//-----------------------------------------------------------------------------
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
// Tags supported here so far are Texas Instruments (TI), HID
// Also routines for raw mode reading/simulating of LF waveform
-//
//-----------------------------------------------------------------------------
+
#include "proxmark3.h"
#include "apps.h"
+#include "util.h"
#include "hitag2.h"
#include "crc16.h"
-
-void AcquireRawAdcSamples125k(BOOL at134khz)
+#include "string.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "usb_cdc.h"
+
+
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k();
-}
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(void)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
+ int divisor_used = 95; // 125 KHz
+ // see if 'h' was specified
- memset(dest, 0, n);
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- LED_D_ON();
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
- i++;
- LED_D_OFF();
- if (i >= n) break;
- }
- }
- Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
- dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-}
+ if (command[strlen((char *) command) - 1] == 'h')
+ divisor_used = 88; // 134.8 KHz
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, BYTE *command)
-{
- BOOL at134khz;
+ sample_config sc = { 0,0,1, divisor_used, 0};
+ setSamplingConfig(&sc);
/* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
- // see if 'h' was specified
- if (command[strlen((char *) command) - 1] == 'h')
- at134khz = TRUE;
- else
- at134khz = FALSE;
-
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ LFSetupFPGAForADC(sc.divisor, 1);
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
// And a little more time for the tag to fully power up
SpinDelay(2000);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(period_0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
- if (at134khz)
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- else
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
- DoAcquisition125k();
+ DoAcquisition_config(false);
}
+
+
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
- #define FSAMPLE 2000000
- #define FREQLO 123200
- #define FREQHI 134200
-
- signed char *dest = (signed char *)BigBuf;
- int n = sizeof(BigBuf);
-// int *dest = GraphBuffer;
-// int n = GraphTraceLen;
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
+ signed char *dest = (signed char *)BigBuf_get_addr();
+ uint16_t n = BigBuf_max_traceLen();
// 128 bit shift register [shift3:shift2:shift1:shift0]
- DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
+ uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
int i, cycles=0, samples=0;
// how many sample points fit in 16 cycles of each frequency
- DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
+ uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
// when to tell if we're close enough to one freq or another
- DWORD threshold = (sampleslo - sampleshi + 1)>>1;
+ uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
- shift0 = (shift0>>1) | (shift1 << 31);
- shift1 = (shift1>>1) | (shift2 << 31);
- shift2 = (shift2>>1) | (shift3 << 31);
- shift3 >>= 1;
+ shift0 = (shift0>>1) | (shift1 << 31);
+ shift1 = (shift1>>1) | (shift2 << 31);
+ shift2 = (shift2>>1) | (shift3 << 31);
+ shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if (cycles!=0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
- // put 64 bit data into shift1 and shift0
- shift0 = (shift0>>24) | (shift1 << 8);
- shift1 = (shift1>>24) | (shift2 << 8);
+ // put 64 bit data into shift1 and shift0
+ shift0 = (shift0>>24) | (shift1 << 8);
+ shift1 = (shift1>>24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
- shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+ shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
- if ( shift3&(1<<15) ) {
+ if (shift3 & (1<<15) ) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
- if ( ((shift3>>16)^shift0)&0x7fff ) {
+ if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
// bytes in reverse or something
// calculate CRC
- DWORD crc=0;
+ uint32_t crc=0;
- crc = update_crc16(crc, (shift0)&0xff);
+ crc = update_crc16(crc, (shift0)&0xff);
crc = update_crc16(crc, (shift0>>8)&0xff);
crc = update_crc16(crc, (shift0>>16)&0xff);
crc = update_crc16(crc, (shift0>>24)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
Dbprintf("Info: Tag data: %x%08x, crc=%x",
- (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+ (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2&0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
}
}
-void WriteTIbyte(BYTE b)
+void WriteTIbyte(uint8_t b)
{
int i = 0;
{
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
- // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
- #define TIBUFLEN 1250
+ // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
+ #define TIBUFLEN 1250
// clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
+ uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+ memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
- char *dest = (char *)BigBuf;
+ char *dest = (char *)BigBuf_get_addr();
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
-void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
+void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
- crc = update_crc16(crc, (idlo)&0xff);
+ crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
crc = update_crc16(crc, (idlo>>16)&0xff);
crc = update_crc16(crc, (idlo>>24)&0xff);
crc = update_crc16(crc, (idhi>>24)&0xff);
}
Dbprintf("Writing to tag: %x%08x, crc=%x",
- (unsigned int) idhi, (unsigned int) idlo, crc);
+ (unsigned int) idhi, (unsigned int) idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
int i;
- BYTE *tab = (BYTE *)BigBuf;
+ uint8_t *tab = BigBuf_get_addr();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+ #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
+ //wait until SSC_CLK goes HIGH
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
+ if(BUTTON_PRESS() || usb_poll()) {
DbpString("Stopped");
return;
}
WDT_HIT();
}
-
if (ledcontrol)
LED_D_ON();
if (ledcontrol)
LED_D_OFF();
-
+ //wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
i++;
if(i == period) {
+
i = 0;
if (gap) {
SHORT_COIL();
}
}
-/* Provides a framework for bidirectional LF tag communication
- * Encoding is currently Hitag2, but the general idea can probably
- * be transferred to other encodings.
