]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - common/lfdemod.c
EM410x bug fix
[proxmark3-svn] / common / lfdemod.c
index 25e5255241a63fd0743dedc0cdbbb80bfafef3a6..92ad633e7e8e200abf8214da1c9ffd5c8b3e3ae4 100644 (file)
 // at your option, any later version. See the LICENSE.txt file for the text of
 // the license.
 //-----------------------------------------------------------------------------
-// Low frequency commands
+// Low frequency demod/decode commands
 //-----------------------------------------------------------------------------
 
 #include <stdlib.h>
 #include <string.h>
 #include "lfdemod.h"
 
-//by marshmellow
-//takes 1s and 0s and searches for EM410x format - output EM ID
-uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
+
+uint8_t justNoise(uint8_t *BitStream, size_t size)
 {
-       //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
-       //  otherwise could be a void with no arguments
-       //set defaults
-       int high=0, low=128;
-       uint64_t lo=0;
+       static const uint8_t THRESHOLD = 123;
+       //test samples are not just noise
+       uint8_t justNoise1 = 1;
+       for(size_t idx=0; idx < size && justNoise1 ;idx++){
+               justNoise1 = BitStream[idx] < THRESHOLD;
+       }
+       return justNoise1;
+}
 
-       uint32_t i = 0;
-       uint32_t initLoopMax = 65;
-       if (initLoopMax>size) initLoopMax=size;
+//by marshmellow
+//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
+int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
+{
+       *high=0;
+       *low=255;
+       // get high and low thresholds 
+       for (int i=0; i < size; i++){
+               if (BitStream[i] > *high) *high = BitStream[i];
+               if (BitStream[i] < *low) *low = BitStream[i];
+       }
+       if (*high < 123) return -1; // just noise
+       *high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
+       *low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
+       return 1;
+}
 
-       for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
-       {
-               if (BitStream[i] > high)
-                       high = BitStream[i];
-               else if (BitStream[i] < low)
-                       low = BitStream[i];
-       }
-       if (((high !=1)||(low !=0))){  //allow only 1s and 0s
-               // PrintAndLog("no data found");
-               return 0;
-       }
-       uint8_t parityTest=0;
-       // 111111111 bit pattern represent start of frame
-       uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
-       uint32_t idx = 0;
-       uint32_t ii=0;
-       uint8_t resetCnt = 0;
-       while( (idx + 64) < size) {
- restart:
-               // search for a start of frame marker
-               if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-               { // frame marker found
-                       idx+=9;
-                       for (i=0; i<10;i++){
-                               for(ii=0; ii<5; ++ii){
-                                       parityTest += BitStream[(i*5)+ii+idx];
-                               }
-                               if (parityTest== ((parityTest>>1)<<1)){
-                                       parityTest=0;
-                                       for (ii=0; ii<4;++ii){
-                                               lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
-                                       }
-                                       //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
-                               }else {//parity failed
-                                       //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
-                                       parityTest=0;
-                                       idx-=8;
-                                       if (resetCnt>5)return 0;
-                                       resetCnt++;
-                                       goto restart;//continue;
-                               }
-                       }
-                       //skip last 5 bit parity test for simplicity.
-                       return lo;
-               }else{
-                       idx++;
-               }
+// by marshmellow
+// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
+// returns 1 if passed
+uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
+{
+       uint8_t ans = 0;
+       for (uint8_t i = 0; i < bitLen; i++){
+               ans ^= ((bits >> i) & 1);
        }
-       return 0;
+       //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
+       return (ans == pType);
+}
+
+//by marshmellow
+//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
+uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
+{
+  uint8_t foundCnt=0;
+  for (int idx=0; idx < *size - pLen; idx++){
+    if (memcmp(BitStream+idx, preamble, pLen) == 0){
+      //first index found
+      foundCnt++;
+      if (foundCnt == 1){
+        *startIdx = idx;
+      }
+      if (foundCnt == 2){
+        *size = idx - *startIdx;
+        return 1;
+      }
+    }
+  }
+  return 0;
+}
+
+//by marshmellow
+//takes 1s and 0s and searches for EM410x format - output EM ID
+uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
+{
+  //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
+  //  otherwise could be a void with no arguments
+  //set defaults
+  uint32_t i = 0;
+  if (BitStream[1]>1){  //allow only 1s and 0s
+    // PrintAndLog("no data found");
+    return 0;
+  }
+  // 111111111 bit pattern represent start of frame
+  //  include 0 in front to help get start pos
+  uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
+  uint32_t idx = 0;
+  uint32_t parityBits = 0;
+  uint8_t errChk = 0;
+  uint8_t FmtLen = 10;
+  *startIdx = 0;
+  errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+  if (errChk == 0 || *size < 64) return 0;
+  if (*size > 64) FmtLen = 22;
+  *startIdx += 1; //get rid of 0 from preamble
+  idx = *startIdx + 9;
+  for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
+    parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
+    //check even parity
+    if (parityTest(parityBits, 5, 0) == 0){
+      //parity failed quit
+       return 0;
+    }
+    //set uint64 with ID from BitStream
+    for (uint8_t ii=0; ii<4; ii++){
+      *hi = (*hi << 1) | (*lo >> 63);
+      *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
+    }
+  }
+  if (errChk != 0) return 1;
+  //skip last 5 bit parity test for simplicity.
+  // *size = 64 | 128;
+  return 0;
 }
 
 //by marshmellow
-//takes 2 arguments - clock and invert both as integers
+//takes 3 arguments - clock, invert, maxErr as integers
 //attempts to demodulate ask while decoding manchester
 //prints binary found and saves in graphbuffer for further commands
-int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr)
 {
        int i;
-       int high = 0, low = 128;
-       *clk=DetectASKClock(BinStream, *size, *clk); //clock default
-
-       if (*clk<8) *clk =64;
-       if (*clk<32) *clk=32;
+       //int clk2=*clk;
+       int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+       if (*clk==0) return -3;
+       if (start < 0) return -3;
+       // if autodetected too low then adjust  //MAY NEED ADJUSTMENT
+       //if (clk2==0 && *clk<8) *clk =64;
+       //if (clk2==0 && *clk<32) *clk=32;
        if (*invert != 0 && *invert != 1) *invert=0;
        uint32_t initLoopMax = 200;
        if (initLoopMax > *size) initLoopMax=*size;
        // Detect high and lows
-       for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
-       {
-               if (BinStream[i] > high)
-                       high = BinStream[i];
-               else if (BinStream[i] < low)
-                       low = BinStream[i];
-       }
-       if ((high < 158) ){  //throw away static
-               //PrintAndLog("no data found");
-               return -2;
-       }
-       //25% fuzz in case highs and lows aren't clipped [marshmellow]
-       high=(int)(((high-128)*.75)+128);
-       low= (int)(((low-128)*.75)+128);
+       // 25% fuzz in case highs and lows aren't clipped [marshmellow]
+       int high, low, ans;
+       ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
+       if (ans<1) return -2; //just noise
 
-       //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
+       // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        int tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-       if (*clk==32)tol=1;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+       if (*clk<=32) tol=1;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
        int iii = 0;
        uint32_t gLen = *size;
        if (gLen > 3000) gLen=3000;
+       //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
+       if (!maxErr) gLen=*clk*2; 
        uint8_t errCnt =0;
+       uint16_t MaxBits = 500;
        uint32_t bestStart = *size;
-       uint32_t bestErrCnt = (*size/1000);
-       uint32_t maxErr = (*size/1000);
-       //PrintAndLog("DEBUG - lastbit - %d",lastBit);
-       //loop to find first wave that works
+       int bestErrCnt = maxErr+1;
+       // PrintAndLog("DEBUG - lastbit - %d",lastBit);
+       // loop to find first wave that works
        for (iii=0; iii < gLen; ++iii){
                if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
                        lastBit=iii-*clk;
                        errCnt=0;
-                       //loop through to see if this start location works
+                       // loop through to see if this start location works
                        for (i = iii; i < *size; ++i) {
                                if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
                                        lastBit+=*clk;
@@ -146,10 +182,10 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                                if (errCnt>(maxErr)) break;  //allow 1 error for every 1000 samples else start over
                                        }
                                }
-                               if ((i-iii) >(400 * *clk)) break; //got plenty of bits
+                               if ((i-iii) >(MaxBits * *clk)) break; //got plenty of bits
                        }
                        //we got more than 64 good bits and not all errors
-                       if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
+                       if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
                                //possible good read
                                if (errCnt==0){
                                        bestStart=iii;
@@ -163,7 +199,7 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                        }
                }
        }
-       if (bestErrCnt<maxErr){
+       if (bestErrCnt<=maxErr){
                //best run is good enough set to best run and set overwrite BinStream
                iii=bestStart;
                lastBit = bestStart - *clk;
@@ -193,7 +229,7 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                        lastBit+=*clk;//skip over error
                                }
                        }
-                       if (bitnum >=400) break;
+                       if (bitnum >=MaxBits) break;
                }
                *size=bitnum;
        } else{
@@ -204,26 +240,40 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
        return bestErrCnt;
 }
 
