak = 0x28;
} break;
+ case 5: { // MIFARE TNP3XXX
+ // Says: I am a toy
+ response1[0] = 0x01;
+ response1[1] = 0x0f;
+ sak = 0x01;
+ } break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
}
// The second response contains the (mandatory) first 24 bits of the UID
- uint8_t response2[5];
+ uint8_t response2[5] = {0x00};
// Check if the uid uses the (optional) part
- uint8_t response2a[5];
+ uint8_t response2a[5] = {0x00};
+
if (uid_2nd) {
response2[0] = 0x88;
num_to_bytes(uid_1st,3,response2+1);
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
- uint8_t response3[3];
+ uint8_t response3[3] = {0x00};
response3[0] = sak;
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
- uint8_t response3a[3];
+ uint8_t response3a[3] = {0x00};
response3a[0] = sak & 0xFB;
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
- uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+ uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+ // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
+ // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
+ // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
+ // TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
#define TAG_RESPONSE_COUNT 7
.modulation_n = 0
};
- // Reset the offset pointer of the free buffer
- reset_free_buffer();
-
+ // We need to listen to the high-frequency, peak-detected path.
+ iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ BigBuf_free_keep_EM();
+
+ // allocate buffers:
+ uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+ uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+ free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+ // clear trace
+ clear_trace();
+ set_tracing(true);
+
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
prepare_allocated_tag_modulation(&responses[i]);
}
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
int len = 0;
// To control where we are in the protocol
int happened2 = 0;
int cmdsRecvd = 0;
- // We need to listen to the high-frequency, peak-detected path.
- iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
// Clean receive command buffer
-
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+ if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
}
p_response = NULL;
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[0]; order = 6;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2;
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[2]; order = 20;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[3]; order = 3;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[4]; order = 30;
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
- EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+ EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
-// DbpString("Reader requested we HALT!:");
+
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
}
p_response = NULL;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
} else {
p_response = &responses[6]; order = 70;
}
- } else if (order == 7 && len == 8) { // Received authentication request
+ } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
}
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
default: {
// Never seen this command before
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
}
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
if (tracing) {
- LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
}
break;
}
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(p_response->response, p_response->response_n, par);
+
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
p_response->response,
p_response->response_n,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
+ par);
}
if (!tracing) {
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
+ BigBuf_free_keep_EM();
}
// if == 0: transfer immediately and return time of transfer
// if != 0: delay transfer until time specified
//-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
{
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// clear TXRDY
AT91C_BASE_SSC->SSC_THR = SEC_Y;
- // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
- // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- // AT91C_BASE_SSC->SSC_THR = SEC_Y;
- // c++;
- // }
- // }
-
uint16_t c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
}
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
-
}
//-----------------------------------------------------------------------------
// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
{
int i, j;
int last;
b >>= 1;
}
- // Only transmit (last) parity bit if we transmitted a complete byte
- if (j == 8) {
+ // Only transmit parity bit if we transmitted a complete byte
+ if (j == 8 && parity != NULL) {
// Get the parity bit
- if ((dwParity >> i) & 0x01) {
+ if (parity[i>>3] & (0x80 >> (i&0x0007))) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
{
- CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+ CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
}
+
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed (return 1) or field was gone (return 2)
// Or return 0 when command is captured
//-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, int *len)
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
{
*len = 0;
// Set ADC to read field strength
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
- ADC_MODE_PRESCALE(32) |
- ADC_MODE_STARTUP_TIME(16) |
- ADC_MODE_SAMPLE_HOLD_TIME(8);
+ ADC_MODE_PRESCALE(63) |
+ ADC_MODE_STARTUP_TIME(1) |
+ ADC_MODE_SAMPLE_HOLD_TIME(15);
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
// start ADC
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
// Now run a 'software UART' on the stream of incoming samples.