- *
- * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
- * (PA15) a thresholded version of the signal from the ADC. Setting the
- * ADC path to the low frequency peak detection signal, will enable a
- * somewhat reasonable receiver for modulation on the carrier signal
- * that is generated by the reader. The signal is low when the reader
- * field is switched off, and high when the reader field is active. Due
- * to the way that the signal looks like, mostly only the rising edge is
- * useful, your mileage may vary.
- *
- * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
- * TIOA1, which can be used as the capture input for timer 1. This should
- * make it possible to measure the exact edge-to-edge time, without processor
- * intervention.
- *
- * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
- * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
- *
- * The following defines are in carrier periods:
- */
-#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
-#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
-#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
-#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
-
-static void hitag_handle_frame(int t0, int frame_len, char *frame);
-//#define DEBUG_RA_VALUES 1
#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int t0)
{
-#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
- int i = 0;
-#endif
- char frame[10];
- int frame_pos=0;
-
- DbpString("Starting Hitag2 emulator, press button to end");
- hitag2_init();
-
- /* Set up simulator mode, frequency divisor which will drive the FPGA
- * and analog mux selection.
- */
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- RELAY_OFF();
-
- /* Set up Timer 1:
- * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
- * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
- * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
- */
-
- AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
- AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
- AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 |
- AT91C_TC_ETRGEDG_RISING |
- AT91C_TC_ABETRG |
- AT91C_TC_LDRA_RISING |
- AT91C_TC_LDRB_RISING;
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN |
- AT91C_TC_SWTRG;
-
- /* calculate the new value for the carrier period in terms of TC1 values */
- t0 = t0/2;
-
- int overflow = 0;
- while(!BUTTON_PRESS()) {
- WDT_HIT();
- if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
- int ra = AT91C_BASE_TC1->TC_RA;
- if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
-#if DEBUG_RA_VALUES
- if(ra > 255 || overflow) ra = 255;
- ((char*)BigBuf)[i] = ra;
- i = (i+1) % 8000;
-#endif
-
- if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) {
- /* Ignore */
- } else if(ra >= t0*HITAG_T_1_MIN ) {
- /* '1' bit */
- if(frame_pos < 8*sizeof(frame)) {
- frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) );
- frame_pos++;
- }
- } else if(ra >= t0*HITAG_T_0_MIN) {
- /* '0' bit */
- if(frame_pos < 8*sizeof(frame)) {
- frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) );
- frame_pos++;
- }
- }
-
- overflow = 0;
- LED_D_ON();
- } else {
- if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
- /* Minor nuisance: In Capture mode, the timer can not be
- * stopped by a Compare C. There's no way to stop the clock
- * in software, so we'll just have to note the fact that an
- * overflow happened and the next loaded timer value might
- * have wrapped. Also, this marks the end of frame, and the
- * still running counter can be used to determine the correct
- * time for the start of the reply.
- */
- overflow = 1;
-
- if(frame_pos > 0) {
- /* Have a frame, do something with it */
-#if DEBUG_FRAME_CONTENTS
- ((char*)BigBuf)[i++] = frame_pos;
- memcpy( ((char*)BigBuf)+i, frame, 7);
- i+=7;
- i = i % sizeof(BigBuf);
-#endif
- hitag_handle_frame(t0, frame_pos, frame);
- memset(frame, 0, sizeof(frame));
- }
- frame_pos = 0;
-
- }
- LED_D_OFF();
- }
- }
- DbpString("All done");
-}
-
-static void hitag_send_bit(int t0, int bit) {
- if(bit == 1) {
- /* Manchester: Loaded, then unloaded */
- LED_A_ON();
- SHORT_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*15);
- OPEN_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*31);
- LED_A_OFF();
- } else if(bit == 0) {
- /* Manchester: Unloaded, then loaded */
- LED_B_ON();
- OPEN_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*15);
- SHORT_COIL();
- while(AT91C_BASE_TC1->TC_CV < t0*31);
- LED_B_OFF();
- }
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
-
-}
-static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
-{
- OPEN_COIL();
- AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-
- /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
- * not that since the clock counts since the rising edge, but T_wresp is
- * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
- * periods. The gap time T_g varies (4..10).
