]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/iso14443a.c
fixed iso14443a-4 similation, got rid of many ugly memory allocation issues
[proxmark3-svn] / armsrc / iso14443a.c
index 111d713989caa1abc4d50ffa55513d95f83b6cf0..b3316ef0b637b617c707c2eb9017eab0ec8807fa 100644 (file)
@@ -88,25 +88,25 @@ void iso14a_set_timeout(uint32_t timeout) {
 //-----------------------------------------------------------------------------
 byte_t oddparity (const byte_t bt)
 {
-  return OddByteParity[bt];
+       return OddByteParity[bt];
 }
 
 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
 {
-  int i;
-  uint32_t dwPar = 0;
+       int i;
+       uint32_t dwPar = 0;
 
-  // Generate the encrypted data
-  for (i = 0; i < iLen; i++) {
-    // Save the encrypted parity bit
-    dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
-  }
-  return dwPar;
+       // Generate the encrypted data
+       for (i = 0; i < iLen; i++) {
+               // Save the encrypted parity bit
+               dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+       }
+       return dwPar;
 }
 
 void AppendCrc14443a(uint8_t* data, int len)
 {
-  ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+       ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
 // The function LogTrace() is also used by the iClass implementation in iClass.c
@@ -584,7 +584,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        
        LEDsoff();
        // init trace buffer
-    iso14a_clear_trace();
+       iso14a_clear_trace();
 
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
@@ -775,54 +775,54 @@ static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
        CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
 }
 
-//-----------------------------------------------------------------------------
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
-//-----------------------------------------------------------------------------
-static void CodeStrangeAnswerAsTag()
-{
-       int i;
-
-    ToSendReset();
-
-       // Correction bit, might be removed when not needed
-       ToSendStuffBit(0);
-       ToSendStuffBit(0);
-       ToSendStuffBit(0);
-       ToSendStuffBit(0);
-       ToSendStuffBit(1);  // 1
-       ToSendStuffBit(0);
-       ToSendStuffBit(0);
-       ToSendStuffBit(0);
-
-       // Send startbit
-       ToSend[++ToSendMax] = SEC_D;
-
-       // 0
-       ToSend[++ToSendMax] = SEC_E;
-
-       // 0
-       ToSend[++ToSendMax] = SEC_E;
-
-       // 1
-       ToSend[++ToSendMax] = SEC_D;
-
-    // Send stopbit
-       ToSend[++ToSendMax] = SEC_F;
-
-       // Flush the buffer in FPGA!!
-       for(i = 0; i < 5; i++) {
-               ToSend[++ToSendMax] = SEC_F;
-       }
-
-    // Convert from last byte pos to length
-    ToSendMax++;
-}
+////-----------------------------------------------------------------------------
+//// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
+////-----------------------------------------------------------------------------
+//static void CodeStrangeAnswerAsTag()
+//{
+//     int i;
+//
+//     ToSendReset();
+//
+//     // Correction bit, might be removed when not needed
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(1);  // 1
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//     ToSendStuffBit(0);
+//
+//     // Send startbit
+//     ToSend[++ToSendMax] = SEC_D;
+//
+//     // 0
+//     ToSend[++ToSendMax] = SEC_E;
+//
+//     // 0
+//     ToSend[++ToSendMax] = SEC_E;
+//
+//     // 1
+//     ToSend[++ToSendMax] = SEC_D;
+//
+//     // Send stopbit
+//     ToSend[++ToSendMax] = SEC_F;
+//
+//     // Flush the buffer in FPGA!!
+//     for(i = 0; i < 5; i++) {
+//             ToSend[++ToSendMax] = SEC_F;
+//     }
+//
+//     // Convert from last byte pos to length
+//     ToSendMax++;
+//}
 
 static void Code4bitAnswerAsTag(uint8_t cmd)
 {
        int i;
 
-    ToSendReset();
+       ToSendReset();
 
        // Correction bit, might be removed when not needed
        ToSendStuffBit(0);
@@ -855,8 +855,8 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
                ToSend[++ToSendMax] = SEC_F;
        }
 
-    // Convert from last byte pos to length
-    ToSendMax++;
+       // Convert from last byte pos to length
+       ToSendMax++;
 }
 
 //-----------------------------------------------------------------------------
@@ -908,15 +908,76 @@ int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded);
 int EmSendCmd(uint8_t *resp, int respLen);
 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
 
+static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+
+typedef struct {
+  uint8_t* response;
+  size_t   response_n;
+  uint8_t* modulation;
+  size_t   modulation_n;
+} tag_response_info_t;
+
+void reset_free_buffer() {
+  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+}
+
+bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
+       // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
+       // This will need the following byte array for a modulation sequence
+       //    144        data bits (18 * 8)
+       //     18        parity bits
+       //      2        Start and stop
+       //      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+       //      1        just for the case
+       // ----------- +
+       //    166 bytes, since every bit that needs to be send costs us a byte
+       //
+  
+  // Prepare the tag modulation bits from the message
+  CodeIso14443aAsTag(response_info->response,response_info->response_n);
+  
+  // Make sure we do not exceed the free buffer space
+  if (ToSendMax > max_buffer_size) {
+    Dbprintf("Out of memory, when modulating bits for tag answer:");
+    Dbhexdump(response_info->response_n,response_info->response,false);
+    return false;
+  }
+  
+  // Copy the byte array, used for this modulation to the buffer position
+  memcpy(response_info->modulation,ToSend,ToSendMax);
+  
+  // Store the number of bytes that were used for encoding/modulation
+  response_info->modulation_n = ToSendMax;
+  
+  return true;
+}
+
+bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
+  // Retrieve and store the current buffer index
+  response_info->modulation = free_buffer_pointer;
+  
+  // Determine the maximum size we can use from our buffer
+  size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+  
+  // Forward the prepare tag modulation function to the inner function
+  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+    // Update the free buffer offset
+    free_buffer_pointer += ToSendMax;
+    return true;
+  } else {
+    return false;
+  }
+}
+
 //-----------------------------------------------------------------------------
 // Main loop of simulated tag: receive commands from reader, decide what
 // response to send, and send it.
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 {
-  // Enable and clear the trace
+       // Enable and clear the trace
        tracing = TRUE;
-  iso14a_clear_trace();
+       iso14a_clear_trace();
 