- UartReset();
- Uart.output = received;
+ UartInit(received, parity);
// Clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+
for(;;) {
WDT_HIT();
analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
if (analogCnt >= 32) {
- if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+ if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
vtime = GetTickCount();
if (!timer) timer = vtime;
// 50ms no field --> card to idle state
}
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
{
uint8_t b;
uint16_t i = 0;
// include correction bit if necessary
if (Uart.parityBits & 0x01) {
- correctionNeeded = TRUE;
+ correctionNeeded = true;
}
if(correctionNeeded) {
// 1236, so correction bit needed
i = 1;
}
- // clear receiving shift register and holding register
+ // clear receiving shift register and holding register
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
AT91C_BASE_SSC->SSC_THR = SEC_F;
// send cycle
- for(; i <= respLen; ) {
+ for(; i < respLen; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = resp[i++];
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
}
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
- for (i = 0; i < 2 ; ) {
+ uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+ for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = SEC_F;
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
}
}
-
+
LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
return 0;
Code4bitAnswerAsTag(resp);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
+ uint8_t par[1];
+ GetParity(&resp, 1, par);
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
&resp,
1,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(&resp, 1), 1));
+ par);
return res;
}
return EmSend4bitEx(resp, false);
}
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
CodeIso14443aAsTagPar(resp, respLen, par);
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
// do the tracing for the previous reader request and this tag answer:
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
- Uart.parityBits,
+ Uart.parity,
resp,
respLen,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
- SwapBits(GetParity(resp, respLen), respLen));
+ par);
return res;
}
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
- return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
}
-int EmSendCmd(uint8_t *resp, int respLen){
- return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
+int EmSendCmd(uint8_t *resp, uint16_t respLen){
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(resp, respLen, par);
+ return EmSendCmdExPar(resp, respLen, false, par);
}
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
return EmSendCmdExPar(resp, respLen, false, par);
}
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
- uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+ uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
{
if (tracing) {
// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
reader_EndTime = tag_StartTime - exact_fdt;
reader_StartTime = reader_EndTime - reader_modlen;
- if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
- return FALSE;
- } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
- return FALSE;
- } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
- return FALSE;
- } else {
- return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
- }
+ if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, true)) {
+ return false;
+ } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false));
} else {
- return TRUE;
+ return true;
}
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
-// If a response is captured return TRUE
-// If it takes too long return FALSE
+// If a response is captured return true
+// If it takes too long return false
//-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
{
- uint16_t c;
+ uint32_t c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
- DemodReset();
- Demod.output = receivedResponse;
+ DemodInit(receivedResponse, receivedResponsePar);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+
c = 0;
for(;;) {
WDT_HIT();
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding(b, offset, 0)) {
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
- return TRUE;
- } else if(c++ > iso14a_timeout) {
- return FALSE;
+ return true;
+ } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
+ return false;
}
}
}
}
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
-{
- CodeIso14443aBitsAsReaderPar(frame,bits,par);
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
+{
+ CodeIso14443aBitsAsReaderPar(frame, bits, par);
// Send command to tag
TransmitFor14443a(ToSend, ToSendMax, timing);
// Log reader command in trace buffer
if (tracing) {
- LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
- LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
+ LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
}
}
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
+
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
{
- ReaderTransmitBitsPar(frame,len*8,par, timing);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
+
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(frame, len/8, par);
+ ReaderTransmitBitsPar(frame, len, par, timing);
}
-void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
+
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
{
// Generate parity and redirect
- ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
+ uint8_t par[MAX_PARITY_SIZE];
+ GetParity(frame, len, par);
+ ReaderTransmitBitsPar(frame, len*8, par, timing);
}
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
- LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
}
return Demod.len;
}
-int ReaderReceive(uint8_t* receivedAnswer)
-{
- return ReaderReceiveOffset(receivedAnswer, 0);
-}
-
-int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
{
- if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
if (tracing) {
- LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
- LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+ LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
}
- *parptr = Demod.parityBits;
return Demod.len;
}
-/* performs iso14443a anticollision procedure
- * fills the uid pointer unless NULL
- * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
- uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
- uint8_t sel_all[] = { 0x93,0x20 };
- uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
- uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
- uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
- byte_t uid_resp[4];
- size_t uid_resp_len;
-
- uint8_t sak = 0x04; // cascade uid
- int cascade_level = 0;
- int len;
-
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitBitsPar(wupa,7,0, NULL);
+// performs iso14443a anticollision (optional) and card select procedure
+// fills the uid and cuid pointer unless NULL
+// fills the card info record unless NULL
+// if anticollision is false, then the UID must be provided in uid_ptr[]
+// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
+ uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+ uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+ uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+ uint8_t resp_par[MAX_PARITY_SIZE];
+ byte_t uid_resp[4];
+ size_t uid_resp_len;
+
+ uint8_t sak = 0x04; // cascade uid
+ int cascade_level = 0;
+ int len;
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
- // Receive the ATQA
- if(!ReaderReceive(resp)) return 0;
- // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
-
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->atqa, resp, 2);
- p_hi14a_card->uidlen = 0;
- memset(p_hi14a_card->uid,0,10);
- }
+ // Receive the ATQA
+ if(!ReaderReceive(resp, resp_par)) return 0;
- // clear uid
- if (uid_ptr) {
- memset(uid_ptr,0,10);
- }
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->atqa, resp, 2);
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid,0,10);
+ }
+
+ if (anticollision) {
+ // clear uid
+ if (uid_ptr) {
+ memset(uid_ptr,0,10);
+ }
+ }
+
+ // check for proprietary anticollision:
+ if ((resp[0] & 0x1F) == 0) {
+ return 3;
+ }
+
+ // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+ // which case we need to make a cascade 2 request and select - this is a long UID
+ // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+ for(; sak & 0x04; cascade_level++) {
+ // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+ sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+ if (anticollision) {
+ // SELECT_ALL
+ ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp, resp_par)) return 0;
+
+ if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
+ memset(uid_resp, 0, 4);
+ uint16_t uid_resp_bits = 0;
+ uint16_t collision_answer_offset = 0;
+ // anti-collision-loop:
+ while (Demod.collisionPos) {
+ Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+ for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
+ uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+ uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+ }
+ uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
+ uid_resp_bits++;
+ // construct anticollosion command:
+ sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
+ for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+ sel_uid[2+i] = uid_resp[i];
+ }
+ collision_answer_offset = uid_resp_bits%8;
+ ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+ if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
+ }
+ // finally, add the last bits and BCC of the UID
+ for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+ uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+ uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+ }
- // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
- // which case we need to make a cascade 2 request and select - this is a long UID
- // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
- for(; sak & 0x04; cascade_level++) {
- // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
- sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
-
- // SELECT_ALL
- ReaderTransmit(sel_all,sizeof(sel_all), NULL);
- if (!ReaderReceive(resp)) return 0;
-
- if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
- memset(uid_resp, 0, 4);
- uint16_t uid_resp_bits = 0;
- uint16_t collision_answer_offset = 0;
- // anti-collision-loop:
- while (Demod.collisionPos) {
- Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
- for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
- uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
- uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+ } else { // no collision, use the response to SELECT_ALL as current uid
+ memcpy(uid_resp, resp, 4);
}
- uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
- uid_resp_bits++;
- // construct anticollosion command:
- sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
- for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
- sel_uid[2+i] = uid_resp[i];
+ } else {
+ if (cascade_level < num_cascades - 1) {
+ uid_resp[0] = 0x88;
+ memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
+ } else {
+ memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
}
- collision_answer_offset = uid_resp_bits%8;
- ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
- if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
}
- // finally, add the last bits and BCC of the UID
- for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
- uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
- uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
+ uid_resp_len = 4;
+
+ // calculate crypto UID. Always use last 4 Bytes.