- */
- while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
-
- int saved_cmr = AT91C_BASE_TC1->TC_CMR;
- AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
- AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
-
- int i;
- for(i=0; i<5; i++)
- hitag_send_bit(t0, 1); /* Start of frame */
-
- for(i=0; i<frame_len; i++) {
- hitag_send_bit(t0, !!(frame[i/ 8] & (1<<( 7-(i%8) ))) );
- }
-
- OPEN_COIL();
- AT91C_BASE_TC1->TC_CMR = saved_cmr;
}
-/* Callback structure to cleanly separate tag emulation code from the radio layer. */
-static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie)
-{
- hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt);
- return 0;
-}
-/* Frame length in bits, frame contents in MSBit first format */
-static void hitag_handle_frame(int t0, int frame_len, char *frame)
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
{
- hitag2_handle_command(frame, frame_len, hitag_cb, &t0);
-}
-
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- BYTE *dest = (BYTE *)BigBuf;
+ uint8_t *dest = BigBuf_get_addr();
int idx;
// for when we want an fc8 pattern every 4 logical bits
if(c==0) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
+
+ // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
if(c==8) {
for (idx=0; idx<6; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+ // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
if(c==10) {
for (idx=0; idx<5; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
+ dest[((*n)++)]=1;
+ dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
}
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfFC = fc/2;
+ uint8_t wavesPerClock = clock/fc;
+ uint8_t mod = clock % fc; //modifier
+ uint8_t modAdj = fc/mod; //how often to apply modifier
+ bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+ // loop through clock - step field clock
+ for (uint8_t idx=0; idx < wavesPerClock; idx++){
+ // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+ memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ if (mod>0) (*modCnt)++;
+ if ((mod>0) && modAdjOk){ //fsk2
+ if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+ memset(dest+(*n), 0, fc-halfFC);
+ memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+ *n += fc;
+ }
+ }
+ if (mod>0 && !modAdjOk){ //fsk1
+ memset(dest+(*n), 0, mod-(mod/2));
+ memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+ *n += mod;
+ }
+}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
*/
if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
+ DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
fc(0,&n);
// special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
+ fc(8, &n); fc(8, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
fc(10, &n); fc(10, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
for (i=11; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
+ fc(10, &n); fc(8, &n); // low-high transition
} else {
- fc(8, &n); fc(10, &n); // high-low transition
+ fc(8, &n); fc(10, &n); // high-low transition
}
}
for (i=31; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
+ fc(10, &n); fc(8, &n); // low-high transition
} else {
- fc(8, &n); fc(10, &n); // high-low transition
+ fc(8, &n); fc(10, &n); // high-low transition
}
}
LED_A_OFF();
}
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- BYTE *dest = (BYTE *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- DWORD hi=0, lo=0;
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t fcHigh = arg1 >> 8;
+ uint8_t fcLow = arg1 & 0xFF;
+ uint16_t modCnt = 0;
+ uint8_t clk = arg2 & 0xFF;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ for (i=0; i<size; i++){
+ if (BitStream[i] == invert){
+ fcAll(fcLow, &n, clk, &modCnt);
+ } else {
+ fcAll(fcHigh, &n, clk, &modCnt);
+ }
+ }
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+ /*Dbprintf("DEBUG: First 32:");
+ uint8_t *dest = BigBuf_get_addr();
+ i=0;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ i+=16;
+ Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ */
+ if (ledcontrol)
+ LED_A_ON();
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+ SimulateTagLowFrequency(n, 0, ledcontrol);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ if (ledcontrol)
+ LED_A_OFF();
+}
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ // c = current bit 1 or 0
+ if (manchester==1){
+ memset(dest+(*n), c, halfClk);
+ memset(dest+(*n) + halfClk, c^1, halfClk);
+ } else {
+ memset(dest+(*n), c, clock);
+ }
+ *n += clock;
+}
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ if (c){
+ memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+ memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+ } else {
+ memset(dest+(*n), c ^ *phase, clock);
+ *phase ^= 1;
+ }
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
+}
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- if (ledcontrol)
- LED_D_ON();
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol = 1;
+ int n=0, i=0;
+ uint8_t clk = (arg1 >> 8) & 0xFF;
+ uint8_t encoding = arg1 & 0xFF;
+ uint8_t separator = arg2 & 1;
+ uint8_t invert = (arg2 >> 8) & 1;
+
+ if (encoding==2){ //biphase
+ uint8_t phase=0;
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+ }
+ if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ for (i=0; i<size; i++){
+ biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
+ }
+ } else { // ask/manchester || ask/raw
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert, &n, clk, encoding);