+//by marshmellow
+//encode binary data into binary manchester 
+int ManchesterEncode(uint8_t *BitStream, size_t size)
+{
+       size_t modIdx=20000, i=0;
+       if (size>modIdx) return -1;
+       for (size_t idx=0; idx < size; idx++){
+               BitStream[idx+modIdx++] = BitStream[idx];
+               BitStream[idx+modIdx++] = BitStream[idx]^1;
+       }
+       for (; i<(size*2); i++){
+               BitStream[i] = BitStream[i+20000];
+       }
+       return i;
+}
+
 //by marshmellow
 //take 10 and 01 and manchester decode
 //run through 2 times and take least errCnt
 int manrawdecode(uint8_t * BitStream, size_t *size)
 {
-       int bitnum=0;
-       int errCnt =0;
-       int i=1;
-       int bestErr = 1000;
-       int bestRun = 0;
-       int ii=1;
-       for (ii=1;ii<3;++ii){
-               i=1;
+       uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
+       size_t i, ii;
+       uint16_t bestErr = 1000, bestRun = 0;
+       if (size == 0) return -1;
+       for (ii=0;ii<2;++ii){
+               i=0;
                for (i=i+ii;i<*size-2;i+=2){
                        if(BitStream[i]==1 && (BitStream[i+1]==0)){
                        } else if((BitStream[i]==0)&& BitStream[i+1]==1){
                        } else {
                                errCnt++;
                        }
-                       if(bitnum>300) break;
+                       if(bitnum>MaxBits) break;
                }
                if (bestErr>errCnt){
                        bestErr=errCnt;
@@ -234,8 +284,8 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
        errCnt=bestErr;
        if (errCnt<20){
                ii=bestRun;
-               i=1;
-               for (i=i+ii;i < *size-2;i+=2){
+               i=0;
+               for (i=i+ii; i < *size-2; i+=2){
                        if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
                                BitStream[bitnum++]=0;
                        } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
@@ -244,117 +294,193 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
                                BitStream[bitnum++]=77;
                                //errCnt++;
                        }
-                       if(bitnum>300) break;
+                       if(bitnum>MaxBits) break;
                }
                *size=bitnum;
        }
        return errCnt;
 }
 
-
 //by marshmellow
-//take 01 or 10 = 0 and 11 or 00 = 1
-int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset)
+//take 01 or 10 = 1 and 11 or 00 = 0
+//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
+//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
 {
-       uint8_t bitnum=0;
+       uint16_t bitnum=0;
        uint32_t errCnt =0;
-       uint32_t i=1;
-       i=offset;
-       for (;i<*size-2;i+=2){
+       size_t i=offset;
+       uint16_t MaxBits=512;
+       //if not enough samples - error
+       if (*size < 51) return -1;
+       //check for phase change faults - skip one sample if faulty
+       uint8_t offsetA = 1, offsetB = 1;
+       for (; i<48; i+=2){
+               if (BitStream[i+1]==BitStream[i+2]) offsetA=0; 
+               if (BitStream[i+2]==BitStream[i+3]) offsetB=0;                                  
+       }
+       if (!offsetA && offsetB) offset++;
+       for (i=offset; i<*size-3; i+=2){
+               //check for phase error
+               if (BitStream[i+1]==BitStream[i+2]) {
+                       BitStream[bitnum++]=77;
+                       errCnt++;
+               }
                if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
-                       BitStream[bitnum++]=1;
+                       BitStream[bitnum++]=1^invert;
                } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
-                       BitStream[bitnum++]=0;
+                       BitStream[bitnum++]=invert;
                } else {
                        BitStream[bitnum++]=77;
                        errCnt++;
                }
-               if(bitnum>250) break;
+               if(bitnum>MaxBits) break;
        }
        *size=bitnum;
        return errCnt;
 }
 
 //by marshmellow
-//takes 2 arguments - clock and invert both as integers
+void askAmp(uint8_t *BitStream, size_t size)
+{
+       int shift = 127;
+       int shiftedVal=0;
+       for(int i = 1; i<size; i++){
+               if (BitStream[i]-BitStream[i-1]>=30) //large jump up
+                       shift=127;
+               else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
+                       shift=-127;
+
+               shiftedVal=BitStream[i]+shift;
+
+               if (shiftedVal>255) 
+                       shiftedVal=255;
+               else if (shiftedVal<0) 
+                       shiftedVal=0;
+               BitStream[i-1] = shiftedVal;
+       }
+       return;
+}
+
+int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
+{
+       size_t bitCnt=0, smplCnt=0, errCnt=0;
+       uint8_t waveHigh = 0;
+       //PrintAndLog("clk: %d", clk);
+       for (size_t i=0; i < *size; i++){
+               if (BinStream[i] >= high && waveHigh){
+                       smplCnt++;
+               } else if (BinStream[i] <= low && !waveHigh){
+                       smplCnt++;
+               } else { //transition
+                       if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
+                               if (smplCnt > clk-(clk/4)-1) { //full clock
+                                       if (smplCnt > clk + (clk/4)+1) { //too many samples
+                                               errCnt++;
+                                               BinStream[bitCnt++]=77;
+                                       } else if (waveHigh) {
+                                               BinStream[bitCnt++] = invert;
+                                               BinStream[bitCnt++] = invert;
+                                       } else if (!waveHigh) {
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                       }
+                                       waveHigh ^= 1;  
+                                       smplCnt = 0;
+                               } else if (smplCnt > (clk/2) - (clk/4)-1) {
+                                       if (waveHigh) {
+                                               BinStream[bitCnt++] = invert;
+                                       } else if (!waveHigh) {
+                                               BinStream[bitCnt++] = invert ^ 1;
+                                       }
+                                       waveHigh ^= 1;  
+                                       smplCnt = 0;
+                               } else if (!bitCnt) {
+                                       //first bit
+                                       waveHigh = (BinStream[i] >= high);
+                                       smplCnt = 1;
+                               } else {
+                                       smplCnt++;
+                                       //transition bit oops
+                               }
+                       } else { //haven't hit new high or new low yet
+                               smplCnt++;
+                       }
+               }
+       }
+       *size = bitCnt;
+       return errCnt;
+}
+
+//by marshmellow
+//takes 3 arguments - clock, invert and maxErr as integers
 //attempts to demodulate ask only
-//prints binary found and saves in graphbuffer for further commands
-int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
+int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp)
 {
        uint32_t i;
-       // int invert=0;  //invert default
-       int high = 0, low = 128;
-       *clk=DetectASKClock(BinStream, *size, *clk); //clock default
-       uint8_t BitStream[502] = {0};
-
-       if (*clk<8) *clk =64;
-       if (*clk<32) *clk=32;
+       if (*size==0) return -1;
+       int start = DetectASKClock(BinStream, *size, clk, 20); //clock default
+       if (*clk==0) return -1;
+       if (start<0) return -1;
        if (*invert != 0 && *invert != 1) *invert =0;
+       if (amp==1) askAmp(BinStream, *size);
+
        uint32_t initLoopMax = 200;
        if (initLoopMax > *size) initLoopMax=*size;
        // Detect high and lows
-       for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
-       {
-               if (BinStream[i] > high)
-                       high = BinStream[i];
-               else if (BinStream[i] < low)
-                       low = BinStream[i];
-       }
-       if ((high < 158)){  //throw away static
-               //   PrintAndLog("no data found");
-               return -2;
+       //25% clip in case highs and lows aren't clipped [marshmellow]
+       uint8_t clip = 75;
+       int high, low, ans;
+       ans = getHiLo(BinStream, initLoopMax, &high, &low, clip, clip);
+       if (ans<1) return -1; //just noise
+
+       if (DetectCleanAskWave(BinStream, *size, high, low)) {
+               //PrintAndLog("Clean");
+               return cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
        }
-       //25% fuzz in case highs and lows aren't clipped [marshmellow]
-       high=(int)(((high-128)*.75)+128);
-       low= (int)(((low-128)*.75)+128);
 