+ if(cuid_ptr) {
+ *cuid_ptr = bytes_to_num(uid_resp, 4);
}
- } else { // no collision, use the response to SELECT_ALL as current uid
- memcpy(uid_resp,resp,4);
- }
- uid_resp_len = 4;
- // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+ // Construct SELECT UID command
+ sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+ memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
+ sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
+ AppendCrc14443a(sel_uid, 7); // calculate and add CRC
+ ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
- // calculate crypto UID. Always use last 4 Bytes.
- if(cuid_ptr) {
- *cuid_ptr = bytes_to_num(uid_resp, 4);
- }
+ // Receive the SAK
+ if (!ReaderReceive(resp, resp_par)) return 0;
+ sak = resp[0];
+
+ // Test if more parts of the uid are coming
+ if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
+ // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+ // http://www.nxp.com/documents/application_note/AN10927.pdf
+ uid_resp[0] = uid_resp[1];
+ uid_resp[1] = uid_resp[2];
+ uid_resp[2] = uid_resp[3];
+ uid_resp_len = 3;
+ }
- // Construct SELECT UID command
- sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
- memcpy(sel_uid+2,uid_resp,4); // the UID
- sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
- AppendCrc14443a(sel_uid,7); // calculate and add CRC
- ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
-
- // Receive the SAK
- if (!ReaderReceive(resp)) return 0;
- sak = resp[0];
-
- // Test if more parts of the uid are comming
- if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
- // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
- // http://www.nxp.com/documents/application_note/AN10927.pdf
- memcpy(uid_resp, uid_resp + 1, 3);
- uid_resp_len = 3;
- }
+ if(uid_ptr && anticollision) {
+ memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+ }
- if(uid_ptr) {
- memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
- }
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+ p_hi14a_card->uidlen += uid_resp_len;
+ }
+ }
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
- p_hi14a_card->uidlen += uid_resp_len;
- }
- }
+ if(p_hi14a_card) {
+ p_hi14a_card->sak = sak;
+ p_hi14a_card->ats_len = 0;
+ }
- if(p_hi14a_card) {
- p_hi14a_card->sak = sak;
- p_hi14a_card->ats_len = 0;
- }
+ // non iso14443a compliant tag
+ if( (sak & 0x20) == 0) return 2;
- if( (sak & 0x20) == 0) {
- return 2; // non iso14443a compliant tag
- }
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats), NULL);
- // Request for answer to select
- AppendCrc14443a(rats, 2);
- ReaderTransmit(rats, sizeof(rats), NULL);
+ if (!(len = ReaderReceive(resp, resp_par))) return 0;
- if (!(len = ReaderReceive(resp))) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+ p_hi14a_card->ats_len = len;
+ }
- if(p_hi14a_card) {
- memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
- p_hi14a_card->ats_len = len;
- }
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
- // reset the PCB block number
- iso14_pcb_blocknum = 0;
- return 1;
+ // set default timeout based on ATS
+ iso14a_set_ATS_timeout(resp);
+
+ return 1;
}
void iso14443a_setup(uint8_t fpga_minor_mode) {
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Set up the synchronous serial port
FpgaSetupSsc();
// connect Demodulated Signal to ADC:
iso14a_set_timeout(1050); // 10ms default
}
-int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
+ uint8_t parity[MAX_PARITY_SIZE];
uint8_t real_cmd[cmd_len+4];
real_cmd[0] = 0x0a; //I-Block
// put block number into the PCB
AppendCrc14443a(real_cmd,cmd_len+2);
ReaderTransmit(real_cmd, cmd_len+4, NULL);
- size_t len = ReaderReceive(data);
- uint8_t * data_bytes = (uint8_t *) data;
+ size_t len = ReaderReceive(data, parity);
+ uint8_t *data_bytes = (uint8_t *) data;
if (!len)
return 0; //DATA LINK ERROR
// if we received an I- or R(ACK)-Block with a block number equal to the
{
iso14a_command_t param = c->arg[0];
uint8_t *cmd = c->d.asBytes;
- size_t len = c->arg[1];
- size_t lenbits = c->arg[2];
+ size_t len = c->arg[1] & 0xffff;
+ size_t lenbits = c->arg[1] >> 16;
+ uint32_t timeout = c->arg[2];
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE];
+ uint8_t par[MAX_PARITY_SIZE];
if(param & ISO14A_CONNECT) {
- iso14a_clear_trace();
+ clear_trace();
}
- iso14a_set_tracing(TRUE);
+ set_tracing(true);
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(TRUE);
+ iso14a_set_trigger(true);
}
if(param & ISO14A_CONNECT) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!(param & ISO14A_NO_SELECT)) {
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
- arg0 = iso14443a_select_card(NULL,card,NULL);
+ arg0 = iso14443a_select_card(NULL, card, NULL, true, 0);
cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
}
}
if(param & ISO14A_SET_TIMEOUT) {
- iso14a_timeout = c->arg[2];
+ iso14a_set_timeout(timeout);
}
if(param & ISO14A_APDU) {
if(param & ISO14A_RAW) {
if(param & ISO14A_APPEND_CRC) {
- AppendCrc14443a(cmd,len);
+ if(param & ISO14A_TOPAZMODE) {
+ AppendCrc14443b(cmd,len);
+ } else {
+ AppendCrc14443a(cmd,len);
+ }
len += 2;
+ if (lenbits) lenbits += 16;
}
- if(lenbits>0) {
- ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
- } else {
- ReaderTransmit(cmd,len, NULL);
+ if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
+ if(param & ISO14A_TOPAZMODE) {
+ int bits_to_send = lenbits;
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
+ bits_to_send -= 7;
+ while (bits_to_send > 0) {
+ ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
+ bits_to_send -= 8;
+ }