+ }
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ for (i=0; i<size; i++){
+ askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
+ }
+
+ if (separator==1) Dbprintf("sorry but separator option not yet available");
+
+ Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+ //DEBUG
+ //Dbprintf("First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
- // FSK demodulator
+ if (ledcontrol)
+ LED_A_ON();
+
+ SimulateTagLowFrequency(n, 0, ledcontrol);
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfWave = waveLen/2;
+ //uint8_t idx;
+ int i = 0;
+ if (phaseChg){
+ // write phase change
+ memset(dest+(*n), *curPhase^1, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase, halfWave);
+ *n += waveLen;
+ *curPhase ^= 1;
+ i += waveLen;
+ }
+ //write each normal clock wave for the clock duration
+ for (; i < clk; i+=waveLen){
+ memset(dest+(*n), *curPhase, halfWave);
+ memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+ *n += waveLen;
+ }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+ int ledcontrol=1;
+ int n=0, i=0;
+ uint8_t clk = arg1 >> 8;
+ uint8_t carrier = arg1 & 0xFF;
+ uint8_t invert = arg2 & 0xFF;
+ uint8_t curPhase = 0;
+ for (i=0; i<size; i++){
+ if (BitStream[i] == curPhase){
+ pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+ } else {
+ pskSimBit(carrier, &n, clk, &curPhase, TRUE);
}
+ }
+ Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+ //Dbprintf("DEBUG: First 32:");
+ //uint8_t *dest = BigBuf_get_addr();
+ //i=0;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+ //i+=16;
+ //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+
+ if (ledcontrol)
+ LED_A_ON();
+ SimulateTagLowFrequency(n, 0, ledcontrol);
+
+ if (ledcontrol)
+ LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+ size_t size;
+ uint32_t hi2=0, hi=0, lo=0;
+ int idx=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+
WDT_HIT();
+ if (ledcontrol) LED_A_ON();
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
+ DoAcquisition_default(-1,true);
+ // FSK demodulator
+ //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
+ size = 50*128*2; //big enough to catch 2 sequences of largest format
+ idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+
+ if (idx>0 && lo>0 && (size==96 || size==192)){
+ // go over previously decoded manchester data and decode into usable tag ID
+ if (hi2 != 0){ //extra large HID tags 88/192 bits
+ Dbprintf("TAG ID: %x%08x%08x (%d)",
+ (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ }else { //standard HID tags 44/96 bits
+ //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+ uint8_t bitlen = 0;
+ uint32_t fc = 0;
+ uint32_t cardnum = 0;
+ if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+ uint32_t lo2=0;
+ lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+ uint8_t idx3 = 1;
+ while(lo2 > 1){ //find last bit set to 1 (format len bit)
+ lo2=lo2 >> 1;
+ idx3++;
+ }
+ bitlen = idx3+19;
+ fc =0;
+ cardnum=0;
+ if(bitlen == 26){
+ cardnum = (lo>>1)&0xFFFF;
+ fc = (lo>>17)&0xFF;
+ }
+ if(bitlen == 37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
+ if(bitlen == 34){
+ cardnum = (lo>>1)&0xFFFF;
+ fc= ((hi&1)<<15)|(lo>>17);
+ }
+ if(bitlen == 35){
+ cardnum = (lo>>1)&0xFFFFF;
+ fc = ((hi&1)<<11)|(lo>>21);
+ }
+ }
+ else { //if bit 38 is not set then 37 bit format is used
+ bitlen= 37;
+ fc =0;
+ cardnum=0;
+ if(bitlen==37){
+ cardnum = (lo>>1)&0x7FFFF;
+ fc = ((hi&0xF)<<12)|(lo>>20);
+ }
}
+ //Dbprintf("TAG ID: %x%08x (%d)",
+ // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+ Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+ (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+ (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+ }
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high = hi;
+ *low = lo;
+ return;
+ }
+ // reset
+ }
+ hi2 = hi = lo = idx = 0;
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+
+ size_t size=0, idx=0;
+ int clk=0, invert=0, errCnt=0, maxErr=20;
+ uint32_t hi=0;
+ uint64_t lo=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
+
+ while(!BUTTON_PRESS()) {
+
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+
+ DoAcquisition_default(-1,true);
+ size = BigBuf_max_traceLen();
+ //askdemod and manchester decode
+ if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+ errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+ WDT_HIT();
+
+ if (errCnt<0) continue;
+
+ errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+ if (errCnt){
+ if (size>64){
+ Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+ hi,
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ } else {
+ Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+ (uint32_t)(lo>>32),
+ (uint32_t)lo,
+ (uint32_t)(lo&0xFFFF),
+ (uint32_t)((lo>>16LL) & 0xFF),
+ (uint32_t)(lo & 0xFFFFFF));
+ }
- lastval=idx;
- i++;
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ *high=lo>>32;
+ *low=lo & 0xFFFFFFFF;
+ return;
}
}
- m=i;
WDT_HIT();
+ hi = lo = size = idx = 0;
+ clk = invert = errCnt = 0;
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+ uint8_t *dest = BigBuf_get_addr();
+ int idx=0;
+ uint32_t code=0, code2=0;
+ uint8_t version=0;
+ uint8_t facilitycode=0;
+ uint16_t number=0;
+ // Configure to go in 125Khz listen mode
+ LFSetupFPGAForADC(95, true);
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
+ while(!BUTTON_PRESS()) {
+ WDT_HIT();
+ if (ledcontrol) LED_A_ON();