        //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
        int lastBit = 0;  //set first clock check
        uint32_t bitnum = 0;     //output counter
        uint8_t tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock
                          //  if they fall + or - this value + clock from last valid wave
-       if (*clk == 32) tol=1;    //clock tolerance may not be needed anymore currently set to
+       if (*clk == 32) tol=0;    //clock tolerance may not be needed anymore currently set to
                                  //  + or - 1 but could be increased for poor waves or removed entirely
        uint32_t iii = 0;
        uint32_t gLen = *size;
        if (gLen > 500) gLen=500;
+       //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
+       if (!maxErr) gLen = *clk * 2; 
        uint8_t errCnt =0;
        uint32_t bestStart = *size;
-       uint32_t bestErrCnt = (*size/1000);
+       uint32_t bestErrCnt = maxErr; //(*size/1000);
        uint8_t midBit=0;
+       uint16_t MaxBits=1000;
+
        //PrintAndLog("DEBUG - lastbit - %d",lastBit);
        //loop to find first wave that works
-       for (iii=0; iii < gLen; ++iii){
+       for (iii=start; iii < gLen; ++iii){
                if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
                        lastBit=iii-*clk;
+                       errCnt=0;
                        //loop through to see if this start location works
                        for (i = iii; i < *size; ++i) {
                                if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
                                        lastBit+=*clk;
-                                       BitStream[bitnum] = *invert;
-                                       bitnum++;
                                        midBit=0;
                                } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
                                        //low found and we are expecting a bar
                                        lastBit+=*clk;
-                                       BitStream[bitnum] = 1- *invert;
-                                       bitnum++;
                                        midBit=0;
                                } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
                                        //mid bar?
                                        midBit=1;
-                                       BitStream[bitnum]= 1- *invert;
-                                       bitnum++;
                                } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
                                        //mid bar?
                                        midBit=1;
-                                       BitStream[bitnum]= *invert;
-                                       bitnum++;
                                } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
                                        //no mid bar found
                                        midBit=1;
-                                       BitStream[bitnum]= BitStream[bitnum-1];
-                                       bitnum++;
                                } else {
                                        //mid value found or no bar supposed to be here
 
@@ -362,66 +488,121 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
                                                //should have hit a high or low based on clock!!
                                                //debug
                                                //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
-                                               if (bitnum > 0){
-                                                       BitStream[bitnum]=77;
-                                                       bitnum++;
-                                               }
 
                                                errCnt++;
                                                lastBit+=*clk;//skip over until hit too many errors
-                                               if (errCnt > ((*size/1000))){  //allow 1 error for every 1000 samples else start over
-                                                       errCnt=0;
-                                                       bitnum=0;//start over
+                                               if (errCnt > maxErr){  
+                                                       //errCnt=0;
                                                        break;
                                                }
                                        }
                                }
-                               if (bitnum>500) break;
+                               if ((i-iii)>(MaxBits * *clk)) break; //got enough bits
                        }
                        //we got more than 64 good bits and not all errors
-                       if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) {
+                       if ((((i-iii)/ *clk) > (64)) && (errCnt<=maxErr)) {
                                //possible good read
-                               if (errCnt==0) break;  //great read - finish
-                               if (bestStart == iii) break;  //if current run == bestErrCnt run (after exhausted testing) then finish
+                               if (errCnt==0){
+                                       bestStart=iii;
+                                       bestErrCnt=errCnt;
+                                       break;  //great read - finish
+                               } 
                                if (errCnt<bestErrCnt){  //set this as new best run
                                        bestErrCnt=errCnt;
                                        bestStart = iii;
                                }
                        }
                }
-               if (iii>=gLen){ //exhausted test
-                       //if there was a ok test go back to that one and re-run the best run (then dump after that run)
-                       if (bestErrCnt < (*size/1000)) iii=bestStart;
-               }
        }
-       if (bitnum>16){
-               for (i=0; i < bitnum; ++i){
-                       BinStream[i]=BitStream[i];
+       if (bestErrCnt<=maxErr){
+               //best run is good enough - set to best run and overwrite BinStream
+               iii = bestStart;
+               lastBit = bestStart - *clk;
+               bitnum=0;
+               for (i = iii; i < *size; ++i) {
+                       if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
+                               lastBit += *clk;
+                               BinStream[bitnum] = *invert;
+                               bitnum++;
+                               midBit=0;
+                       } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
+                               //low found and we are expecting a bar
+                               lastBit+=*clk;
+                               BinStream[bitnum] = 1 - *invert;
+                               bitnum++;
+                               midBit=0;
+                       } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+                               //mid bar?
+                               midBit=1;
+                               BinStream[bitnum] = 1 - *invert;
+                               bitnum++;
+                       } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
+                               //mid bar?
+                               midBit=1;
+                               BinStream[bitnum] = *invert;
+                               bitnum++;
+                       } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
+                               //no mid bar found
+                               midBit=1;
+                               if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
+                               bitnum++;
+                               
+                       } else {
+                               //mid value found or no bar supposed to be here
+                               if ((i-lastBit)>(*clk+tol)){
+                                       //should have hit a high or low based on clock!!
+
+                                       //debug
+                                       //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
+                                       if (bitnum > 0){
+                                               BinStream[bitnum]=77;
+                                               bitnum++;
+                                       }
+                                       lastBit+=*clk;//skip over error
+                               }
+                       }
+                       if (bitnum >= MaxBits) break;
                }
                *size=bitnum;
-       } else return -1;
-       return errCnt;
+       } else{
+               *invert=bestStart;
+               *clk=iii;
+               return -1;
+       }
+       return bestErrCnt;
 }
+
+// demod gProxIIDemod 
+// error returns as -x 
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size)
+{
+       size_t startIdx=0;
+       uint8_t preamble[] = {1,1,1,1,1,0};
+
+       uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+       if (*size != 96) return -2; //should have found 96 bits
+       //check first 6 spacer bits to verify format
+       if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+               //confirmed proper separator bits found
+               //return start position
+               return (int) startIdx;
+       }
+       return -5;
+}
+
 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
 {
        uint32_t last_transition = 0;
        uint32_t idx = 1;
-       uint32_t maxVal=0;
+       //uint32_t maxVal=0;
        if (fchigh==0) fchigh=10;
        if (fclow==0) fclow=8;
-       // we do care about the actual theshold value as sometimes near the center of the
-       // wave we may get static that changes direction of wave for one value
-       // if our value is too low it might affect the read.  and if our tag or
-       // antenna is weak a setting too high might not see anything. [marshmellow]
-       if (size<100) return 0;
-       for(idx=1; idx<100; idx++){
-               if(maxVal<dest[idx]) maxVal = dest[idx];
-       }
-       // set close to the top of the wave threshold with 25% margin for error
-       // less likely to get a false transition up there.
-       // (but have to be careful not to go too high and miss some short waves)
-       uint8_t threshold_value = (uint8_t)(((maxVal-128)*.75)+128);
+       //set the threshold close to 0 (graph) or 128 std to avoid static
+       uint8_t threshold_value = 123; 
 
        // sync to first lo-hi transition, and threshold
 
@@ -446,7 +627,9 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow
                                //do nothing with extra garbage
                        } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
                                dest[numBits]=1;
-                       } else {                                                        //9+ = 10 waves
+                       } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage 
+                               //do nothing with beginning garbage
+                       } else {                                         //9+ = 10 waves
                                dest[numBits]=0;
                        }
                        last_transition = idx;
@@ -470,18 +653,31 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxCons
        uint32_t idx=0;
        size_t numBits=0;
        uint32_t n=1;
-
+       float lowWaves = (((float)(rfLen))/((float)fclow));
+       float highWaves = (((float)(rfLen))/((float)fchigh));
        for( idx=1; idx < size; idx++) {
 
                if (dest[idx]==lastval) {
                        n++;
                        continue;
                }
+               n++;
                //if lastval was 1, we have a 1->0 crossing
-               if ( dest[idx-1]==1 ) {
-                       n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
-               } else {// 0->1 crossing
-                       n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh));  //-2 for fudge factor
+               if (dest[idx-1]==1) {
+                       if (!numBits && n < (uint8_t)lowWaves) {
+                               n=0;
+                               lastval = dest[idx];
+                               continue;
+                       }
+                       n=myround2(((float)n)/lowWaves);
+               } else {// 0->1 crossing 
+                       //test first bitsample too small
+                       if (!numBits && n < (uint8_t)highWaves) {
+                               n=0;
+                               lastval = dest[idx];
+                               continue;
+                       }
+                       n = myround2(((float)n)/highWaves);  //-1 for fudge factor
                }
                if (n == 0) n = 1;
 
@@ -497,6 +693,17 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxCons
                n=0;
                lastval=dest[idx];
        }//end for
+
+       // if valid extra bits at the end were all the same frequency - add them in
+       if (n > lowWaves && n > highWaves) {
+               if (dest[idx-2]==1) {
+                       n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
+               } else {
+                       n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh));  //-1 for fudge factor                       
+               }
+               memset(dest, dest[idx-1]^invert , n);
+               numBits += n;
+       }
        return numBits;
 }
 //by marshmellow  (from holiman's base)
@@ -508,56 +715,69 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t
        size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
        return size;
 }
+
 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
-int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
+int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
 {
+  if (justNoise(dest, *size)) return -1;
+
+  size_t numStart=0, size2=*size, startIdx=0; 
+  // FSK demodulator
+  *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+  if (*size < 96) return -2;
+  // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+  uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+  // find bitstring in array  
+  uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+  if (errChk == 0) return -3; //preamble not found
 