+ } else {
+ GetParity(cmd, lenbits/8, par);
+ ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
+ }
+ } else { // want to send complete bytes only
+ if(param & ISO14A_TOPAZMODE) {
+ uint16_t i = 0;
+ ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
+ while (i < len) {
+ ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
+ }
+ } else {
+ ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
+ }
}
- arg0 = ReaderReceive(buf);
+ arg0 = ReaderReceive(buf, par);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
if(param & ISO14A_REQUEST_TRIGGER) {
- iso14a_set_trigger(FALSE);
+ iso14a_set_trigger(false);
}
if(param & ISO14A_NO_DISCONNECT) {
nttmp1 = prng_successor(nttmp1, 1);
if (nttmp1 == nt2) return i;
nttmp2 = prng_successor(nttmp2, 1);
- if (nttmp2 == nt1) return -i;
+ if (nttmp2 == nt1) return -i;
}
return(-99999); // either nt1 or nt2 are invalid nonces
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
static uint8_t mf_nr_ar3;
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
- iso14a_clear_trace();
- iso14a_set_tracing(TRUE);
+ if (first_try) {
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ }
+
+ // free eventually allocated BigBuf memory. We want all for tracing.
+ BigBuf_free();
+
+ clear_trace();
+ set_tracing(true);
byte_t nt_diff = 0;
- byte_t par = 0;
- //byte_t par_mask = 0xff;
+ uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
- bool led_on = TRUE;
- uint8_t uid[10];
+ bool led_on = true;
+ uint8_t uid[10] ={0};
uint32_t cuid;
- uint32_t nt, previous_nt;
+ uint32_t nt = 0;
+ uint32_t previous_nt = 0;
static uint32_t nt_attacked = 0;
- byte_t par_list[8] = {0,0,0,0,0,0,0,0};
- byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+ byte_t par_list[8] = {0x00};
+ byte_t ks_list[8] = {0x00};
+ #define PRNG_SEQUENCE_LENGTH (1 << 16);
static uint32_t sync_time;
- static uint32_t sync_cycles;
+ static int32_t sync_cycles;
int catch_up_cycles = 0;
int last_catch_up = 0;
+ uint16_t elapsed_prng_sequences;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
-
-
if (first_try) {
mf_nr_ar3 = 0;
- iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
sync_time = GetCountSspClk() & 0xfffffff8;
- sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
nt_attacked = 0;
- nt = 0;
- par = 0;
+ par[0] = 0;
}
else {
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
- // nt_attacked = prng_successor(nt_attacked, 1);
mf_nr_ar3++;
mf_nr_ar[3] = mf_nr_ar3;
- par = par_low;
+ par[0] = par_low;
}
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
-
- for(uint16_t i = 0; TRUE; i++) {
+
+ #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+ #define MAX_SYNC_TRIES 32
+ #define NUM_DEBUG_INFOS 8 // per strategy
+ #define MAX_STRATEGY 3
+ uint16_t unexpected_random = 0;
+ uint16_t sync_tries = 0;
+ int16_t debug_info_nr = -1;
+ uint16_t strategy = 0;
+ int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
+ uint32_t select_time;
+ uint32_t halt_time;
+
+ for(uint16_t i = 0; true; i++) {
+ LED_C_ON();
WDT_HIT();
// Test if the action was cancelled
if(BUTTON_PRESS()) {
+ isOK = -1;
break;
}
- LED_C_ON();
+ if (strategy == 2) {
+ // test with additional hlt command
+ halt_time = 0;
+ int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
+ if (len && MF_DBGLEVEL >= 3) {
+ Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
+ }
+ }
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if (strategy == 3) {
+ // test with FPGA power off/on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
+ iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(100);
+ }
+
+ if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
+ select_time = GetCountSspClk();
- sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
- catch_up_cycles = 0;
+ elapsed_prng_sequences = 1;
+ if (debug_info_nr == -1) {
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
- // if we missed the sync time already, advance to the next nonce repeat
- while(GetCountSspClk() > sync_time) {
- sync_time = (sync_time & 0xfffffff8) + sync_cycles;
- }
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountSspClk() > sync_time) {
+ elapsed_prng_sequences++;
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
- // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
- ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ } else {
+ // collect some information on tag nonces for debugging:
+ #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+ if (strategy == 0) {
+ // nonce distances at fixed time after card select:
+ sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 1) {
+ // nonce distances at fixed time between authentications:
+ sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else if (strategy == 2) {
+ // nonce distances at fixed time after halt:
+ sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
+ } else {
+ // nonce_distances at fixed time after power on
+ sync_time = DEBUG_FIXED_SYNC_CYCLES;
+ }
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+ }
// Receive the (4 Byte) "random" nonce
- if (!ReaderReceive(receivedAnswer)) {
+ if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
int nt_distance = dist_nt(previous_nt, nt);
if (nt_distance == 0) {
nt_attacked = nt;
- }
- else {
- if (nt_distance == -99999) { // invalid nonce received, try again
- continue;
+ } else {
+ if (nt_distance == -99999) { // invalid nonce received
+ unexpected_random++;
+ if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
+ isOK = -3; // Card has an unpredictable PRNG. Give up
+ break;
+ } else {
+ continue; // continue trying...