        // This function contains the tag emulation
        uint8_t sak;
@@ -990,57 +1051,41 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-       uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
-       ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]);
-
-       uint8_t *resp = NULL;
-       int respLen;
-
-  // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
-       // This will need
-       //    144        data bits (18 * 8)
-       //     18        parity bits
-       //      2        Start and stop
-       //      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)
-       //      1        just for the case
-       // ----------- +
-       //    166
-       //
-       // 166 bytes, since every bit that needs to be send costs us a byte
-       //
-
-       // Respond with card type
-       uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-       int resp1Len;
-
-       // Anticollision cascade1 - respond with uid
-       uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166);
-       int resp2Len;
-
-       // Anticollision cascade2 - respond with 2nd half of uid if asked
-       // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
-       uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
-       int resp2aLen;
-
-       // Acknowledge select - cascade 1
-       uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2));
-       int resp3Len;
-
-       // Acknowledge select - cascade 2
-       uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3));
-       int resp3aLen;
-
-       // Response to a read request - not implemented atm
-       uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4));
-//     int resp4Len;
-
-       // Authenticate response - nonce
-       uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5));
-       int resp5Len;
-
-       // Authenticate response - nonce
-       uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6));
-       int resp6Len;
+       uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+       ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
+
+  #define TAG_RESPONSE_COUNT 7
+  tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
+    { .response = response1,  .response_n = sizeof(response1)  },  // Answer to request - respond with card type
+    { .response = response2,  .response_n = sizeof(response2)  },  // Anticollision cascade1 - respond with uid
+    { .response = response2a, .response_n = sizeof(response2a) },  // Anticollision cascade2 - respond with 2nd half of uid if asked
+    { .response = response3,  .response_n = sizeof(response3)  },  // Acknowledge select - cascade 1
+    { .response = response3a, .response_n = sizeof(response3a) },  // Acknowledge select - cascade 2
+    { .response = response5,  .response_n = sizeof(response5)  },  // Authentication answer (random nonce)
+    { .response = response6,  .response_n = sizeof(response6)  },  // dummy ATS (pseudo-ATR), answer to RATS
+  };
+
+  // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it
+  // Such a response is less time critical, so we can prepare them on the fly
+  #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
+  #define DYNAMIC_MODULATION_BUFFER_SIZE 512
+  uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
+  uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
+  tag_response_info_t dynamic_response_info = {
+    .response = dynamic_response_buffer,
+    .response_n = 0,
+    .modulation = dynamic_modulation_buffer,
+    .modulation_n = 0
+  };
+  
+  // Reset the offset pointer of the free buffer
+  reset_free_buffer();
+  
+  // Prepare the responses of the anticollision phase
+       // there will be not enough time to do this at the moment the reader sends it REQA
+  for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
+    prepare_allocated_tag_modulation(&responses[i]);
+  }
 
        uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
        int len;
@@ -1052,130 +1097,121 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        // Just to allow some checks
        int happened = 0;
        int happened2 = 0;
-
        int cmdsRecvd = 0;
-       uint8_t* respdata = NULL;
-       int respsize = 0;
-//     uint8_t nack = 0x04;
-
-       memset(receivedCmd, 0x44, RECV_CMD_SIZE);
-
-       // Prepare the responses of the anticollision phase
-       // there will be not enough time to do this at the moment the reader sends it REQA
-
-       // Answer to request
-       CodeIso14443aAsTag(response1, sizeof(response1));
-       memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
-
-       // Send our UID (cascade 1)
-       CodeIso14443aAsTag(response2, sizeof(response2));
-       memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
-
-       // Answer to select (cascade1)
-       CodeIso14443aAsTag(response3, sizeof(response3));
-       memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
-
-       // Send the cascade 2 2nd part of the uid
-       CodeIso14443aAsTag(response2a, sizeof(response2a));
-       memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
-
-       // Answer to select (cascade 2)
-       CodeIso14443aAsTag(response3a, sizeof(response3a));
-       memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
-
-       // Strange answer is an example of rare message size (3 bits)
-       CodeStrangeAnswerAsTag();
-       memcpy(resp4, ToSend, ToSendMax);// resp4Len = ToSendMax;
-
-       // Authentication answer (random nonce)
-       CodeIso14443aAsTag(response5, sizeof(response5));
-       memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
-
-       // dummy ATS (pseudo-ATR), answer to RATS
-       CodeIso14443aAsTag(response6, sizeof(response6));
-       memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax;
 
        // We need to listen to the high-frequency, peak-detected path.
        SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
        FpgaSetupSsc();
 
        cmdsRecvd = 0;
+  tag_response_info_t* p_response;
 
        LED_A_ON();
        for(;;) {
+    // Clean receive command buffer
+    memset(receivedCmd, 0x44, RECV_CMD_SIZE);
        
                if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
-                       DbpString("button press");
+                       DbpString("Button press");
                        break;
                }
     
-    if (tracing) {
+               if (tracing) {
                        LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
-    }
+               }
+    
+    p_response = NULL;
     
                // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
                // Okay, look at the command now.
                lastorder = order;
                if(receivedCmd[0] == 0x26) { // Received a REQUEST
-                       resp = resp1; respLen = resp1Len; order = 1;
-                       respdata = response1;
-                       respsize = sizeof(response1);
+                       p_response = &responses[0]; order = 1;
                } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
-                       resp = resp1; respLen = resp1Len; order = 6;
-                       respdata = response1;
-                       respsize = sizeof(response1);
+                       p_response = &responses[0]; order = 6;
                } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // Received request for UID (cascade 1)
-                       resp = resp2; respLen = resp2Len; order = 2;
-                       respdata = response2;
-                       respsize = sizeof(response2);
+                       p_response = &responses[1]; order = 2;
                } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
-                       resp = resp2a; respLen = resp2aLen; order = 20;
-                       respdata = response2a;
-                       respsize = sizeof(response2a);
+                       p_response = &responses[2]; order = 20;
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {   // Received a SELECT (cascade 1)
-                       resp = resp3; respLen = resp3Len; order = 3;
-                       respdata = response3;
-                       respsize = sizeof(response3);
+                       p_response = &responses[3]; order = 3;
                } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
-                       resp = resp3a; respLen = resp3aLen; order = 30;
-                       respdata = response3a;
-                       respsize = sizeof(response3a);
+                       p_response = &responses[4]; order = 30;
                } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
-//                     resp = resp4; respLen = resp4Len; order = 4; // Do nothing
-//                     respdata = &nack;
-//                     respsize = sizeof(nack); // 4-bit answer
-      EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+                       EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
                        Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
-      // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
-      respLen = 0;
+                       // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+      p_response = NULL;
                } else if(receivedCmd[0] == 0x50) {     // Received a HALT
 //                     DbpString("Reader requested we HALT!:");
-                       // Do not respond
-                       resp = resp1; respLen = 0; order = 0;
-                       respdata = NULL;
-                       respsize = 0;
+      p_response = NULL;
                } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
-                       resp = resp5; respLen = resp5Len; order = 7;
-                       respdata = response5;
-                       respsize = sizeof(response5);
+                       p_response = &responses[5]; order = 7;
                } else if(receivedCmd[0] == 0xE0) {     // Received a RATS request
-                       resp = resp6; respLen = resp6Len; order = 70;
-                       respdata = response6;
-                       respsize = sizeof(response6);
-               } else {
-      if (order == 7 && len ==8) {
-        uint32_t nr = bytes_to_num(receivedCmd,4);
-        uint32_t ar = bytes_to_num(receivedCmd+4,4);
-        Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
-      } else {
-        // Never seen this command before
-        Dbprintf("Received unknown command (len=%d):",len);
-        Dbhexdump(len,receivedCmd,false);
+                       p_response = &responses[6]; order = 70;
+               } else if (order == 7 && len ==8) { // Received authentication request
+      uint32_t nr = bytes_to_num(receivedCmd,4);
+      uint32_t ar = bytes_to_num(receivedCmd+4,4);
+      Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+    } else {
+      // Check for ISO 14443A-4 compliant commands, look at left nibble
+      switch (receivedCmd[0]) {
+
+        case 0x0B:
+        case 0x0A: { // IBlock (command)
+          dynamic_response_info.response[0] = receivedCmd[0];
+          dynamic_response_info.response[1] = 0x00;
+          dynamic_response_info.response[2] = 0x90;
+          dynamic_response_info.response[3] = 0x00;
+          dynamic_response_info.response_n = 4;
+        } break;
+
+        case 0x1A:
+        case 0x1B: { // Chaining command
+          dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        case 0xaa:
+        case 0xbb: {
+          dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
+          dynamic_response_info.response_n = 2;
+        } break;
+          
+        case 0xBA: { //
+          memcpy(dynamic_response_info.response,"\xAB\x00",2);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        case 0xCA:
+        case 0xC2: { // Readers sends deselect command
+          memcpy(dynamic_response_info.response,"\xCA\x00",2);
+          dynamic_response_info.response_n = 2;
+        } break;
+
+        default: {
+          // Never seen this command before
+          Dbprintf("Received unknown command (len=%d):",len);
+          Dbhexdump(len,receivedCmd,false);
+          // Do not respond
+          dynamic_response_info.response_n = 0;
+        } break;
+      }
+      
+      if (dynamic_response_info.response_n > 0) {
+        // Copy the CID from the reader query
+        dynamic_response_info.response[1] = receivedCmd[1];
+
+        // Add CRC bytes, always used in ISO 14443A-4 compliant cards
+        AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
+        dynamic_response_info.response_n += 2;
+        
+        if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
+          Dbprintf("Error preparing tag response");
+          break;
+        }
+        p_response = &dynamic_response_info;
       }
-      // Do not respond
-      resp = resp1; respLen = 0; order = 0;
-      respdata = NULL;
-      respsize = 0;
                }
 
                // Count number of wakeups received after a halt
@@ -1193,72 +1229,91 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                if(cmdsRecvd > 999) {
                        DbpString("1000 commands later...");
                        break;
-               } else {
-                       cmdsRecvd++;
-               }
-
-               if(respLen > 0) {
-                       EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
                }
-               
-               if (tracing) {
-                       if (respdata != NULL) {
-                               LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
-                       }
-                       if(traceLen > TRACE_SIZE) {
-                               DbpString("Trace full");
-                               break;
-                       }
-               }
-
-               memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+               cmdsRecvd++;
+
+               if (p_response != NULL) {
+      EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
+      if (tracing) {
+        LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE);
+        if(traceLen > TRACE_SIZE) {
+          DbpString("Trace full");
+//          break;
+        }
+      }
+    }
   }
 
        Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
        LED_A_OFF();
 }
 
+
+// prepare a delayed transfer. This simply shifts ToSend[] by a number
+// of bits specified in the delay parameter.
+void PrepareDelayedTransfer(uint16_t delay)
+{
+       uint8_t bitmask = 0;
+       uint8_t bits_to_shift = 0;
+       uint8_t bits_shifted = 0;
+       
+       delay &= 0x07;
+       if (delay) {
+               for (uint16_t i = 0; i < delay; i++) {
+                       bitmask |= (0x01 << i);
+               }
+               ToSend[++ToSendMax] = 0x00;
+               for (uint16_t i = 0; i < ToSendMax; i++) {
+                       bits_to_shift = ToSend[i] & bitmask;
+                       ToSend[i] = ToSend[i] >> delay;
+                       ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
+                       bits_shifted = bits_to_shift;
+               }
+       }
+}
+
 //-----------------------------------------------------------------------------
 // Transmit the command (to the tag) that was placed in ToSend[].
+// Parameter timing:
+// if NULL: ignored
+// if == 0:    return time of transfer
+// if != 0: delay transfer until time specified
 //-----------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
+static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
 {
-  int c;
+       int c;
 
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
 
-       if (wait)
-    if(*wait < 10)
-      *wait = 10;
 
-  for(c = 0; c < *wait;) {
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-      AT91C_BASE_SSC->SSC_THR = 0x00;          // For exact timing!
-      c++;
-    }
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
-      (void)r;
-    }
-    WDT_HIT();
-  }
+       if (timing) {
+               if(*timing == 0) {                                                                              // Measure time
+                       *timing = (GetCountMifare() + 8) & 0xfffffff8;
+               } else {
+                       PrepareDelayedTransfer(*timing & 0x00000007);           // Delay transfer (fine tuning - up to 7 MF clock ticks)
+               }
+               if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+               while(GetCountMifare() < (*timing & 0xfffffff8));               // Delay transfer (multiple of 8 MF clock ticks)
+       }
+
+       for(c = 0; c < 10;) {   // standard delay for each transfer (allow tag to be ready after last transmission)
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = 0x00; 
+                       c++;
+               }
+       }
+       
+       c = 0;
+       for(;;) {
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = cmd[c];
+                       c++;
+                       if(c >= len) {
+                               break;
+                       }
+               }
+       }
 
-  c = 0;
-  for(;;) {
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-      AT91C_BASE_SSC->SSC_THR = cmd[c];
-      c++;
-      if(c >= len) {
-        break;
-      }
-    }
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
-      (void)r;
-    }
-    WDT_HIT();
-  }
-       if (samples) *samples = (c + *wait) << 3;
 }
 
 //-----------------------------------------------------------------------------
@@ -1515,7 +1570,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
        // Signal field is on with the appropriate LED
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
+       
        // Now get the answer from the card
        Demod.output = receivedResponse;
        Demod.len = 0;
@@ -1528,10 +1583,10 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
        for(;;) {
                WDT_HIT();
 
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-                       AT91C_BASE_SSC->SSC_THR = 0x00;  // To make use of exact timing of next command from reader!!
-                       if (elapsed) (*elapsed)++;
-               }
+               // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       // AT91C_BASE_SSC->SSC_THR = 0x00;  // To make use of exact timing of next command from reader!!
+                       // if (elapsed) (*elapsed)++;
+               // }
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
                        if(c < iso14a_timeout) { c++; } else { return FALSE; }
                        b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -1547,17 +1602,13 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
        }
 }
 
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
+void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
 {
-  int wait = 0;
-  int samples = 0;
-  
-  // This is tied to other size changes
-  //   uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
   CodeIso14443aBitsAsReaderPar(frame,bits,par);
   
   // Select the card
-  TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+  TransmitFor14443a(ToSend, ToSendMax, timing);
   if(trigger)
        LED_A_ON();
   
@@ -1565,15 +1616,15 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
   if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
 }
 
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
 {
-  ReaderTransmitBitsPar(frame,len*8,par);
+  ReaderTransmitBitsPar(frame,len*8,par, timing);
 }
 
-void ReaderTransmit(uint8_t* frame, int len)
+void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
 {
   // Generate parity and redirect
-  ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len));
+  ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
 }
 
 int ReaderReceive(uint8_t* receivedAnswer)
@@ -1612,20 +1663,20 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
   int len;
         
   // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
-  ReaderTransmitBitsPar(wupa,7,0);
+    ReaderTransmitBitsPar(wupa,7,0, NULL);
   // Receive the ATQA
   if(!ReaderReceive(resp)) return 0;
 //  Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
-  
+
   if(p_hi14a_card) {
     memcpy(p_hi14a_card->atqa, resp, 2);
     p_hi14a_card->uidlen = 0;
     memset(p_hi14a_card->uid,0,10);
   }
-       
+
   // clear uid
   if (uid_ptr) {
-    memset(uid_ptr,0,8);
+    memset(uid_ptr,0,10);
   }
 
   // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
@@ -1636,23 +1687,23 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
     sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
     // SELECT_ALL
-    ReaderTransmit(sel_all,sizeof(sel_all));
+    ReaderTransmit(sel_all,sizeof(sel_all), NULL);
     if (!ReaderReceive(resp)) return 0;
-    
+
     // First backup the current uid
     memcpy(uid_resp,resp,4);
     uid_resp_len = 4;
     //    Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
-    
-               // calculate crypto UID
-               if(cuid_ptr) {
-      *cuid_ptr = bytes_to_num(uid_resp, 4);
+
+        // calculate crypto UID. Always use last 4 Bytes.
+    if(cuid_ptr) {
+        *cuid_ptr = bytes_to_num(uid_resp, 4);
     }
 
     // Construct SELECT UID command
-               memcpy(sel_uid+2,resp,5);
+    memcpy(sel_uid+2,resp,5);
     AppendCrc14443a(sel_uid,7);
-    ReaderTransmit(sel_uid,sizeof(sel_uid));
+    ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
 