-       size_t idx=0; //, found=0; //size=0,
+  numStart = startIdx + sizeof(preamble);
+  // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+  for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+    if (dest[idx] == dest[idx+1]){
+      return -4; //not manchester data
+    }
+    *hi2 = (*hi2<<1)|(*hi>>31);
+    *hi = (*hi<<1)|(*lo>>31);
+    //Then, shift in a 0 or one into low
+    if (dest[idx] && !dest[idx+1])  // 1 0
+      *lo=(*lo<<1)|1;
+    else // 0 1
+      *lo=(*lo<<1)|0;
+  }
+  return (int)startIdx;
+}
+
+// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
+int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
+{
+       if (justNoise(dest, *size)) return -1;
+       
+       size_t numStart=0, size2=*size, startIdx=0;
        // FSK demodulator
-       size = fskdemod(dest, size,50,0,10,8);
-
-       // final loop, go over previously decoded manchester data and decode into usable tag ID
-       // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-       uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-       int numshifts = 0;
-       idx = 0;
-       //one scan
-       while( idx + sizeof(frame_marker_mask) < size) {
-               // search for a start of frame marker
-               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-               { // frame marker found
-                       idx+=sizeof(frame_marker_mask);
-                       while(dest[idx] != dest[idx+1] && idx < size-2)
-                       {
-                               // Keep going until next frame marker (or error)
-                               // Shift in a bit. Start by shifting high registers
-                               *hi2 = (*hi2<<1)|(*hi>>31);
-                               *hi = (*hi<<1)|(*lo>>31);
-                               //Then, shift in a 0 or one into low
-                               if (dest[idx] && !dest[idx+1])  // 1 0
-                                       *lo=(*lo<<1)|0;
-                               else // 0 1
-                                       *lo=(*lo<<1)|1;
-                               numshifts++;
-                               idx += 2;
-                       }
-                       // Hopefully, we read a tag and  hit upon the next frame marker
-                       if(idx + sizeof(frame_marker_mask) < size)
-                       {
-                               if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-                               {
-                                       //good return
-                                       return idx;
-                               }
-                       }
-                       // reset
-                       *hi2 = *hi = *lo = 0;
-                       numshifts = 0;
-               }else   {
-                       idx++;
-               }
+       *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+       if (*size < 96) return -2;
+
+       // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+       uint8_t preamble[] = {0,0,0,0,1,1,1,1};
+
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -3; //preamble not found
+
+       numStart = startIdx + sizeof(preamble);
+       // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+       for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+               if (dest[idx] == dest[idx+1]) 
+                       return -4; //not manchester data
+               *hi2 = (*hi2<<1)|(*hi>>31);
+               *hi = (*hi<<1)|(*lo>>31);
+               //Then, shift in a 0 or one into low
+               if (dest[idx] && !dest[idx+1])  // 1 0
+                       *lo=(*lo<<1)|1;
+               else // 0 1
+                       *lo=(*lo<<1)|0;
        }
-       return -1;
+       return (int)startIdx;
 }
 
 uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
@@ -573,20 +793,12 @@ uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
 
 int IOdemodFSK(uint8_t *dest, size_t size)
 {
-       static const uint8_t THRESHOLD = 140;
-       uint32_t idx=0;
+       if (justNoise(dest, size)) return -1;
        //make sure buffer has data
-       if (size < 66) return -1;
-       //test samples are not just noise
-       uint8_t justNoise = 1;
-       for(idx=0;idx< size && justNoise ;idx++){
-               justNoise = dest[idx] < THRESHOLD;
-       }
-       if(justNoise) return 0;
-
+       if (size < 66*64) return -2;
        // FSK demodulator
-       size = fskdemod(dest, size, 64, 1, 10, 8);  //  RF/64 and invert
-       if (size < 65) return -1;  //did we get a good demod?
+       size = fskdemod(dest, size, 64, 1, 10, 8);  // FSK2a RF/64 
+       if (size < 65) return -3;  //did we get a good demod?
        //Index map
        //0           10          20          30          40          50          60
        //|           |           |           |           |           |           |
@@ -596,227 +808,449 @@ int IOdemodFSK(uint8_t *dest, size_t size)
        //
        //XSF(version)facility:codeone+codetwo
        //Handle the data
-       uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-       for( idx=0; idx < (size - 65); idx++) {
-               if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
-                       //frame marker found
-                       if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
-                               //confirmed proper separator bits found
-                               //return start position
-                               return (int) idx;
-                       }
-               }
+       size_t startIdx = 0;
+       uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+
+       if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
+               //confirmed proper separator bits found
+               //return start position
+               return (int) startIdx;
        }
-       return 0;
+       return -5;
 }
 
 // by marshmellow
-// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
-// maybe somehow adjust peak trimming value based on samples to fix?
-int DetectASKClock(uint8_t dest[], size_t size, int clock)
-{
-       int i=0;
-       int peak=0;
-       int low=128;
-       int clk[]={16,32,40,50,64,100,128,256};
-       int loopCnt = 256;  //don't need to loop through entire array...
-       if (size<loopCnt) loopCnt = size;
-
-       //if we already have a valid clock quit
-       for (;i<8;++i)
-               if (clk[i] == clock) return clock;
-
-       //get high and low peak
-       for (i=0; i < loopCnt; ++i){
-               if(dest[i] > peak){
-                       peak = dest[i];
-               }
-               if(dest[i] < low){
-                       low = dest[i];
+// takes a array of binary values, start position, length of bits per parity (includes parity bit),
+//   Parity Type (1 for odd 0 for even), and binary Length (length to run) 
+size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
+{
+       uint32_t parityWd = 0;
+       size_t j = 0, bitCnt = 0;
+       for (int word = 0; word < (bLen); word+=pLen){
+               for (int bit=0; bit < pLen; bit++){
+                       parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
+                       BitStream[j++] = (BitStream[startIdx+word+bit]);
                }
+               j--;
+               // if parity fails then return 0
+               if (parityTest(parityWd, pLen, pType) == 0) return -1;
+               bitCnt+=(pLen-1);
+               parityWd = 0;
        }
-       peak=(int)(((peak-128)*.75)+128);
-       low= (int)(((low-128)*.75)+128);
-       int ii;
-       int clkCnt;
-       int tol = 0;
-       int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
-       int errCnt=0;
-       //test each valid clock from smallest to greatest to see which lines up
-       for(clkCnt=0; clkCnt < 6; ++clkCnt){
-               if (clk[clkCnt] == 32){
-                       tol=1;
-               }else{
-                       tol=0;
-               }
-               bestErr[clkCnt]=1000;
-               //try lining up the peaks by moving starting point (try first 256)
-               for (ii=0; ii< loopCnt; ++ii){
-                       if ((dest[ii] >= peak) || (dest[ii] <= low)){
-                               errCnt=0;
-                               // now that we have the first one lined up test rest of wave array
-                               for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
-                                       if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-                                       }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
-                                       }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
-                                       }else{  //error no peak detected
-                                               errCnt++;
-                                       }
-                               }
-                               //if we found no errors this is correct one - return this clock
-                               if(errCnt==0) return clk[clkCnt];
-                               //if we found errors see if it is lowest so far and save it as best run
-                               if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
-                       }
-               }
+       // if we got here then all the parities passed
+       //return ID start index and size
+       return bitCnt;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an AWID ID
+int AWIDdemodFSK(uint8_t *dest, size_t *size)
+{
+       //make sure buffer has enough data
+       if (*size < 96*50) return -1;
+
+       if (justNoise(dest, *size)) return -2;
+
+       // FSK demodulator
+       *size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
+       if (*size < 96) return -3;  //did we get a good demod?
+
+       uint8_t preamble[] = {0,0,0,0,0,0,0,1};
+       size_t startIdx = 0;
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+       if (*size != 96) return -5;
+       return (int)startIdx;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an Farpointe Data (pyramid) ID
+int PyramiddemodFSK(uint8_t *dest, size_t *size)
+{
+       //make sure buffer has data
+       if (*size < 128*50) return -5;
+
+       //test samples are not just noise
+       if (justNoise(dest, *size)) return -1;
+
+       // FSK demodulator
+       *size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
+       if (*size < 128) return -2;  //did we get a good demod?
+
+       uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+       size_t startIdx = 0;
+       uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+       if (errChk == 0) return -4; //preamble not found
+       if (*size != 128) return -3;
+       return (int)startIdx;
+}
+
+
+uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, int high, int low)
+{
+       uint16_t allPeaks=1;
+       uint16_t cntPeaks=0;
+       size_t loopEnd = 572;
+       if (loopEnd > size) loopEnd = size;
+       for (size_t i=60; i<loopEnd; i++){
+               if (dest[i]>low && dest[i]<high) 
+                       allPeaks=0;
+               else
+                       cntPeaks++;
        }
-       int iii=0;
-       int best=0;
-       for (iii=0; iii<7;++iii){
-               if (bestErr[iii]<bestErr[best]){
-                       //                current best bit to error ratio     vs  new bit to error ratio
-                       if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
-                               best = iii;
-                       }
-               }
+       if (allPeaks == 0){
+               if (cntPeaks > 300) return 1;
        }
-       return clk[best];
+       return allPeaks;
 }
 