+ DoAcquisition_default(-1,true);
+ //fskdemod and get start index
+ WDT_HIT();
+ idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+ if (idx<0) continue;
+ //valid tag found
+
+ //Index map
+ //0 10 20 30 40 50 60
+ //| | | | | | |
+ //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+ //-----------------------------------------------------------------------------
+ //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+ //
+ //XSF(version)facility:codeone+codetwo
+ //Handle the data
+ if(findone){ //only print binary if we are doing one
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ }
+ code = bytebits_to_byte(dest+idx,32);
+ code2 = bytebits_to_byte(dest+idx+32,32);
+ version = bytebits_to_byte(dest+idx+27,8); //14,4
+ facilitycode = bytebits_to_byte(dest+idx+18,8);
+ number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+ Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+ // if we're only looking for one tag
+ if (findone){
+ if (ledcontrol) LED_A_OFF();
+ //LED_A_OFF();
+ *high=code;
+ *low=code2;
+ return;
+ }
+ code=code2=0;
+ version=facilitycode=0;
+ number=0;
idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
+
+ WDT_HIT();
+ }
+ DbpString("Stopped");
+ if (ledcontrol) LED_A_OFF();
+}
+
+/*------------------------------
+ * T5555/T5557/T5567 routines
+ *------------------------------
+ */
+
+/* T55x7 configuration register definitions */
+#define T55x7_POR_DELAY 0x00000001
+#define T55x7_ST_TERMINATOR 0x00000008
+#define T55x7_PWD 0x00000010
+#define T55x7_MAXBLOCK_SHIFT 5
+#define T55x7_AOR 0x00000200
+#define T55x7_PSKCF_RF_2 0
+#define T55x7_PSKCF_RF_4 0x00000400
+#define T55x7_PSKCF_RF_8 0x00000800
+#define T55x7_MODULATION_DIRECT 0
+#define T55x7_MODULATION_PSK1 0x00001000
+#define T55x7_MODULATION_PSK2 0x00002000
+#define T55x7_MODULATION_PSK3 0x00003000
+#define T55x7_MODULATION_FSK1 0x00004000
+#define T55x7_MODULATION_FSK2 0x00005000
+#define T55x7_MODULATION_FSK1a 0x00006000
+#define T55x7_MODULATION_FSK2a 0x00007000
+#define T55x7_MODULATION_MANCHESTER 0x00008000
+#define T55x7_MODULATION_BIPHASE 0x00010000
+#define T55x7_BITRATE_RF_8 0
+#define T55x7_BITRATE_RF_16 0x00040000
+#define T55x7_BITRATE_RF_32 0x00080000
+#define T55x7_BITRATE_RF_40 0x000C0000
+#define T55x7_BITRATE_RF_50 0x00100000
+#define T55x7_BITRATE_RF_64 0x00140000
+#define T55x7_BITRATE_RF_100 0x00180000
+#define T55x7_BITRATE_RF_128 0x001C0000
+
+/* T5555 (Q5) configuration register definitions */
+#define T5555_ST_TERMINATOR 0x00000001
+#define T5555_MAXBLOCK_SHIFT 0x00000001
+#define T5555_MODULATION_MANCHESTER 0
+#define T5555_MODULATION_PSK1 0x00000010
+#define T5555_MODULATION_PSK2 0x00000020
+#define T5555_MODULATION_PSK3 0x00000030
+#define T5555_MODULATION_FSK1 0x00000040
+#define T5555_MODULATION_FSK2 0x00000050
+#define T5555_MODULATION_BIPHASE 0x00000060
+#define T5555_MODULATION_DIRECT 0x00000070
+#define T5555_INVERT_OUTPUT 0x00000080
+#define T5555_PSK_RF_2 0
+#define T5555_PSK_RF_4 0x00000100
+#define T5555_PSK_RF_8 0x00000200
+#define T5555_USE_PWD 0x00000400
+#define T5555_USE_AOR 0x00000800
+#define T5555_BITRATE_SHIFT 12
+#define T5555_FAST_WRITE 0x00004000
+#define T5555_PAGE_SELECT 0x00008000
+
+/*
+ * Relevant times in microsecond
+ * To compensate antenna falling times shorten the write times
+ * and enlarge the gap ones.
+ */
+#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
+#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
+#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
+
+#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
+
+// Write one bit to card
+void T55xxWriteBit(int bit)
+{
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ if (bit == 0)
+ SpinDelayUs(WRITE_0);
+ else
+ SpinDelayUs(WRITE_1);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(WRITE_GAP);
+}
+
+// Write one card block in page 0, no lock
+void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ uint32_t i = 0;
+
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
+
+ // Now start writting
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+
+ // Data
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Data & i);
+
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
+ // so wait a little more)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+}
+
+void TurnReadLFOn(){
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+ // Give it a bit of time for the resonant antenna to settle.
+ SpinDelayUs(8*150);
+}
+
+
+// Read one card block in page 0
+void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
+{
+ uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength = T55xx_SAMPLES_SIZE;
+
+ // Clear destination buffer before sending the command
+ memset(dest, 0x80, bufferlength);
+
+ // Set up FPGA, 125kHz
+ // Wait for config.. (192+8190xPOW)x8 == 67ms
+ LFSetupFPGAForADC(0, true);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(0); //Page 0
+ if (PwdMode == 1){
+ // Pwd
+ for (i = 0x80000000; i != 0; i >>= 1)
+ T55xxWriteBit(Pwd & i);
+ }
+ // Lock bit
+ T55xxWriteBit(0);
+ // Block
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
+
+ // Turn field on to read the response
+ TurnReadLFOn();
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ LED_D_OFF();
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+// Read card traceability data (page 1)
+void T55xxReadTrace(void){
+
+ uint32_t i = 0;
+ uint8_t *dest = BigBuf_get_addr();