+ }
+ }
+ if (++sync_tries > MAX_SYNC_TRIES) {
+ if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
+ isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+ break;
+ } else { // continue for a while, just to collect some debug info
+ debug_info[strategy][debug_info_nr] = nt_distance;
+ debug_info_nr++;
+ if (debug_info_nr == NUM_DEBUG_INFOS) {
+ strategy++;
+ debug_info_nr = 0;
+ }
+ continue;
+ }
+ }
+ sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
+ if (sync_cycles <= 0) {
+ sync_cycles += PRNG_SEQUENCE_LENGTH;
+ }
+ if (MF_DBGLEVEL >= 3) {
+ Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
}
- sync_cycles = (sync_cycles - nt_distance);
- if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
}
}
catch_up_cycles = 0;
continue;
}
+ catch_up_cycles /= elapsed_prng_sequences;
if (catch_up_cycles == last_catch_up) {
consecutive_resyncs++;
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ last_catch_up = 0;
+ catch_up_cycles = 0;
+ consecutive_resyncs = 0;
}
continue;
}
consecutive_resyncs = 0;
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
- if (ReaderReceive(receivedAnswer))
- {
+ if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
- if (nt_diff == 0)
- {
- par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+ if (nt_diff == 0) {
+ par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
}
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
- par_list[nt_diff] = par;
+ par_list[nt_diff] = SwapBits(par[0], 8);
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
// Test if the information is complete
nt_diff = (nt_diff + 1) & 0x07;
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
- par = par_low;
+ par[0] = par_low;
} else {
if (nt_diff == 0 && first_try)
{
- par++;
+ par[0]++;
+ if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
+ isOK = -2;
+ break;
+ }
} else {
- par = (((par >> 3) + 1) << 3) | par_low;
+ par[0] = ((par[0] & 0x1F) + 1) | par_low;
}
}
}
mf_nr_ar[3] &= 0x1F;
+
+ if (isOK == -4) {
+ if (MF_DBGLEVEL >= 3) {
+ for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
+ for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+ Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
+ }
+ }
+ }
+ }
byte_t buf[28];
memcpy(buf + 0, uid, 4);
memcpy(buf + 16, ks_list, 8);
memcpy(buf + 24, mf_nr_ar, 4);
- cmd_send(CMD_ACK,isOK,0,0,buf,28);
+ cmd_send(CMD_ACK, isOK, 0, 0, buf, 28);
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- iso14a_set_tracing(FALSE);
+ set_tracing(false);
}
+typedef struct {
+ uint32_t cuid;
+ uint8_t sector;
+ uint8_t keytype;
+ uint32_t nonce;
+ uint32_t ar;
+ uint32_t nr;
+ uint32_t nonce2;
+ uint32_t ar2;
+ uint32_t nr2;
+} nonces_t;
+
/**
*MIFARE 1K simulate.
*
*@param flags :
* FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
- * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
- * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
+ * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
+ * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
+ * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
* FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
- *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
+ * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
+ *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
+ * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/
void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
{
int cardSTATE = MFEMUL_NOFIELD;
- int _7BUID = 0;
+ int _UID_LEN = 0; // 4, 7, 10
int vHf = 0; // in mV
int res;
uint32_t selTimer = 0;
uint32_t authTimer = 0;
- uint32_t par = 0;
- int len = 0;
+ uint16_t len = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0;//Counts numer of times reader read a block
- uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
- uint8_t *response = eml_get_bigbufptr_sendbuf();
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+ uint8_t response[MAX_MIFARE_FRAME_SIZE];
+ uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
- uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+ uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
- uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
- uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+ uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+
+ uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated
+ uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished
uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
- //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
- // This can be used in a reader-only attack.
- // (it can also be retrieved via 'hf 14a list', but hey...
- uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
- uint8_t ar_nr_collected = 0;
-
- // clear trace
- iso14a_clear_trace();
- iso14a_set_tracing(TRUE);
+ //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
+ // This will be used in the reader-only attack.