-//by marshmellow
-//detect psk clock by reading #peaks vs no peaks(or errors)
-int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
-{
-       int i=0;
-       int peak=0;
-       int low=128;
-       int clk[]={16,32,40,50,64,100,128,256};
-       int loopCnt = 2048;  //don't need to loop through entire array...
-       if (size<loopCnt) loopCnt = size;
-
-       //if we already have a valid clock quit
-       for (; i < 8; ++i)
-               if (clk[i] == clock) return clock;
-
-       //get high and low peak
-       for (i=0; i < loopCnt; ++i){
-               if(dest[i] > peak){
-                       peak = dest[i];
-               }
-               if(dest[i] < low){
-                       low = dest[i];
-               }
-       }
-       peak=(int)(((peak-128)*.90)+128);
-       low= (int)(((low-128)*.90)+128);
-       //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
-       int ii;
-       uint8_t clkCnt;
-       uint8_t tol = 0;
-       int peakcnt=0;
-       int errCnt=0;
-       int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
-       int peaksdet[]={0,0,0,0,0,0,0,0,0};
-       //test each valid clock from smallest to greatest to see which lines up
-       for(clkCnt=0; clkCnt < 6; ++clkCnt){
-               if (clk[clkCnt] == 32){
-                       tol=0;
-               }else{
-                       tol=0;
-               }
-               //try lining up the peaks by moving starting point (try first 256)
-               for (ii=0; ii< loopCnt; ++ii){
-                       if ((dest[ii] >= peak) || (dest[ii] <= low)){
-                               errCnt=0;
-                               peakcnt=0;
-                               // now that we have the first one lined up test rest of wave array
-                               for (i=0; i < ((int)(size/clk[clkCnt])-1); ++i){
-                                       if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-                                               peakcnt++;
-                                       }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
-                                               peakcnt++;
-                                       }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
-                                               peakcnt++;
-                                       }else{  //error no peak detected
-                                               errCnt++;
-                                       }
+int DetectStrongAskClock(uint8_t dest[], size_t size)
+{
+       int clk[]={0,8,16,32,40,50,64,100,128,256};
+  size_t idx = 40;
+       uint8_t high=0;
+       size_t cnt = 0;
+       size_t highCnt = 0;
+       size_t highCnt2 = 0;
+       for (;idx < size; idx++){
+               if (dest[idx]>128) {
+                       if (!high){
+                               high=1;
+                               if (cnt > highCnt){
+                                       if (highCnt != 0) highCnt2 = highCnt;
+                                       highCnt = cnt;
+                               } else if (cnt > highCnt2) {
+                                       highCnt2 = cnt;
                                }
-                               if(peakcnt>peaksdet[clkCnt]) {
-                                       peaksdet[clkCnt]=peakcnt;
-                                       bestErr[clkCnt]=errCnt;
+                               cnt=1;
+                       } else {
+                               cnt++;
+                       }
+               } else if (dest[idx] <= 128){
+                       if (high) {
+                               high=0;
+                               if (cnt > highCnt) {
+                                       if (highCnt != 0) highCnt2 = highCnt;
+                                       highCnt = cnt;
+                               } else if (cnt > highCnt2) {
+                                       highCnt2 = cnt;
                                }
+                               cnt=1;
+                       } else {
+                               cnt++;
                        }
                }
        }
-       int iii=0;
-       int best=0;
-       //int ratio2;  //debug
-       int ratio;
-       //int bits;
-       for (iii=0; iii < 7; ++iii){
-               ratio=1000;
-               //ratio2=1000;  //debug
-               //bits=size/clk[iii];  //debug
-               if (peaksdet[iii] > 0){
-                       ratio=bestErr[iii]/peaksdet[iii];
-                       if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){
-                               best = iii;
-                       }
-                       //ratio2=bits/peaksdet[iii]; //debug
-               }
-               //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
+       uint8_t tol;
+       for (idx=8; idx>0; idx--){
+               tol = clk[idx]/8;
+               if (clk[idx] >= highCnt - tol && clk[idx] <= highCnt + tol)
+                       return clk[idx];
+               if (clk[idx] >= highCnt2 - tol && clk[idx] <= highCnt2 + tol)
+                       return clk[idx];
        }
-       return clk[best];
+       return -1;
 }
 