+ uint16_t bufferlength = BigBuf_max_traceLen();
+ if ( bufferlength > T55xx_SAMPLES_SIZE )
+ bufferlength= T55xx_SAMPLES_SIZE;
+
+ // Clear destination buffer before sending the command
+ memset(dest, 0x80, bufferlength);
+
+ LFSetupFPGAForADC(0, true);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelayUs(START_GAP);
+
+ // Opcode
+ T55xxWriteBit(1);
+ T55xxWriteBit(1); //Page 1
+
+ // Turn field on to read the response
+ TurnReadLFOn();
+
+ // Now do the acquisition
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ LED_D_ON();
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ LED_D_OFF();
+
+ if (i >= bufferlength) break;
+ }
+ }
+
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+/*-------------- Cloning routines -----------*/
+// Copy HID id to card and setup block 0 config
+void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
+ int last_block = 0;
+
+ if (longFMT){
+ // Ensure no more than 84 bits supplied
+ if (hi2>0xFFFFF) {
+ DbpString("Tags can only have 84 bits.");
+ return;
+ }
+ // Build the 6 data blocks for supplied 84bit ID
+ last_block = 6;
+ data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+ for (int i=0;i<4;i++) {
+ if (hi2 & (1<<(19-i)))
+ data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((3-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi2 & (1<<(15-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(31-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data4 = 0;
+ for (int i=0;i<16;i++) {
+ if (hi & (1<<(15-i)))
+ data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data4 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data5 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data5 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data6 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data6 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+ else {
+ // Ensure no more than 44 bits supplied
+ if (hi>0xFFF) {
+ DbpString("Tags can only have 44 bits.");
+ return;
+ }
+
+ // Build the 3 data blocks for supplied 44bit ID
+ last_block = 3;
+
+ data1 = 0x1D000000; // load preamble
+
+ for (int i=0;i<12;i++) {
+ if (hi & (1<<(11-i)))
+ data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+ else
+ data1 |= (1<<((11-i)*2)); // 0 -> 01
+ }
+
+ data2 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(31-i)))
+ data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data2 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+
+ data3 = 0;
+ for (int i=0;i<16;i++) {
+ if (lo & (1<<(15-i)))
+ data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+ else
+ data3 |= (1<<((15-i)*2)); // 0 -> 01
+ }
+ }
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+ T55xxWriteBlock(data3,3,0,0);
+
+ if (longFMT) { // if long format there are 6 blocks
+ T55xxWriteBlock(data4,4,0,0);
+ T55xxWriteBlock(data5,5,0,0);
+ T55xxWriteBlock(data6,6,0,0);
+ }
+
+ // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
+ T55xxWriteBlock(T55x7_BITRATE_RF_50 |
+ T55x7_MODULATION_FSK2a |
+ last_block << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+ int data1=0, data2=0; //up to six blocks for long format
+
+ data1 = hi; // load preamble
+ data2 = lo;
+
+ LED_D_ON();
+ // Program the data blocks for supplied ID
+ // and the block 0 for HID format
+ T55xxWriteBlock(data1,1,0,0);
+ T55xxWriteBlock(data2,2,0,0);
+
+ //Config Block
+ T55xxWriteBlock(0x00147040,0,0,0);
+ LED_D_OFF();
+
+ DbpString("DONE!");
+}
+
+// Define 9bit header for EM410x tags
+#define EM410X_HEADER 0x1FF
+#define EM410X_ID_LENGTH 40
+
+void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
+{
+ int i, id_bit;
+ uint64_t id = EM410X_HEADER;
+ uint64_t rev_id = 0; // reversed ID
+ int c_parity[4]; // column parity
+ int r_parity = 0; // row parity
+ uint32_t clock = 0;
+
+ // Reverse ID bits given as parameter (for simpler operations)
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ if (i < 32) {
+ rev_id = (rev_id << 1) | (id_lo & 1);
+ id_lo >>= 1;
+ } else {
+ rev_id = (rev_id << 1) | (id_hi & 1);
+ id_hi >>= 1;
+ }
+ }
+
+ for (i = 0; i < EM410X_ID_LENGTH; ++i) {
+ id_bit = rev_id & 1;
+
+ if (i % 4 == 0) {
+ // Don't write row parity bit at start of parsing
+ if (i)
+ id = (id << 1) | r_parity;
+ // Start counting parity for new row
+ r_parity = id_bit;
+ } else {
+ // Count row parity
+ r_parity ^= id_bit;
+ }
+
+ // First elements in column?
+ if (i < 4)
+ // Fill out first elements
+ c_parity[i] = id_bit;
+ else
+ // Count column parity
+ c_parity[i % 4] ^= id_bit;
+
+ // Insert ID bit
+ id = (id << 1) | id_bit;
+ rev_id >>= 1;
+ }
+
+ // Insert parity bit of last row
+ id = (id << 1) | r_parity;
+
+ // Fill out column parity at the end of tag
+ for (i = 0; i < 4; ++i)
+ id = (id << 1) | c_parity[i];
+
+ // Add stop bit
+ id <<= 1;
+
+ Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
+ LED_D_ON();
+
+ // Write EM410x ID
+ T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
+ T55xxWriteBlock((uint32_t)id, 2, 0, 0);
+
+ // Config for EM410x (RF/64, Manchester, Maxblock=2)
+ if (card) {
+ // Clock rate is stored in bits 8-15 of the card value
+ clock = (card & 0xFF00) >> 8;
+ Dbprintf("Clock rate: %d", clock);
+ switch (clock)
+ {
+ case 32:
+ clock = T55x7_BITRATE_RF_32;
+ break;
+ case 16:
+ clock = T55x7_BITRATE_RF_16;
+ break;
+ case 0:
+ // A value of 0 is assumed to be 64 for backwards-compatibility
+ // Fall through...