     // Receive the SAK
     if (!ReaderReceive(resp)) return 0;
@@ -1665,11 +1716,11 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
       memcpy(uid_resp, uid_resp + 1, 3);
       uid_resp_len = 3;
     }
-    
+
     if(uid_ptr) {
       memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
     }
-    
+
     if(p_hi14a_card) {
       memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
       p_hi14a_card->uidlen += uid_resp_len;
@@ -1687,28 +1738,28 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
 
   // Request for answer to select
   AppendCrc14443a(rats, 2);
-  ReaderTransmit(rats, sizeof(rats));
-  
+  ReaderTransmit(rats, sizeof(rats), NULL);
+
   if (!(len = ReaderReceive(resp))) return 0;
 
   if(p_hi14a_card) {
     memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
     p_hi14a_card->ats_len = len;
   }
-       
+
   // reset the PCB block number
   iso14_pcb_blocknum = 0;
   return 1;
 }
 
 void iso14443a_setup() {
-  // Set up the synchronous serial port
-  FpgaSetupSsc();
+       // Set up the synchronous serial port
+       FpgaSetupSsc();
        // Start from off (no field generated)
        // Signal field is off with the appropriate LED
-       LED_D_OFF();
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-       SpinDelay(50);
+//     LED_D_OFF();
+//     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       // SpinDelay(50);
 
        SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 
@@ -1716,7 +1767,7 @@ void iso14443a_setup() {
        // Signal field is on with the appropriate LED
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-       SpinDelay(50);
+       SpinDelay(7); // iso14443-3 specifies 5ms max.
 
        iso14a_timeout = 2048; //default
 }
@@ -1730,7 +1781,7 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
        memcpy(real_cmd+2, cmd, cmd_len);
        AppendCrc14443a(real_cmd,cmd_len+2);
  
-       ReaderTransmit(real_cmd, cmd_len+4);
+       ReaderTransmit(real_cmd, cmd_len+4, NULL);
        size_t len = ReaderReceive(data);
        uint8_t * data_bytes = (uint8_t *) data;
        if (!len)
@@ -1757,21 +1808,26 @@ void ReaderIso14443a(UsbCommand * c)
        iso14a_command_t param = c->arg[0];
        uint8_t * cmd = c->d.asBytes;
        size_t len = c->arg[1];
-  uint32_t arg0 = 0;
-  byte_t buf[USB_CMD_DATA_SIZE];
+       size_t lenbits = c->arg[2];
+       uint32_t arg0 = 0;
+       byte_t buf[USB_CMD_DATA_SIZE];
   
-  iso14a_clear_trace();
-  iso14a_set_tracing(true);
+       if(param & ISO14A_CONNECT) {
+               iso14a_clear_trace();
+       }
+       iso14a_set_tracing(true);
 
        if(param & ISO14A_REQUEST_TRIGGER) {
-    iso14a_set_trigger(1);
-  }
+               iso14a_set_trigger(1);
+       }
 
        if(param & ISO14A_CONNECT) {
                iso14443a_setup();
-               arg0 = iso14443a_select_card(NULL,(iso14a_card_select_t*)buf,NULL);
-               cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
-//    UsbSendPacket((void *)ack, sizeof(UsbCommand));
+               if(!(param & ISO14A_NO_SELECT)) {
+                       iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
+                       arg0 = iso14443a_select_card(NULL,card,NULL);
+                       cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
+               }
        }
 
        if(param & ISO14A_SET_TIMEOUT) {
@@ -1785,7 +1841,6 @@ void ReaderIso14443a(UsbCommand * c)
        if(param & ISO14A_APDU) {
                arg0 = iso14_apdu(cmd, len, buf);
                cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
-//             UsbSendPacket((void *)ack, sizeof(UsbCommand));
        }
 
        if(param & ISO14A_RAW) {
@@ -1793,372 +1848,255 @@ void ReaderIso14443a(UsbCommand * c)
                        AppendCrc14443a(cmd,len);
                        len += 2;
                }
-               ReaderTransmit(cmd,len);
+               if(lenbits>0) {
+                       ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
+               } else {
+                       ReaderTransmit(cmd,len, NULL);
+               }
                arg0 = ReaderReceive(buf);
-//             UsbSendPacket((void *)ack, sizeof(UsbCommand));
-    cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+               cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
        }
 
        if(param & ISO14A_REQUEST_TRIGGER) {
-    iso14a_set_trigger(0);
-  }
+               iso14a_set_trigger(0);
+       }
 
        if(param & ISO14A_NO_DISCONNECT) {
                return;
-  }
+       }
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 }
 
-#define TEST_LENGTH 100
-typedef struct mftest{
-    uint8_t nt[8];
-    uint8_t count;
-}mftest ;
-
-/**
- *@brief Tunes the mifare attack settings. This method checks the nonce entropy when
- *using a specified timeout.
- *Different cards behave differently, some cards require up to a second to power down (and thus reset
- *token generator), other cards are fine with 50 ms.
- *
- * @param time
- * @return the entropy. A value of 100 (%) means that every nonce was unique, while a value close to
- *zero indicates a low entropy: the given timeout is sufficient to power down the card.
- */
-int TuneMifare(int time)
-{
-    // Mifare AUTH
-    uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
-    uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-
-    iso14443a_setup();
-    int TIME1=time;
-    int TIME2=2000;
-    uint8_t uid[8];
-    uint32_t cuid;
-    byte_t nt[4];
-    Dbprintf("Tuning... testing a delay of %d ms (press button to skip)",time);
-
-
-    mftest nt_values[TEST_LENGTH];
-    int nt_size = 0;
-    int i = 0;
-    for(i = 0 ; i< 100 ; i++)
-    {
-        LED_C_OFF();
-        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-        SpinDelay(TIME1);
-        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-        LED_C_ON();
-        SpinDelayUs(TIME2);
-        if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
-
-        // Transmit MIFARE_CLASSIC_AUTH
-        ReaderTransmit(mf_auth, sizeof(mf_auth));
-
-        // Receive the (16 bit) "random" nonce
-        if (!ReaderReceive(receivedAnswer)) continue;
-        memcpy(nt, receivedAnswer, 4);
-
-        //store it
-        int already_stored = 0;
-        for(int i =  0 ; i < nt_size && !already_stored; i++)
-        {
-            if( memcmp(nt, nt_values[i].nt, 4) == 0)
-            {
-                nt_values[i].count++;
-                already_stored = 1;
-            }
-        }
-        if(!already_stored)
-        {
-            mftest* ptr= &nt_values[nt_size++];
-            //Clear it before use
-            memset(ptr, 0, sizeof(mftest));
-            memcpy(ptr->nt, nt, 4);
-            ptr->count = 1;
-        }
 