-//by marshmellow (attempt to get rid of high immediately after a low)
-void pskCleanWave(uint8_t *bitStream, size_t size)
+// by marshmellow
+// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
+// maybe somehow adjust peak trimming value based on samples to fix?
+// return start index of best starting position for that clock and return clock (by reference)
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
 {
-       int i;
-       int low=128;
-       int high=0;
-       int gap = 4;
- // int loopMax = 2048;
-       int newLow=0;
-       int newHigh=0;
-       for (i=0; i < size; ++i){
-               if (bitStream[i] < low) low=bitStream[i];
-               if (bitStream[i] > high) high=bitStream[i];
-       }
-       high = (int)(((high-128)*.80)+128);
-       low = (int)(((low-128)*.90)+128);
-       //low = (uint8_t)(((int)(low)-128)*.80)+128;
-       for (i=0; i < size; ++i){
-               if (newLow == 1){
-                       bitStream[i]=low+8;
-                       gap--;
-                       if (gap == 0){
-                               newLow=0;
-                               gap=4;
-                       }
-               }else if (newHigh == 1){
-                       bitStream[i]=high-8;
-                       gap--;
-                       if (gap == 0){
-                               newHigh=0;
-                               gap=4;
-                       }
+  int i=0;
+  int clk[]={8,16,32,40,50,64,100,128,256};
+  int loopCnt = 256;  //don't need to loop through entire array...
+  if (size == 0) return -1;
+  if (size<loopCnt) loopCnt = size;
+  //if we already have a valid clock quit
+  
+  for (;i<8;++i)
+    if (clk[i] == *clock) return 0;
+
+  //get high and low peak
+  int peak, low;
+  getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+  
+  //test for large clean peaks
+  if (DetectCleanAskWave(dest, size, peak, low)==1){
+       int ans = DetectStrongAskClock(dest, size);
+         for (i=7; i>0; i--){
+               if (clk[i] == ans) {
+                       *clock=ans;
+                       return 0;
+               }
+         }
+  }
+  int ii;
+  int clkCnt;
+  int tol = 0;
+  int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+  int bestStart[]={0,0,0,0,0,0,0,0,0};
+  int errCnt=0;
+  //test each valid clock from smallest to greatest to see which lines up
+  for(clkCnt=0; clkCnt < 8; clkCnt++){
+    if (clk[clkCnt] == 32){
+      tol=1;
+    }else{
+      tol=0;
+    }
+       if (!maxErr) loopCnt=clk[clkCnt]*2;
+    bestErr[clkCnt]=1000;
+    //try lining up the peaks by moving starting point (try first 256)
+    for (ii=0; ii < loopCnt; ii++){
+      if ((dest[ii] >= peak) || (dest[ii] <= low)){
+        errCnt=0;
+        // now that we have the first one lined up test rest of wave array
+        for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+          if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+          }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+          }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+          }else{  //error no peak detected
+            errCnt++;
+          }
+        }
+        //if we found no errors then we can stop here
+        //  this is correct one - return this clock
+            //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+        if(errCnt==0 && clkCnt<6) {
+          *clock = clk[clkCnt];
+          return ii;
+        }
+        //if we found errors see if it is lowest so far and save it as best run
+        if(errCnt<bestErr[clkCnt]){
+          bestErr[clkCnt]=errCnt;
+          bestStart[clkCnt]=ii;
+        }
+      }
+    }
+  }
+  uint8_t iii=0;
+  uint8_t best=0;
+  for (iii=0; iii<8; ++iii){
+    if (bestErr[iii]<bestErr[best]){
+      if (bestErr[iii]==0) bestErr[iii]=1;
+      // current best bit to error ratio     vs  new bit to error ratio
+      if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
+        best = iii;
+      }
+    }
+  }
+  if (bestErr[best]>maxErr) return -1;
+  *clock=clk[best];
+  return bestStart[best];
+}
+
+//by marshmellow
+//detect psk clock by reading each phase shift
+// a phase shift is determined by measuring the sample length of each wave
+int DetectPSKClock(uint8_t dest[], size_t size, int clock)
+{
+  uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+  uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+  if (size == 0) return 0;
+  if (size<loopCnt) loopCnt = size;
+
+  //if we already have a valid clock quit
+  size_t i=1;
+  for (; i < 8; ++i)
+    if (clk[i] == clock) return clock;
+
+  size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+  uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
+  uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+  uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+  uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+  countFC(dest, size, &fc);
+  //PrintAndLog("DEBUG: FC: %d",fc);
+
+  //find first full wave
+  for (i=0; i<loopCnt; i++){
+    if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+      if (waveStart == 0) {
+        waveStart = i+1;
+        //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+      } else {
+        waveEnd = i+1;
+        //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+        waveLenCnt = waveEnd-waveStart;
+        if (waveLenCnt > fc){
+          firstFullWave = waveStart;
+          fullWaveLen=waveLenCnt;
+          break;
+        } 
+        waveStart=0;
+      }
+    }
+  }
+  //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+  
+  //test each valid clock from greatest to smallest to see which lines up
+  for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+    lastClkBit = firstFullWave; //set end of wave as clock align
+    waveStart = 0;
+    errCnt=0;
+    peakcnt=0;
+    //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+    for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+      //top edge of wave = start of new wave 
+      if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+        if (waveStart == 0) {
+          waveStart = i+1;
+          waveLenCnt=0;
+        } else { //waveEnd
+          waveEnd = i+1;
+          waveLenCnt = waveEnd-waveStart;
+          if (waveLenCnt > fc){ 
+            //if this wave is a phase shift
+            //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+            if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+              peakcnt++;
+              lastClkBit+=clk[clkCnt];
+            } else if (i<lastClkBit+8){
+              //noise after a phase shift - ignore
+            } else { //phase shift before supposed to based on clock
+              errCnt++;
+            }
+          } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
+            lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+          }
+          waveStart=i+1;
+        }
+      }
+    }
+    if (errCnt == 0){
+      return clk[clkCnt];
+    }
+    if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+    if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+  } 
+  //all tested with errors 
+  //return the highest clk with the most peaks found
+  uint8_t best=7;
+  for (i=7; i>=1; i--){
+    if (peaksdet[i] > peaksdet[best]) {
+      best = i;
+    }
+    //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+  }
+  return clk[best];
+}
+
+//by marshmellow
+//detect nrz clock by reading #peaks vs no peaks(or errors)
+int DetectNRZClock(uint8_t dest[], size_t size, int clock)
+{
+  int i=0;
+  int clk[]={8,16,32,40,50,64,100,128,256};
+  int loopCnt = 4096;  //don't need to loop through entire array...
+  if (size == 0) return 0;
+  if (size<loopCnt) loopCnt = size;
+
+  //if we already have a valid clock quit
+  for (; i < 8; ++i)
+    if (clk[i] == clock) return clock;
+
+  //get high and low peak
+  int peak, low;
+  getHiLo(dest, loopCnt, &peak, &low, 75, 75);
+
+  //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+  int ii;
+  uint8_t clkCnt;
+  uint8_t tol = 0;
+  int peakcnt=0;
+  int peaksdet[]={0,0,0,0,0,0,0,0};
+  int maxPeak=0;
+  //test for large clipped waves
+  for (i=0; i<loopCnt; i++){
+       if (dest[i] >= peak || dest[i] <= low){
+               peakcnt++;
+       } else {
+               if (peakcnt>0 && maxPeak < peakcnt){
+                       maxPeak = peakcnt;
+               }
+               peakcnt=0;
+       }
+  }
+  peakcnt=0;
+  //test each valid clock from smallest to greatest to see which lines up
+  for(clkCnt=0; clkCnt < 8; ++clkCnt){
+       //ignore clocks smaller than largest peak
+       if (clk[clkCnt]<maxPeak) continue;
+
+    //try lining up the peaks by moving starting point (try first 256)
+    for (ii=0; ii< loopCnt; ++ii){
+      if ((dest[ii] >= peak) || (dest[ii] <= low)){
+        peakcnt=0;
+        // now that we have the first one lined up test rest of wave array
+        for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+          if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+            peakcnt++;
+          }
+        }
+        if(peakcnt>peaksdet[clkCnt]) {
+          peaksdet[clkCnt]=peakcnt;
+        }
+      }
+    }
+  }
+  int iii=7;
+  int best=0;
+  for (iii=7; iii > 0; iii--){
+    if (peaksdet[iii] > peaksdet[best]){
+       best = iii;
+    }
+    //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+  }
+  return clk[best];
+}
+
+// by marshmellow
+// convert psk1 demod to psk2 demod
+// only transition waves are 1s
+void psk1TOpsk2(uint8_t *BitStream, size_t size)
+{
+       size_t i=1;
+       uint8_t lastBit=BitStream[0];
+       for (; i<size; i++){
+               if (BitStream[i]==77){
+                       //ignore errors
+               } else if (lastBit!=BitStream[i]){
+                       lastBit=BitStream[i];
+                       BitStream[i]=1;
+               } else {
+                       BitStream[i]=0;
                }
-               if (bitStream[i] <= low) newLow=1;
-               if (bitStream[i] >= high) newHigh=1;
        }
        return;
 }
 
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size)
+{
+       uint8_t phase=0;
+       for (size_t i=0; i<size; i++){
+               if (BitStream[i]==1){
+                       phase ^=1;
+               }
+               BitStream[i]=phase;
+       }
+       return;
+}
 
-//redesigned by marshmellow adjusted from existing decode functions
-//indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+// redesigned by marshmellow adjusted from existing decode functions
+// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
 {
        //26 bit 40134 format  (don't know other formats)
        int i;
-       int long_wait;
-       long_wait = 29;//29 leading zeros in format
+       int long_wait=29;//29 leading zeros in format
        int start;
        int first = 0;
        int first2 = 0;
@@ -838,7 +1272,6 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
                // did not find start sequence
                return -1;
        }
-       //found start once now test length by finding next one
        // Inverting signal if needed
        if (first == 1) {
                for (i = start; i < *size; i++) {
@@ -848,6 +1281,7 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
        }else *invert=0;
 
        int iii;
+       //found start once now test length by finding next one
        for (ii=start+29; ii <= *size - 250; ii++) {
                first2 = bitStream[ii];
                for (iii = ii; iii < ii + long_wait; iii++) {
@@ -874,146 +1308,507 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
        return 1;
 }
 