+
+ //allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys
+ #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack()
+ nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius)
+ memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
+
+ uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius)
+ memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
+ uint8_t nonce1_count = 0;
+ uint8_t nonce2_count = 0;
+ uint8_t moebius_n_count = 0;
+ bool gettingMoebius = false;
+ uint8_t mM = 0; //moebius_modifier for collection storage
// Authenticate response - nonce
- uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+ uint32_t nonce;
+ if (flags & FLAG_RANDOM_NONCE) {
+ nonce = prand();
+ } else {
+ nonce = bytes_to_num(rAUTH_NT, 4);
+ }
//-- Determine the UID
// Can be set from emulator memory, incoming data
// 4B uid comes from data-portion of packet
memcpy(rUIDBCC1,datain,4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-
+ _UID_LEN = 4;
} else if (flags & FLAG_7B_UID_IN_DATA) {
// 7B uid comes from data-portion of packet
memcpy(&rUIDBCC1[1],datain,3);
memcpy(rUIDBCC2, datain+3, 4);
- _7BUID = true;
+ _UID_LEN = 7;
+ } else if (flags & FLAG_10B_UID_IN_DATA) {
+ memcpy(&rUIDBCC1[1], datain, 3);
+ memcpy(&rUIDBCC2[1], datain+3, 3);
+ memcpy( rUIDBCC3, datain+6, 4);
+ _UID_LEN = 10;
} else {
- // get UID from emul memory
+ // get UID from emul memory - guess at length
emlGetMemBt(receivedCmd, 7, 1);
- _7BUID = !(receivedCmd[0] == 0x00);
- if (!_7BUID) { // ---------- 4BUID
+ if (receivedCmd[0] == 0x00) { // ---------- 4BUID
emlGetMemBt(rUIDBCC1, 0, 4);
+ _UID_LEN = 4;
} else { // ---------- 7BUID
emlGetMemBt(&rUIDBCC1[1], 0, 3);
emlGetMemBt(rUIDBCC2, 3, 4);
+ _UID_LEN = 7;
}
}
- /*
- * Regardless of what method was used to set the UID, set fifth byte and modify
- * the ATQA for 4 or 7-byte UID
- */
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if (_7BUID) {
- rATQA[0] = 0x44;
- rUIDBCC1[0] = 0x88;
- rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ switch (_UID_LEN) {
+ case 4:
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC1, 4);
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("4B UID: %02x%02x%02x%02x",
+ rUIDBCC1[0],
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3]
+ );
+ }
+ break;
+ case 7:
+ rATQA[0] |= 0x40;
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC2, 4);
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ rUIDBCC2[0],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3]
+ );
+ }
+ break;
+ case 10:
+ rATQA[0] |= 0x80;
+ //sak_10[0] &= 0xFB;
+ // save CUID
+ cuid = bytes_to_num(rUIDBCC3, 4);
+ // CascadeTag, CT
+ rUIDBCC1[0] = 0x88;
+ rUIDBCC2[0] = 0x88;
+ // BCC
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
+
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ rUIDBCC1[1],
+ rUIDBCC1[2],
+ rUIDBCC1[3],
+ rUIDBCC2[1],
+ rUIDBCC2[2],
+ rUIDBCC2[3],
+ rUIDBCC3[0],
+ rUIDBCC3[1],
+ rUIDBCC3[2],
+ rUIDBCC3[3]
+ );
+ }
+ break;
+ default:
+ break;
}
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ // free eventually allocated BigBuf memory but keep Emulator Memory
+ BigBuf_free_keep_EM();
- if (MF_DBGLEVEL >= 1) {
- if (!_7BUID) {
- Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
- } else {
- Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
- }
- }
+ // clear trace
+ clear_trace();
+ set_tracing(true);
- bool finished = FALSE;
- while (!BUTTON_PRESS() && !finished) {
+ bool finished = false;
+ bool button_pushed = BUTTON_PRESS();
+ while (!button_pushed && !finished && !usb_poll_validate_length()) {
WDT_HIT();
// find reader field
- // Vref = 3300mV, and an 10:1 voltage divider on the input
- // can measure voltages up to 33000 mV
if (cardSTATE == MFEMUL_NOFIELD) {
- vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
- }
- if(cardSTATE == MFEMUL_NOFIELD) continue;
+ }
+ if (cardSTATE == MFEMUL_NOFIELD) continue;
//Now, get data
-
- res = EmGetCmd(receivedCmd, &len);
+ res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
if (res == 2) { //Field is off!
cardSTATE = MFEMUL_NOFIELD;
LEDsoff();
} else if (res == 1) {
break; //return value 1 means button press
}
-
+
// REQ or WUP request in ANY state and WUP in HALTED state
- if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+ if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount();
- EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+ EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA));
cardSTATE = MFEMUL_SELECT1;
// init crypto block
LED_C_OFF();
crypto1_destroy(pcs);
cardAUTHKEY = 0xff;
+ if (flags & FLAG_RANDOM_NONCE) {
+ nonce = prand();
+ }
continue;
}
case MFEMUL_NOFIELD:
case MFEMUL_HALTED:
case MFEMUL_IDLE:{
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
case MFEMUL_SELECT1:{
- // select all
- if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+ // select all - 0x93 0x20
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
break;
}
- if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
- {
- Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+ // select card - 0x93 0x70 ...