-        if(BUTTON_PRESS())
-        {
-            Dbprintf("Tuning aborted prematurely");
-            break;
-        }
-    }
-    /*
-    for(int i = 0 ; i < nt_size;i++){
-        mftest x = nt_values[i];
-        Dbprintf("%d,%d,%d,%d   : %d",x.nt[0],x.nt[1],x.nt[2],x.nt[3],x.count);
-    }
-    */
-    int result = nt_size *100 / i;
-    Dbprintf("      ... results for %d ms : %d %",time, result);
-    return result;
-}
+// Determine the distance between two nonces.
+// Assume that the difference is small, but we don't know which is first.
+// Therefore try in alternating directions.
+int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
-//-----------------------------------------------------------------------------
-// Read an ISO 14443a tag. Send out commands and store answers.
-//
-//-----------------------------------------------------------------------------
-#define STATE_SIZE 100
-typedef struct AttackState{
-    byte_t nt[4];
-    byte_t par_list[8];
-    byte_t ks_list[8];
-    byte_t par;
-    byte_t par_low;
-    byte_t nt_diff;
-    uint8_t mf_nr_ar[8];
-} AttackState;
-
-
-int continueAttack(AttackState* pState,uint8_t* receivedAnswer)
-{
+       uint16_t i;
+       uint32_t nttmp1, nttmp2;
 
-    // Transmit reader nonce and reader answer
-    ReaderTransmitPar(pState->mf_nr_ar, sizeof(pState->mf_nr_ar),pState->par);
-
-    // Receive 4 bit answer
-    int len = ReaderReceive(receivedAnswer);
-    if (!len)
-    {
-        if (pState->nt_diff == 0)
-        {
-            pState->par++;
-        } else {
-            pState->par = (((pState->par >> 3) + 1) << 3) | pState->par_low;
-        }
-        return 2;
-    }
-    if(pState->nt_diff == 0)
-    {
-        pState->par_low = pState->par & 0x07;
-    }
-    //Dbprintf("answer received, parameter (%d), (memcmp(nt, nt_no)=%d",parameter,memcmp(nt, nt_noattack, 4));
-    //if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
-    //isNULL =  0;//|| !(nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0);
-     //
-      //  if ( /*(isNULL != 0 ) && */(memcmp(nt, nt_attacked, 4) != 0) ) continue;
-
-    //led_on = !led_on;
-    //if(led_on) LED_B_ON(); else LED_B_OFF();
-    pState->par_list[pState->nt_diff] = pState->par;
-    pState->ks_list[pState->nt_diff] = receivedAnswer[0] ^ 0x05;
-
-    // Test if the information is complete
-    if (pState->nt_diff == 0x07) {
-        return 0;
-    }
+       if (nt1 == nt2) return 0;
 
-    pState->nt_diff = (pState->nt_diff + 1) & 0x07;
-    pState->mf_nr_ar[3] = pState->nt_diff << 5;
-    pState->par = pState->par_low;
-    return 1;
+       nttmp1 = nt1;
+       nttmp2 = nt2;
+       
+       for (i = 1; i < 32768; i++) {
+               nttmp1 = prng_successor(nttmp1, 1);
+               if (nttmp1 == nt2) return i;
+               nttmp2 = prng_successor(nttmp2, 1);
+                       if (nttmp2 == nt1) return -i;
+               }
+       
+       return(-99999); // either nt1 or nt2 are invalid nonces
 }
 
-void reportResults(uint8_t uid[8],AttackState *pState, int isOK)
-{
-    LogTrace(pState->nt, 4, 0, GetParity(pState->nt, 4), TRUE);
-    LogTrace(pState->par_list, 8, 0, GetParity(pState->par_list, 8), TRUE);
-    LogTrace(pState->ks_list, 8, 0, GetParity(pState->ks_list, 8), TRUE);
-
-    byte_t buf[48];
-    memcpy(buf + 0,  uid, 4);
-    if(pState != NULL)
-    {
-        memcpy(buf + 4,  pState->nt, 4);
-        memcpy(buf + 8,  pState->par_list, 8);
-        memcpy(buf + 16, pState->ks_list, 8);
-    }
 
-    LED_B_ON();
-    cmd_send(CMD_ACK,isOK,0,0,buf,48);
-    LED_B_OFF();
+//-----------------------------------------------------------------------------
+// Recover several bits of the cypher stream. This implements (first stages of)
+// the algorithm described in "The Dark Side of Security by Obscurity and
+// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
+// (article by Nicolas T. Courtois, 2009)
+//-----------------------------------------------------------------------------
+void ReaderMifare(bool first_try)
+{
+       // Mifare AUTH
+       uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
+       uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+       static uint8_t mf_nr_ar3;
 
-    // Thats it...
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    LEDsoff();
-    tracing = TRUE;
+       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+       traceLen = 0;
+       tracing = false;
 