+// by marshmellow - demodulate NRZ wave (both similar enough)
+// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+// there probably is a much simpler way to do this.... 
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
+{
+  if (justNoise(dest, *size)) return -1;
+  *clk = DetectNRZClock(dest, *size, *clk);
+  if (*clk==0) return -2;
+  uint32_t i;
+  uint32_t gLen = 4096;
+  if (gLen>*size) gLen = *size;
+  int high, low;
+  if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
+  int lastBit = 0;  //set first clock check
+  uint32_t bitnum = 0;     //output counter
+  uint8_t tol = 1;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+  uint32_t iii = 0;
+  uint16_t errCnt =0;
+  uint16_t MaxBits = 1000;
+  uint32_t bestErrCnt = maxErr+1;
+  uint32_t bestPeakCnt = 0;
+  uint32_t bestPeakStart=0;
+  uint8_t bestFirstPeakHigh=0;
+  uint8_t firstPeakHigh=0;
+  uint8_t curBit=0;
+  uint8_t bitHigh=0;
+  uint8_t errBitHigh=0;
+  uint16_t peakCnt=0;
+  uint8_t ignoreWindow=4;
+  uint8_t ignoreCnt=ignoreWindow; //in case of noice near peak
+  //loop to find first wave that works - align to clock
+  for (iii=0; iii < gLen; ++iii){
+    if ((dest[iii]>=high) || (dest[iii]<=low)){
+      if (dest[iii]>=high) firstPeakHigh=1;
+      else firstPeakHigh=0;
+      lastBit=iii-*clk;
+      peakCnt=0;
+      errCnt=0;
+      bitnum=0;
+      //loop through to see if this start location works
+      for (i = iii; i < *size; ++i) {
+        //if we found a high bar and we are at a clock bit
+        if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+          bitHigh=1;
+          lastBit+=*clk;
+          bitnum++;
+          peakCnt++;
+          errBitHigh=0;
+          ignoreCnt=ignoreWindow;
+        //else if low bar found and we are at a clock point
+        }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+          bitHigh=1;
+          lastBit+=*clk;
+          bitnum++;
+          peakCnt++;
+          errBitHigh=0;
+          ignoreCnt=ignoreWindow;
+        //else if no bars found
+        }else if(dest[i] < high && dest[i] > low) {
+          if (ignoreCnt==0){
+            bitHigh=0;
+            if (errBitHigh==1){
+              errCnt++;
+            }
+            errBitHigh=0;
+          } else {
+            ignoreCnt--;
+          }
+          //if we are past a clock point
+          if (i >= lastBit+*clk+tol){ //clock val
+            lastBit+=*clk;
+            bitnum++;
+          }
+        //else if bar found but we are not at a clock bit and we did not just have a clock bit
+        }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
+          //error bar found no clock...
+          errBitHigh=1;
+        }
+        if (bitnum>=MaxBits) break;
+      }
+      //we got more than 64 good bits and not all errors
+      if (bitnum > (64) && (errCnt <= (maxErr))) {
+        //possible good read
+        if (errCnt == 0){
+          //bestStart = iii;
+          bestFirstPeakHigh=firstPeakHigh;
+          bestErrCnt = errCnt;
+          bestPeakCnt = peakCnt;
+          bestPeakStart = iii;
+          break;  //great read - finish
+        }
+        if (errCnt < bestErrCnt){  //set this as new best run
+          bestErrCnt = errCnt;
+          //bestStart = iii;
+        }
+        if (peakCnt > bestPeakCnt){
+          bestFirstPeakHigh=firstPeakHigh;
+          bestPeakCnt=peakCnt;
+          bestPeakStart=iii;
+        } 
+      }
+    }
+  }
+  //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
+  if (bestErrCnt <= maxErr){
+    //best run is good enough set to best run and set overwrite BinStream
+    iii=bestPeakStart;
+    lastBit=bestPeakStart-*clk;
+    bitnum=0;
+    memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
+    bitnum += (bestPeakStart / *clk);
+    for (i = iii; i < *size; ++i) {
+      //if we found a high bar and we are at a clock bit
+      if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+        bitHigh=1;
+        lastBit+=*clk;
+        curBit=1-*invert;
+        dest[bitnum]=curBit;
+        bitnum++;
+        errBitHigh=0;
+        ignoreCnt=ignoreWindow;
+      //else if low bar found and we are at a clock point
+      }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
+        bitHigh=1;
+        lastBit+=*clk;
+        curBit=*invert;
+        dest[bitnum]=curBit;
+        bitnum++;
+        errBitHigh=0;
+        ignoreCnt=ignoreWindow;
+      //else if no bars found
+      }else if(dest[i]<high && dest[i]>low) {
+        if (ignoreCnt==0){
+          bitHigh=0;
+          //if peak is done was it an error peak?
+          if (errBitHigh==1){
+            dest[bitnum]=77;
+            bitnum++;
+            errCnt++;
+          }
+          errBitHigh=0;
+        } else {
+          ignoreCnt--;
+        }
+        //if we are past a clock point
+        if (i>=lastBit+*clk+tol){ //clock val
+          lastBit+=*clk;
+          dest[bitnum]=curBit;
+          bitnum++;
+        }
+      //else if bar found but we are not at a clock bit and we did not just have a clock bit
+      }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
+        //error bar found no clock...
+        errBitHigh=1;
+      }
+      if (bitnum >= MaxBits) break;
+    }
+    *size=bitnum;
+  } else{
+    *size=bitnum;
+    return bestErrCnt;
+  }
 
-//by marshmellow - demodulate PSK wave or NRZ wave (both similar enough)
-//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
+  if (bitnum>16){
+    *size=bitnum;
+  } else return -5;
+  return errCnt;
+}
+
+//by marshmellow
+//detects the bit clock for FSK given the high and low Field Clocks
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
 {
-       pskCleanWave(dest,*size);
-       int clk2 = DetectpskNRZClock(dest, *size, *clk);
-       *clk=clk2;
-       uint32_t i;
-       uint8_t high=0, low=128;
-       uint32_t gLen = *size;
-       if (gLen > 1280) gLen=1280;
-       // get high
-       for (i=0; i < gLen; ++i){
-               if (dest[i] > high) high = dest[i];
-               if (dest[i] < low) low = dest[i];
-       }
-       //fudge high/low bars by 25%
-       high = (uint8_t)((((int)(high)-128)*.75)+128);
-       low = (uint8_t)((((int)(low)-128)*.80)+128);
+  uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+  uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+  uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+  uint8_t rfLensFnd = 0;
+  uint8_t lastFCcnt=0;
+  uint32_t fcCounter = 0;
+  uint16_t rfCounter = 0;
+  uint8_t firstBitFnd = 0;
+  size_t i;
+  if (size == 0) return 0;
 
-       //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
-       int lastBit = 0;  //set first clock check
-       uint32_t bitnum = 0;     //output counter
-       uint8_t tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-       if (*clk==32)tol=2;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
-       uint32_t iii = 0;
-       uint8_t errCnt =0;
-       uint32_t bestStart = *size;
-       uint32_t maxErr = (*size/1000);
-       uint32_t bestErrCnt = maxErr;
-       //uint8_t midBit=0;
-       uint8_t curBit=0;
-       uint8_t bitHigh=0;
-       uint8_t ignorewin=*clk/8;
-       //PrintAndLog("DEBUG - lastbit - %d",lastBit);
-       //loop to find first wave that works - align to clock
-       for (iii=0; iii < gLen; ++iii){
-               if ((dest[iii]>=high) || (dest[iii]<=low)){
-                       lastBit=iii-*clk;
-                       //loop through to see if this start location works
-                       for (i = iii; i < *size; ++i) {
-                               //if we found a high bar and we are at a clock bit
-                               if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-                                       bitHigh=1;
-                                       lastBit+=*clk;
-                                       ignorewin=*clk/8;
-                                       bitnum++;
-                               //else if low bar found and we are at a clock point
-                               }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-                                       bitHigh=1;
-                                       lastBit+=*clk;
-                                       ignorewin=*clk/8;
-                                       bitnum++;
-                               //else if no bars found
-                               }else if(dest[i] < high && dest[i] > low) {
-                                       if (ignorewin==0){
-                                               bitHigh=0;
-                                       }else ignorewin--;
-                                                                               //if we are past a clock point
-                                       if (i >= lastBit+*clk+tol){ //clock val
-                                               lastBit+=*clk;
-                                               bitnum++;
-                                       }
-                               //else if bar found but we are not at a clock bit and we did not just have a clock bit
-                               }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
-                                       //error bar found no clock...
-                                       errCnt++;
-                               }
-                               if (bitnum>=1000) break;
-                       }
-                       //we got more than 64 good bits and not all errors
-                       if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) {
-                               //possible good read
-                               if (errCnt == 0){
-                                       bestStart = iii;
-                                       bestErrCnt = errCnt;
-                                       break;  //great read - finish
-                               }
-                               if (bestStart == iii) break;  //if current run == bestErrCnt run (after exhausted testing) then finish
-                               if (errCnt < bestErrCnt){  //set this as new best run
-                                       bestErrCnt = errCnt;
-                                       bestStart = iii;
-                               }
-                       }
-               }
-       }
-       if (bestErrCnt < maxErr){
-               //best run is good enough set to best run and set overwrite BinStream
-               iii=bestStart;
-               lastBit=bestStart-*clk;
-               bitnum=0;
-               for (i = iii; i < *size; ++i) {
-                       //if we found a high bar and we are at a clock bit
-                       if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-                               bitHigh=1;
-                               lastBit+=*clk;
-                               curBit=1-*invert;
-                               dest[bitnum]=curBit;
-                               ignorewin=*clk/8;
-                               bitnum++;
-                       //else if low bar found and we are at a clock point
-                       }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
-                               bitHigh=1;
-                               lastBit+=*clk;
-                               curBit=*invert;
-                               dest[bitnum]=curBit;
-                               ignorewin=*clk/8;
-                               bitnum++;
-                       //else if no bars found
-                       }else if(dest[i]<high && dest[i]>low) {
-                               if (ignorewin==0){
-                                       bitHigh=0;
-                               }else ignorewin--;
-                               //if we are past a clock point
-                               if (i>=lastBit+*clk+tol){ //clock val
-                                       lastBit+=*clk;
-                                       dest[bitnum]=curBit;
-                                       bitnum++;
-                               }
-                       //else if bar found but we are not at a clock bit and we did not just have a clock bit
-                       }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
-                               //error bar found no clock...
-                               bitHigh=1;
-                               dest[bitnum]=77;
-                               bitnum++;
-                               errCnt++;
-                       }
-                       if (bitnum >=1000) break;
-               }
-               *size=bitnum;
-       } else{
-               *size=bitnum;
-               *clk=bestStart;
-               return -1;
-       }
+  uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+  rfLensFnd=0;
+  fcCounter=0;
+  rfCounter=0;
+  firstBitFnd=0;
+  //PrintAndLog("DEBUG: fcTol: %d",fcTol);
+  // prime i to first up transition
+  for (i = 1; i < size-1; i++)
+    if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+      break;
 