+ case 64:
+ clock = T55x7_BITRATE_RF_64;
+ break;
+ default:
+ Dbprintf("Invalid clock rate: %d", clock);
+ return;
+ }
+
+ // Writing configuration for T55x7 tag
+ T55xxWriteBlock(clock |
+ T55x7_MODULATION_MANCHESTER |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ }
+ else
+ // Writing configuration for T5555(Q5) tag
+ T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
+ T5555_MODULATION_MANCHESTER |
+ 2 << T5555_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+
+ LED_D_OFF();
+ Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
+ (uint32_t)(id >> 32), (uint32_t)id);
+}
+
+// Clone Indala 64-bit tag by UID to T55x7
+void CopyIndala64toT55x7(int hi, int lo)
+{
+
+ //Program the 2 data blocks for supplied 64bit UID
+ // and the block 0 for Indala64 format
+ T55xxWriteBlock(hi,1,0,0);
+ T55xxWriteBlock(lo,2,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 2 << T55x7_MAXBLOCK_SHIFT,
+ 0, 0, 0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
+ // T5567WriteBlock(0x603E1042,0);
+
+ DbpString("DONE!");
+
+}
+
+void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
+{
+
+ //Program the 7 data blocks for supplied 224bit UID
+ // and the block 0 for Indala224 format
+ T55xxWriteBlock(uid1,1,0,0);
+ T55xxWriteBlock(uid2,2,0,0);
+ T55xxWriteBlock(uid3,3,0,0);
+ T55xxWriteBlock(uid4,4,0,0);
+ T55xxWriteBlock(uid5,5,0,0);
+ T55xxWriteBlock(uid6,6,0,0);
+ T55xxWriteBlock(uid7,7,0,0);
+ //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
+ T55xxWriteBlock(T55x7_BITRATE_RF_32 |
+ T55x7_MODULATION_PSK1 |
+ 7 << T55x7_MAXBLOCK_SHIFT,
+ 0,0,0);
+ //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
+ // T5567WriteBlock(0x603E10E2,0);
+
+ DbpString("DONE!");
+
+}
+
+
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
+#define max(x,y) ( x<y ? y:x)
+
+int DemodPCF7931(uint8_t **outBlocks) {
+ uint8_t BitStream[256];
+ uint8_t Blocks[8][16];
+ uint8_t *GraphBuffer = BigBuf_get_addr();
+ int GraphTraceLen = BigBuf_max_traceLen();
+ int i, j, lastval, bitidx, half_switch;
+ int clock = 64;
+ int tolerance = clock / 8;
+ int pmc, block_done;
+ int lc, warnings = 0;
+ int num_blocks = 0;
+ int lmin=128, lmax=128;
+ uint8_t dir;
+
+ LFSetupFPGAForADC(95, true);
+ DoAcquisition_default(0, 0);
+
+
+ lmin = 64;
+ lmax = 192;
+
+ i = 2;
+
+ /* Find first local max/min */
+ if(GraphBuffer[1] > GraphBuffer[0]) {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+ break;
+ i++;
+ }
+ dir = 0;
+ }
+ else {
+ while(i < GraphTraceLen) {
+ if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+ break;
+ i++;
+ }
+ dir = 1;
+ }
+
+ lastval = i++;
+ half_switch = 0;
+ pmc = 0;
+ block_done = 0;
+
+ for (bitidx = 0; i < GraphTraceLen; i++)
+ {
+ if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+ {
+ lc = i - lastval;
+ lastval = i;
+
+ // Switch depending on lc length:
+ // Tolerance is 1/8 of clock rate (arbitrary)
+ if (abs(lc-clock/4) < tolerance) {
+ // 16T0
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33+16)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
}
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
+ else {
+ pmc = i;
+ }
+ } else if (abs(lc-clock/2) < tolerance) {
+ // 32TO
+ if((i - pmc) == lc) { /* 16T0 was previous one */
+ /* It's a PMC ! */
+ i += (128+127+16+32+33)-1;
+ lastval = i;
+ pmc = 0;
+ block_done = 1;
+ }
+ else if(half_switch == 1) {
+ BitStream[bitidx++] = 0;
+ half_switch = 0;
+ }
+ else
+ half_switch++;
+ } else if (abs(lc-clock) < tolerance) {
+ // 64TO
+ BitStream[bitidx++] = 1;
+ } else {
+ // Error
+ warnings++;
+ if (warnings > 10)
+ {
+ Dbprintf("Error: too many detection errors, aborting.");
+ return 0;
}
- n=0;
- lastval=dest[idx];
}
- }
- m=i;
- WDT_HIT();
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
- // search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
+ if(block_done == 1) {
+ if(bitidx == 128) {
+ for(j=0; j<16; j++) {
+ Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+ 64*BitStream[j*8+6]+
+ 32*BitStream[j*8+5]+
+ 16*BitStream[j*8+4]+
+ 8*BitStream[j*8+3]+
+ 4*BitStream[j*8+2]+
+ 2*BitStream[j*8+1]+
+ BitStream[j*8];
}
- hi=0;
- lo=0;
- found=0;
+ num_blocks++;
}
+ bitidx = 0;
+ block_done = 0;
+ half_switch = 0;
}
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi=0;
- lo=0;
+ if(i < GraphTraceLen)
+ {
+ if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+ else dir = 1;
+ }
+ }
+ if(bitidx==255)
+ bitidx=0;
+ warnings = 0;
+ if(num_blocks == 4) break;
+ }
+ memcpy(outBlocks, Blocks, 16*num_blocks);
+ return num_blocks;
+}
+
+int IsBlock0PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+ return 1;
+ if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+ return 1;
+ return 0;
+}
+
+int IsBlock1PCF7931(uint8_t *Block) {
+ // Assume RFU means 0 :)
+ if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+ if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+ return 1;
+
+ return 0;
+}
+
+#define ALLOC 16
+
+void ReadPCF7931() {
+ uint8_t Blocks[8][17];
+ uint8_t tmpBlocks[4][16];
+ int i, j, ind, ind2, n;
+ int num_blocks = 0;
+ int max_blocks = 8;
+ int ident = 0;
+ int error = 0;
+ int tries = 0;
+
+ memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+ do {
+ memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+ n = DemodPCF7931((uint8_t**)tmpBlocks);
+ if(!n)
+ error++;
+ if(error==10 && num_blocks == 0) {
+ Dbprintf("Error, no tag or bad tag");
+ return;
+ }
+ else if (tries==20 || error==10) {
+ Dbprintf("Error reading the tag");
+ Dbprintf("Here is the partial content");
+ goto end;
+ }
+
+ for(i=0; i<n; i++)
+ Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+ tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+ if(!ident) {
+ for(i=0; i<n; i++) {
+ if(IsBlock0PCF7931(tmpBlocks[i])) {
+ // Found block 0 ?