+ if (len == 9 &&
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+ if (MF_DBGLEVEL >= 4)
+ Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+
+ switch(_UID_LEN) {
+ case 4:
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+ EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+ break;
+ case 7:
+ cardSTATE = MFEMUL_SELECT2;
+ EmSendCmd(rSAK1, sizeof(rSAK1));
+ break;
+ case 10:
+ cardSTATE = MFEMUL_SELECT2;
+ EmSendCmd(rSAK1, sizeof(rSAK1));
+ break;
+ default:break;
+ }
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ break;
+ }
+ case MFEMUL_SELECT3:{
+ if (!len) {
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
+ break;
+ }
+ // select all cl3 - 0x97 0x20
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3));
+ break;
}
- // select card
+ // select card cl3 - 0x97 0x70
if (len == 9 &&
- (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
- EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK));
- cuid = bytes_to_num(rUIDBCC1, 4);
- if (!_7BUID) {
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
- break;
- } else {
- cardSTATE = MFEMUL_SELECT2;
- }
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 &&
+ receivedCmd[1] == 0x70 &&
+ memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) {
+
+ EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
+ break;
}
+ cardSTATE_TO_IDLE();
break;
}
case MFEMUL_AUTH1:{
- if( len != 8)
- {
+ if( len != 8) {
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
- uint32_t ar = bytes_to_num(receivedCmd, 4);
- uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
-
- //Collect AR/NR
- if(ar_nr_collected < 2){
- if(ar_nr_responses[2] != ar)
- {// Avoid duplicates... probably not necessary, ar should vary.
- ar_nr_responses[ar_nr_collected*4] = cuid;
- ar_nr_responses[ar_nr_collected*4+1] = nonce;
- ar_nr_responses[ar_nr_collected*4+2] = ar;
- ar_nr_responses[ar_nr_collected*4+3] = nr;
- ar_nr_collected++;
+
+ uint32_t nr = bytes_to_num(receivedCmd, 4);
+ uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
+
+ // Collect AR/NR per keytype & sector
+ if(flags & FLAG_NR_AR_ATTACK) {
+ for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) {
+ // if first auth for sector, or matches sector and keytype of previous auth
+ if (ar_nr_collected[i+mM] < 2) {
+ // if we haven't already collected 2 nonces for this sector
+ if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
+ // Avoid duplicates... probably not necessary, ar should vary.
+ if (ar_nr_collected[i+mM]==0) {
+ // first nonce collect
+ ar_nr_resp[i+mM].cuid = cuid;
+ ar_nr_resp[i+mM].sector = cardAUTHSC;
+ ar_nr_resp[i+mM].keytype = cardAUTHKEY;
+ ar_nr_resp[i+mM].nonce = nonce;
+ ar_nr_resp[i+mM].nr = nr;
+ ar_nr_resp[i+mM].ar = ar;
+ nonce1_count++;
+ // add this nonce to first moebius nonce
+ ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr;
+ ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar;
+ ar_nr_collected[i+ATTACK_KEY_COUNT]++;
+ } else { // second nonce collect (std and moebius)
+ ar_nr_resp[i+mM].nonce2 = nonce;
+ ar_nr_resp[i+mM].nr2 = nr;
+ ar_nr_resp[i+mM].ar2 = ar;
+ if (!gettingMoebius) {
+ nonce2_count++;
+ // check if this was the last second nonce we need for std attack
+ if ( nonce2_count == nonce1_count ) {
+ // done collecting std test switch to moebius
+ // first finish incrementing last sample
+ ar_nr_collected[i+mM]++;
+ // switch to moebius collection
+ gettingMoebius = true;
+ mM = ATTACK_KEY_COUNT;
+ if (flags & FLAG_RANDOM_NONCE) {
+ nonce = prand();
+ } else {
+ nonce = nonce*7;
+ }
+ break;
+ }
+ } else {
+ moebius_n_count++;
+ // if we've collected all the nonces we need - finish.
+ if (nonce1_count == moebius_n_count) finished = true;
+ }
+ }
+ ar_nr_collected[i+mM]++;
+ }
+ }
+ // we found right spot for this nonce stop looking
+ break;
+ }
}
}
// --- crypto
- crypto1_word(pcs, ar , 1);
- cardRr = nr ^ crypto1_word(pcs, 0, 0);
+ crypto1_word(pcs, nr , 1);
+ cardRr = ar ^ crypto1_word(pcs, 0, 0);
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
- if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
+ if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
+ // -- which is the correct response. /piwi
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
+ //auth successful
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
num_to_bytes(ans, 4, rAUTH_AT);
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
LED_C_ON();
cardSTATE = MFEMUL_WORK;
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
+ cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+ GetTickCount() - authTimer);
break;
}
case MFEMUL_SELECT2:{
if (!len) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
- }
- if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+ }
+ // select all cl2 - 0x95 0x20
+ if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
break;
}
- // select 2 card
+ // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
if (len == 9 &&
- (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
- EmSendCmd(rSAK, sizeof(rSAK));
- cuid = bytes_to_num(rUIDBCC2, 4);
- cardSTATE = MFEMUL_WORK;
- LED_B_ON();
- if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+ switch(_UID_LEN) {
+ case 7:
+ EmSendCmd(rSAKfinal, sizeof(rSAKfinal));
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ break;
+ case 10:
+ EmSendCmd(rSAK1, sizeof(rSAK1));
+ cardSTATE = MFEMUL_SELECT3;
+ break;
+ default:break;
+ }
break;
}
// i guess there is a command). go into the work state.