-       if (bitnum>16){
-               *size=bitnum;
-       } else return -1;
-       return errCnt;
+  for (; i < size-1; i++){
+    if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
+      // new peak 
+      fcCounter++;
+      rfCounter++;
+      // if we got less than the small fc + tolerance then set it to the small fc
+      if (fcCounter < fcLow+fcTol) 
+        fcCounter = fcLow;
+      else //set it to the large fc
+        fcCounter = fcHigh;
+
+      //look for bit clock  (rf/xx)
+      if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
+        //not the same size as the last wave - start of new bit sequence
+
+        if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
+          for (int ii=0; ii<15; ii++){
+            if (rfLens[ii]==rfCounter){
+              rfCnts[ii]++;
+              rfCounter=0;
+              break;
+            }
+          }
+          if (rfCounter>0 && rfLensFnd<15){
+            //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+            rfCnts[rfLensFnd]++;
+            rfLens[rfLensFnd++]=rfCounter;
+          }
+        } else {
+          firstBitFnd++;
+        }
+        rfCounter=0;
+        lastFCcnt=fcCounter;
+      }
+      fcCounter=0;
+    } else {
+      // count sample
+      fcCounter++;
+      rfCounter++;
+    }
+  }
+  uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+  for (i=0; i<15; i++){
+    //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+    //get highest 2 RF values  (might need to get more values to compare or compare all?)
+    if (rfCnts[i]>rfCnts[rfHighest]){
+      rfHighest3=rfHighest2;
+      rfHighest2=rfHighest;
+      rfHighest=i;
+    } else if(rfCnts[i]>rfCnts[rfHighest2]){
+      rfHighest3=rfHighest2;
+      rfHighest2=i;
+    } else if(rfCnts[i]>rfCnts[rfHighest3]){
+      rfHighest3=i;
+    }
+  }  
+  // set allowed clock remainder tolerance to be 1 large field clock length+1 
+  //   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
+  uint8_t tol1 = fcHigh+1; 
+  
+  //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+  // loop to find the highest clock that has a remainder less than the tolerance
+  //   compare samples counted divided by
+  int ii=7;
+  for (; ii>=0; ii--){
+    if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+      if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+        if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+          break;
+        }
+      }
+    }
+  }
+
+  if (ii<0) return 0; // oops we went too far
+
+  return clk[ii];
 }
 
+//by marshmellow
+//countFC is to detect the field clock lengths.
+//counts and returns the 2 most common wave lengths
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t *mostFC)
+{
+  uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+  uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+  uint8_t fcLensFnd = 0;
+  uint8_t lastFCcnt=0;
+  uint32_t fcCounter = 0;
+  size_t i;
+  if (size == 0) return 0;
+
+  // prime i to first up transition
+  for (i = 1; i < size-1; i++)
+    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+      break;
+
+  for (; i < size-1; i++){
+    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+       // new up transition
+       fcCounter++;
+       
+      //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+      if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+      //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
+      if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
+
+      // save last field clock count  (fc/xx)
+      // find which fcLens to save it to:
+      for (int ii=0; ii<10; ii++){
+        if (fcLens[ii]==fcCounter){
+          fcCnts[ii]++;
+          fcCounter=0;
+          break;
+        }
+      }
+      if (fcCounter>0 && fcLensFnd<10){
+        //add new fc length 
+        fcCnts[fcLensFnd]++;
+        fcLens[fcLensFnd++]=fcCounter;
+      }
+      fcCounter=0;
+    } else {
+      // count sample
+      fcCounter++;
+    }
+  }
+  
+  uint8_t best1=9, best2=9, best3=9;
+  uint16_t maxCnt1=0;
+  // go through fclens and find which ones are bigest 2  
+  for (i=0; i<10; i++){
+    // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);    
+    // get the 3 best FC values
+    if (fcCnts[i]>maxCnt1) {
+      best3=best2;
+      best2=best1;
+      maxCnt1=fcCnts[i];
+      best1=i;
+    } else if(fcCnts[i]>fcCnts[best2]){
+      best3=best2;
+      best2=i;
+    } else if(fcCnts[i]>fcCnts[best3]){
+      best3=i;
+    }
+  }
+  uint8_t fcH=0, fcL=0;
+  if (fcLens[best1]>fcLens[best2]){
+    fcH=fcLens[best1];
+    fcL=fcLens[best2];
+  } else{
+    fcH=fcLens[best2];
+    fcL=fcLens[best1];
+  }
+
+  *mostFC=fcLens[best1]; 
+  // TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+  uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
+  // PrintAndLog("DEBUG: Best %d  best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
+  
+  return fcs;
+}
+
+//by marshmellow
+//countPSK_FC is to detect the psk carrier clock length.
+//counts and returns the 1 most common wave length
+uint8_t countPSK_FC(uint8_t *BitStream, size_t size)
+{
+  uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+  uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+  uint8_t fcLensFnd = 0;
+  uint32_t fcCounter = 0;
+  size_t i;
+  if (size == 0) return 0;
+  
+  // prime i to first up transition
+  for (i = 1; i < size-1; i++)
+    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+      break;
+
+  for (; i < size-1; i++){
+    if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+      // new up transition
+      fcCounter++;
+      
+      // save last field clock count  (fc/xx)
+      // find which fcLens to save it to:
+      for (int ii=0; ii<10; ii++){
+        if (fcLens[ii]==fcCounter){
+          fcCnts[ii]++;
+          fcCounter=0;
+          break;
+        }
+      }
+      if (fcCounter>0 && fcLensFnd<10){
+        //add new fc length 
+        fcCnts[fcLensFnd]++;
+        fcLens[fcLensFnd++]=fcCounter;
+      }
+      fcCounter=0;
+    } else {
+      // count sample
+      fcCounter++;
+    }
+  }
+  
+  uint8_t best1=9;
+  uint16_t maxCnt1=0;
+  // go through fclens and find which ones are bigest  
+  for (i=0; i<10; i++){
+    //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);    
+    // get the best FC value
+    if (fcCnts[i]>maxCnt1) {
+      maxCnt1=fcCnts[i];
+      best1=i;
+    }
+  }
+  return fcLens[best1]; 
+}
+
+//by marshmellow - demodulate PSK1 wave 
+//uses wave lengths (# Samples) 
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
+{
+  uint16_t loopCnt = 4096;  //don't need to loop through entire array...
+  if (size == 0) return -1;
+  if (*size<loopCnt) loopCnt = *size;
+
+  uint8_t curPhase = *invert;
+  size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+  uint8_t fc=0, fullWaveLen=0, tol=1;
+  uint16_t errCnt=0, waveLenCnt=0;
+  fc = countPSK_FC(dest, *size);
+  if (fc!=2 && fc!=4 && fc!=8) return -1;
+  //PrintAndLog("DEBUG: FC: %d",fc);
+  *clock = DetectPSKClock(dest, *size, *clock);
+  if (*clock==0) return -1;
+  int avgWaveVal=0, lastAvgWaveVal=0;
+  //find first phase shift
+  for (i=0; i<loopCnt; i++){
+    if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+      waveEnd = i+1;
+      //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+      waveLenCnt = waveEnd-waveStart;
+      if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave 
+        lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+        firstFullWave = waveStart;
+        fullWaveLen=waveLenCnt;
+        //if average wave value is > graph 0 then it is an up wave or a 1
+        if (lastAvgWaveVal > 123) curPhase^=1;  //fudge graph 0 a little 123 vs 128
+        break;
+      } 
+      waveStart = i+1;
+      avgWaveVal = 0;
+    }
+    avgWaveVal+=dest[i+2];
+  }
+  //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);  
+  lastClkBit = firstFullWave; //set start of wave as clock align
+  //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+  waveStart = 0;
+  errCnt=0;
+  size_t numBits=0;
+  //set skipped bits
+  memset(dest,curPhase^1,firstFullWave / *clock);
+  numBits += (firstFullWave / *clock);
+  dest[numBits++] = curPhase; //set first read bit
+  for (i = firstFullWave+fullWaveLen-1; i < *size-3; i++){
+    //top edge of wave = start of new wave 
+    if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+      if (waveStart == 0) {
+        waveStart = i+1;
+        waveLenCnt=0;
+        avgWaveVal = dest[i+1];
+      } else { //waveEnd
+        waveEnd = i+1;
+        waveLenCnt = waveEnd-waveStart;
+        lastAvgWaveVal = avgWaveVal/waveLenCnt;
+        if (waveLenCnt > fc){  
+          //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+          //if this wave is a phase shift
+          //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+          if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+            curPhase^=1;
+            dest[numBits++] = curPhase;
+            lastClkBit += *clock;
+          } else if (i<lastClkBit+10+fc){
+            //noise after a phase shift - ignore
+          } else { //phase shift before supposed to based on clock
+            errCnt++;
+            dest[numBits++] = 77;
+          }
+        } else if (i+1 > lastClkBit + *clock + tol + fc){
+          lastClkBit += *clock; //no phase shift but clock bit
+          dest[numBits++] = curPhase;
+        }
+        avgWaveVal=0;
+        waveStart=i+1;
+      }
+    }
+    avgWaveVal+=dest[i+1];
+  }
+  *size = numBits;
+  return errCnt;
+}
Impressum, Datenschutz