-    if (MF_DBGLEVEL >= 1)      DbpString("COMMAND mifare FINISHED");
-}
+       byte_t nt_diff = 0;
+       byte_t par = 0;
+       //byte_t par_mask = 0xff;
+       static byte_t par_low = 0;
+       bool led_on = TRUE;
+       uint8_t uid[10];
+       uint32_t cuid;
 
-void ReaderMifareBegin(uint32_t offset_time, uint32_t powerdown_time);
-
-/**
- * @brief New implementation of ReaderMifare, the classic mifare attack.
- *  This implementation is backwards-compatible, but has some added parameters.
- * @param c the usbcommand in complete
- *  c->arg[0] - nt_noattack (deprecated)
- *  c->arg[1] - offset_time us (0 => random)
- *  c->arg[2] - powerdown_time ms (0=> tuning)
- *
- */
-void ReaderMifare(UsbCommand *c)
-{
-    /*
-     * The 'no-attack' is not used anymore, with the introduction of
-     * state tables. Instead, we use an offset which is random. This means that we
-     * should not get stuck on a 'bad' nonce, so no-attack is not needed.
-     * Anyway, arg[0] is reserved for backwards compatibility
-    uint32_t nt_noattack_uint = c->arg[0];
-    byte_t nt_noattack[4];
-    num_to_bytes(parameter, 4, nt_noattack_uint);
-
-     */
-    /*
-     *IF, for some reason, you want to attack a specific nonce or whatever,
-     *you can specify the offset time yourself, in which case it won't be random.
-     *
-     * The offset time is microseconds, MICROSECONDS, not ms.
-     */
-    uint32_t offset_time = c->arg[1];
-    if(offset_time == 0)
-    {
-        //[Martin:]I would like to have used rand(), but linking problems prevented it
-        //offset_time = rand() % 4000;
-        //So instead, I found this nifty thingy, which seems to fit the bill
-        offset_time = GetTickCount() % 2000;
-    }
-    /*
-     * There is an implementation of tuning. Tuning will try to determine
-     * a good power-down time, which is different for different cards.
-     * If a value is specified from the packet, we won't do any tuning.
-     * A value of zero will initialize a tuning.
-     * The power-down time is milliseconds, that MILLI-seconds .
-     */
-    uint32_t powerdown_time = c->arg[2];
-    if(powerdown_time == 0)
-    {
-        //Tuning required
-        int entropy = 100;
-        int time = 25;
-        entropy = TuneMifare(time);
-
-        while(entropy > 50 && time < 2000){
-            //Increase timeout, but never more than 500ms at a time
-            time = MIN(time*2, time+500);
-            entropy = TuneMifare(time);
-        }
-        if(entropy > 50){
-            Dbprintf("OBS! This card has high entropy (%d) and slow power-down. This may take a while", entropy);
-        }
-        powerdown_time = time;
-    }
-    //The actual attack
-    ReaderMifareBegin(offset_time, powerdown_time);
-}
-void ReaderMifareBegin(uint32_t offset_time, uint32_t powerdown_time)
-{
-    Dbprintf("Using power-down-time of %d ms, offset time %d us", powerdown_time, offset_time);
+       uint32_t nt, previous_nt;
+       static uint32_t nt_attacked = 0;
+       byte_t par_list[8] = {0,0,0,0,0,0,0,0};
+       byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
 
-    /**
-     *Allocate our state-table and initialize with zeroes
-     **/
+       static uint32_t sync_time;
+       static uint32_t sync_cycles;
+       int catch_up_cycles = 0;
+       int last_catch_up = 0;
+       uint16_t consecutive_resyncs = 0;
+       int isOK = 0;
 
-    AttackState states[STATE_SIZE] ;
-    //Dbprintf("Memory allocated ok! (%d bytes)",STATE_SIZE*sizeof(AttackState) );
-    memset(states, 0, STATE_SIZE*sizeof(AttackState));
 
-    // Mifare AUTH
-       uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
-       uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);   // was 3560 - tied to other size changes
 
-    traceLen = 0;
-       tracing = false;
+       if (first_try) { 
+               StartCountMifare();
+               mf_nr_ar3 = 0;
+               iso14443a_setup();
+               while((GetCountMifare() & 0xffff0000) != 0x10000);              // wait for counter to reset and "warm up" 
+               sync_time = GetCountMifare() & 0xfffffff8;
+               sync_cycles = 65536;                                                                    // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+               nt_attacked = 0;
+               nt = 0;
+               par = 0;
+       }
+       else {
+               // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
+               // nt_attacked = prng_successor(nt_attacked, 1);
+               mf_nr_ar3++;
+               mf_nr_ar[3] = mf_nr_ar3;
+               par = par_low;
+       }
 
-       iso14443a_setup();
        LED_A_ON();
        LED_B_OFF();
        LED_C_OFF();
+       
+  
+       for(uint16_t i = 0; TRUE; i++) {
+               
+               WDT_HIT();
 
-       LED_A_OFF();
-       uint8_t uid[8];
-       uint32_t cuid;
+               // Test if the action was cancelled
+               if(BUTTON_PRESS()) {
+                       break;
+               }
+               
+               LED_C_ON();
 