+ if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+ // Found block 1!
+ // \o/
+ ident = 1;
+ memcpy(Blocks[0], tmpBlocks[i], 16);
+ Blocks[0][ALLOC] = 1;
+ memcpy(Blocks[1], tmpBlocks[i+1], 16);
+ Blocks[1][ALLOC] = 1;
+ max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+ // Debug print
+ Dbprintf("(dbg) Max blocks: %d", max_blocks);
+ num_blocks = 2;
+ // Handle following blocks
+ for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+ if(j==n) j=0;
+ if(j==i) break;
+ memcpy(Blocks[ind2], tmpBlocks[j], 16);
+ Blocks[ind2][ALLOC] = 1;
+ }
+ break;
+ }
}
- idx++;
}
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- Dbprintf("TAG ID: %x%08x (%d)",
- (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
+ }
+ else {
+ for(i=0; i<n; i++) { // Look for identical block in known blocks
+ if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+ for(j=0; j<max_blocks; j++) {
+ if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+ // Found an identical block
+ for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+ if(ind2 < 0)
+ ind2 = max_blocks;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+ if(ind2 > max_blocks)
+ ind2 = 0;
+ if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+ // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+ memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+ Blocks[ind2][ALLOC] = 1;
+ num_blocks++;
+ if(num_blocks == max_blocks) goto end;
+ }
+ }
+ }
}
- hi=0;
- lo=0;
- found=0;
}
}
}
- WDT_HIT();
+ tries++;
+ if (BUTTON_PRESS()) return;
+ } while (num_blocks != max_blocks);
+ end:
+ Dbprintf("-----------------------------------------");
+ Dbprintf("Memory content:");
+ Dbprintf("-----------------------------------------");
+ for(i=0; i<max_blocks; i++) {
+ if(Blocks[i][ALLOC]==1)
+ Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+ Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+ Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+ else
+ Dbprintf("<missing block %d>", i);
+ }
+ Dbprintf("-----------------------------------------");
+
+ return ;
+}
+
+
+//-----------------------------------
+// EM4469 / EM4305 routines
+//-----------------------------------
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+ //--------------------------------------------------------------------
+
+ *forward_ptr++ = 0; //start bit
+ *forward_ptr++ = 0; //second pause for 4050 code
+
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+ cmd >>= 1;
+ *forward_ptr++ = cmd;
+
+ return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Addr( uint8_t addr ) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+
+ uint8_t i;
+ line_parity = 0;
+ for(i=0;i<6;i++) {
+ *forward_ptr++ = addr;
+ line_parity ^= addr;
+ addr >>= 1;
+ }
+
+ *forward_ptr++ = (line_parity & 1);
+
+ return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+ //--------------------------------------------------------------------
+
+ register uint8_t line_parity;
+ register uint8_t column_parity;
+ register uint8_t i, j;
+ register uint16_t data;
+
+ data = data_low;
+ column_parity = 0;
+
+ for(i=0; i<4; i++) {
+ line_parity = 0;
+ for(j=0; j<8; j++) {
+ line_parity ^= data;
+ column_parity ^= (data & 1) << j;
+ *forward_ptr++ = data;
+ data >>= 1;
+ }
+ *forward_ptr++ = line_parity;
+ if(i == 1)
+ data = data_hi;
+ }
+
+ for(j=0; j<8; j++) {
+ *forward_ptr++ = column_parity;
+ column_parity >>= 1;
+ }
+ *forward_ptr = 0;
+
+ return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
+void SendForward(uint8_t fwd_bit_count) {
+
+ fwd_write_ptr = forwardLink_data;
+ fwd_bit_sz = fwd_bit_count;
+
+ LED_D_ON();
+
+ //Field on
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ // And for the tag to fully power up
+ SpinDelay(150);
+
+ // force 1st mod pulse (start gap must be longer for 4305)
+ fwd_bit_sz--; //prepare next bit modulation
+ fwd_write_ptr++;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ // now start writting
+ while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+ if(((*fwd_write_ptr++) & 1) == 1)
+ SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ else {
+ //These timings work for 4469/4269/4305 (with the 55*8 above)
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ SpinDelayUs(23*8); //16-4 cycles off (8us each)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+ SpinDelayUs(9*8); //16 cycles on (8us each)
+ }
}
}
+
+void EM4xLogin(uint32_t Password) {
+
+ uint8_t fwd_bit_count;
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+ fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for command to complete
+ SpinDelay(20);
+
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+ uint8_t *dest = BigBuf_get_addr();
+ int m=0, i=0;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+ fwd_bit_count += Prepare_Addr( Address );
+
+ m = BigBuf_max_traceLen();
+ // Clear destination buffer before sending the command
+ memset(dest, 128, m);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
+
+ SendForward(fwd_bit_count);
+
+ // Now do the acquisition
+ i = 0;
+ for(;;) {
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+ AT91C_BASE_SSC->SSC_THR = 0x43;
+ }
+ if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+ dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ i++;
+ if (i >= m) break;
+ }
+ }
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}
+
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+ uint8_t fwd_bit_count;
+
+ //If password mode do login
+ if (PwdMode == 1) EM4xLogin(Pwd);
+
+ forward_ptr = forwardLink_data;
+ fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+ fwd_bit_count += Prepare_Addr( Address );
+ fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+ SendForward(fwd_bit_count);
+
+ //Wait for write to complete
+ SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ LED_D_OFF();
+}