if (len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
cardSTATE = MFEMUL_WORK;
case MFEMUL_WORK:{
if (len == 0) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
}
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+
+ // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
+ if (receivedCmd[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) {
+ //is this the correct response to an auth on a out of range block? marshmellow
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ break;
+ }
+
authTimer = GetTickCount();
cardAUTHSC = receivedCmd[1] / 4; // received block num
cardAUTHKEY = receivedCmd[0] - 0x60;
crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+ //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY);
+ //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF));
if (!encrypted_data) { // first authentication
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
} else { // nested authentication
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+ if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
}
+
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
cardSTATE = MFEMUL_AUTH1;
}
if(len != 4) {
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
if(receivedCmd[0] == 0x30 // read block
|| receivedCmd[0] == 0xA0 // write block
- || receivedCmd[0] == 0xC0
- || receivedCmd[0] == 0xC1
- || receivedCmd[0] == 0xC2 // inc dec restore
+ || receivedCmd[0] == 0xC0 // inc
+ || receivedCmd[0] == 0xC1 // dec
+ || receivedCmd[0] == 0xC2 // restore
|| receivedCmd[0] == 0xB0) { // transfer
if (receivedCmd[1] >= 16 * 4) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
break;
}
if (receivedCmd[1] / 4 != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
+ if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
break;
}
}
// read block
if (receivedCmd[0] == 0x30) {
- if (MF_DBGLEVEL >= 2) {
+ if (MF_DBGLEVEL >= 4) {
Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
}
emlGetMem(response, receivedCmd[1], 1);
AppendCrc14443a(response, 16);
- mf_crypto1_encrypt(pcs, response, 18, &par);
- EmSendCmdPar(response, 18, par);
+ mf_crypto1_encrypt(pcs, response, 18, response_par);
+ EmSendCmdPar(response, 18, response_par);
numReads++;
if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
}
// write block
if (receivedCmd[0] == 0xA0) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
}
// increment, decrement, restore
if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlCheckValBl(receivedCmd[1])) {
if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
}
// transfer
if (receivedCmd[0] == 0xB0) {
- if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+ if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
// RATS
cardSTATE = MFEMUL_WORK;
} else {
cardSTATE_TO_IDLE();
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
}
break;
}
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
break;
cardSTATE_TO_IDLE();
break;
}
- LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
- LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+ LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
cardSTATE = MFEMUL_WORK;
break;
}
}
+ button_pushed = BUTTON_PRESS();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
- {
- //May just aswell send the collected ar_nr in the response aswell
- cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
- }
- if(flags & FLAG_NR_AR_ATTACK)
- {
- if(ar_nr_collected > 1) {
- Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
- Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3], //NR1
- ar_nr_responses[6], //AR2
- ar_nr_responses[7] //NR2
- );
- } else {
- Dbprintf("Failed to obtain two AR/NR pairs!");
- if(ar_nr_collected >0) {
- Dbprintf("Only got these: UID=%08d, nonce=%08d, AR1=%08d, NR1=%08d",
- ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3] //NR1
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
+ for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
+ );
+ }
+ }
+ for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+ if (ar_nr_collected[i] == 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
+ Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+ ar_nr_resp[i].cuid, //UID
+ ar_nr_resp[i].nonce, //NT
+ ar_nr_resp[i].nr, //NR1
+ ar_nr_resp[i].ar, //AR1
+ ar_nr_resp[i].nonce2,//NT2
+ ar_nr_resp[i].nr2, //NR2
+ ar_nr_resp[i].ar2 //AR2
);
}
}
}
- if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
-}
+ if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
+ if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
+ //Send the collected ar_nr in the response
+ cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp));
+ }
+}
//-----------------------------------------------------------------------------
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
- iso14a_clear_trace();
+ clear_trace();
+ set_tracing(true);
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
// The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+ uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+ uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
-
- // The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
+ // allocate the DMA buffer, used to stream samples from the FPGA
+ uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
int maxDataLen = 0;
int dataLen = 0;
- bool ReaderIsActive = FALSE;
- bool TagIsActive = FALSE;
-
- iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
+ bool ReaderIsActive = false;
+ bool TagIsActive = false;
// Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
+ DemodInit(receivedResponse, receivedResponsePar);
// Set up the demodulator for the reader -> tag commands
- Uart.output = receivedCmd;
+ UartInit(receivedCmd, receivedCmdPar);
// Setup for the DMA.
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
MfSniffInit();
// And now we loop, receiving samples.
- for(uint32_t sniffCounter = 0; TRUE; ) {
+ for(uint32_t sniffCounter = 0; true; ) {
if(BUTTON_PRESS()) {
DbpString("cancelled by button");
sniffCounter = 0;
data = dmaBuf;
maxDataLen = 0;
- ReaderIsActive = FALSE;
- TagIsActive = FALSE;
+ ReaderIsActive = false;
+ TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
// test for length of buffer
if(dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
- if(dataLen > 400) {
+ if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
break;
}
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
+ if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
/* And ready to receive another command. */
- UartReset();
+ UartInit(receivedCmd, receivedCmdPar);
/* And also reset the demod code */
DemodReset();
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
LED_C_INV();
- if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
// And ready to receive another response.
DemodReset();
+ // And reset the Miller decoder including its (now outdated) input buffer
+ UartInit(receivedCmd, receivedCmdPar);
}
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
}
previous_data = *data;
sniffCounter++;
data++;
- if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ if(data == dmaBuf + DMA_BUFFER_SIZE) {
data = dmaBuf;
}