-    byte_t nt[4];
-    int nts_attacked= 0;
-    //Keeps track of progress (max value of nt_diff for our states)
-    int progress = 0;
-    int high_entropy_warning_issued = 0;
-    while(!BUTTON_PRESS())
-       {
-               LED_C_OFF();
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-        SpinDelay(powerdown_time);
+               if(!iso14443a_select_card(uid, NULL, &cuid)) {
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
+                       continue;
+               }
+
+               //keep the card active
                FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-               LED_C_ON();
-        SpinDelayUs(offset_time);
-
-               if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
-
-               // Transmit MIFARE_CLASSIC_AUTH
-               ReaderTransmit(mf_auth, sizeof(mf_auth));
-
-               // Receive the (16 bit) "random" nonce
-               if (!ReaderReceive(receivedAnswer)) continue;
-        memcpy(nt, receivedAnswer, 4);
-
-        //Now we have the NT. Check if this NT is already under attack
-        AttackState* pState = NULL;
-        int i = 0;
-        for(i = 0 ; i < nts_attacked && pState == NULL; i++)
-        {
-            if( memcmp(nt, states[i].nt, 4) == 0)
-            {
-                //we have it
-                pState = &states[i];
-                //Dbprintf("Existing state found (%d)", i);
-            }
-        }
 
-        if(pState == NULL){
-            if(nts_attacked < STATE_SIZE )
-            {
-                //Initialize  a new state
-                pState = &states[nts_attacked++];
-                //Clear it before use
-                memset(pState, 0, sizeof(AttackState));
-                memcpy(pState->nt, nt, 4);
-                i = nts_attacked;
-                //Dbprintf("New state created, nt=");
-            }else if(!high_entropy_warning_issued){
-                /**
-                 *If we wound up here, it means that the state table was eaten up by potential nonces. This could be fixed by
-                 *increasing the size of the state buffer, however, it points to some other problem. Ideally, we should get the same nonce
-                 *every time. Realistically we should get a few different nonces, but if we get more than 50, there is probably somehting
-                 *else that is wrong. An attack using too high nonce entropy will take **LONG** time to finish.
-                 */
-                DbpString("WARNING: Nonce entropy is suspiciously high, something is wrong. Check timeouts (and perhaps increase STATE_SIZE)");
-                high_entropy_warning_issued = 1;
-            }
-        }
-        if(pState == NULL) continue;
-
-        int result = continueAttack(pState, receivedAnswer);
-
-        if(result == 1){
-            //One state progressed another step
-            if(pState->nt_diff >  progress)
-            {
-                progress = pState->nt_diff;
-                //Alert the user
-                Dbprintf("Recovery progress: %d/8, NTs attacked: %d ", progress,nts_attacked );
-            }
-            //Dbprintf("State increased to %d in state %d", pState->nt_diff, i);
-        }
-        else if(result == 2){
-            //Dbprintf("Continue attack no answer, par is now %d", pState->par);
-        }
-        else if(result == 0){
-            reportResults(uid,pState,1);
-            return;
-        }
-    }
-    reportResults(uid,NULL,0);
+               // CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
+
+               sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+               catch_up_cycles = 0;
+
+               // if we missed the sync time already, advance to the next nonce repeat
+               while(GetCountMifare() > sync_time) {
+                       sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+               }
+
+               // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+               ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
+
+               // Receive the (4 Byte) "random" nonce
+               if (!ReaderReceive(receivedAnswer)) {
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Couldn't receive tag nonce");
+                       continue;
+                 }
+
+               previous_nt = nt;
+               nt = bytes_to_num(receivedAnswer, 4);
+
+               // Transmit reader nonce with fake par
+               ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
+
+               if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
+                       int nt_distance = dist_nt(previous_nt, nt);
+                       if (nt_distance == 0) {
+                               nt_attacked = nt;
+                       }
+                       else {
+                               if (nt_distance == -99999) { // invalid nonce received, try again
+                                       continue;
+                               }
+                               sync_cycles = (sync_cycles - nt_distance);
+                               if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+                               continue;
+                       }
+               }
+
+               if ((nt != nt_attacked) && nt_attacked) {       // we somehow lost sync. Try to catch up again...
+                       catch_up_cycles = -dist_nt(nt_attacked, nt);
+                       if (catch_up_cycles == 99999) {                 // invalid nonce received. Don't resync on that one.
+                               catch_up_cycles = 0;
+                               continue;
+                       }
+                       if (catch_up_cycles == last_catch_up) {
+                               consecutive_resyncs++;
+                       }
+                       else {
+                               last_catch_up = catch_up_cycles;
+                           consecutive_resyncs = 0;
+                       }
+                       if (consecutive_resyncs < 3) {
+                               if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+                       }
+                       else {  
+                               sync_cycles = sync_cycles + catch_up_cycles;
+                               if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+                       }
+                       continue;
+               }
+               consecutive_resyncs = 0;
+               
+               // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
+               if (ReaderReceive(receivedAnswer))
+               {
+                       catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+       
+                       if (nt_diff == 0)
+                       {
+                               par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+                       }
+
+                       led_on = !led_on;
+                       if(led_on) LED_B_ON(); else LED_B_OFF();
+
+                       par_list[nt_diff] = par;
+                       ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+
+                       // Test if the information is complete
+                       if (nt_diff == 0x07) {
+                               isOK = 1;
+                               break;
+                       }
+
+                       nt_diff = (nt_diff + 1) & 0x07;
+                       mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
+                       par = par_low;
+               } else {
+                       if (nt_diff == 0 && first_try)
+                       {
+                               par++;
+                       } else {
+                               par = (((par >> 3) + 1) << 3) | par_low;
+                       }
+               }
+       }
+
+       LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE);
+       LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
+       LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
+
+       mf_nr_ar[3] &= 0x1F;
+       
+       byte_t buf[28];
+       memcpy(buf + 0,  uid, 4);
+       num_to_bytes(nt, 4, buf + 4);
+       memcpy(buf + 8,  par_list, 8);
+       memcpy(buf + 16, ks_list, 8);
+       memcpy(buf + 24, mf_nr_ar, 4);
+               
+       cmd_send(CMD_ACK,isOK,0,0,buf,28);
+
+       // Thats it...
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LEDsoff();
+       tracing = TRUE;
 }
+
 //-----------------------------------------------------------------------------
 // MIFARE 1K simulate. 
 // 
Impressum, Datenschutz